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Abstract—This study establishes a laser cladding system
integrated with the YOLOvS model. This system can
identify various cladding conditions, including normal
cladding, pore defects, lack of fusion, and overfusion, in
production line applications. Its hardware consists of a
power supply, a laser cladding module, an optical filter, a
camera, and a computer, and its software consists of a
software flowchart and the YOLOVS model. This flowchart
enables image acquisition, feature annotation, dataset
construction, parameter configuration, and model training
and testing. The YOLOvVS model was evaluated using the
following parameters: confusion matrix, mean average
precision, confidence score, precision, recall, and F1-score.
The experimental results confirm that the proposed system
achieved high stability and demonstrated strong
applicability for real-world defect detection in laser
cladding processes.
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1. INTRODUCTION

Laser cladding can be used in surface repair and in the
reinforcement of mechanical components, molds, turbine
blades, and aerospace structures. This technique utilizes a high-
power laser beam focused on the workpiece surface to locally
melt alloy powders, which, upon cooling, form a high-hardness
coating layer. This process offers several advantages, including
precise control of the cladding thickness, strong adhesion, and
high durability [1]-[3].

During large-scale laser cladding, defects such as cracks,
pores, and clad layer delamination are likely to occur.
Conventional defect detection methods such as ultrasonic and
X-ray inspection often rely on professional interpretation,
which introduces subjectivity and poses a risk of misjudgment.
Therefore, to improve the quality of clad layers, process
parameters such as laser power, scanning speed, powder feed
rate, and overlap ratio must be carefully considered. These

parameters are typically obtained through repeated experiments.

However, identifying effective values and establishing accurate
parameter models can be challenging. In addition, traditional
laser cladding systems operate in an open-loop manner, which
renders the cladding process susceptible to instability due to
variations in reflectivity and thermal conductivity and due to
environmental disturbances. To enhance quality inspection,
optimize process parameters, and increase system stability,
deep learning algorithms must be integrated into laser cladding
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systems to enable the real-time image-based control of cladding
layers [4]-[6].

Multiple studies have applied deep learning and machine
learning algorithms in the field of machining. In [7], machine
learning algorithms combined with a finite element analysis
were used to examine the effects of different surface roughness
parameters on the fatigue life of TC17 titanium alloy impellers.
In that study, a back-propagation artificial neural network was
used to predict the influence of surface roughness on fatigue
life. In [8], feature fusion and sparse Bayesian learning were
used to reduce the milling machining errors of robotic systems
and achieve error control for large-scale complex surfaces. In
[9], support vector machines were used to classify defects such
as pores and lack of fusion, with this followed by the
application of Gaussian process regression to predict the effects
of process parameters such as laser power, scanning speed, and
powder feed rate on pore formation. In [10], a physics-informed
machine learning model was proposed that demonstrated
simplicity, high efficiency, and high accuracy, with the model
enabling the precise prediction of the notch fatigue life of
polycrystalline alloys.

In practical laser cladding production, the quality of the clad
layer is strongly influenced by process parameters, and
inappropriate parameter selection may lead to defects such as
pores, a lack of fusion, or overfusion. These defects prevent the
clad layer from meeting design requirements, and they increase
the risk of product failure (Fig. 1). Pores are small voids or
bubbles that form in the bonding region between the clad layer
and the substrate. These pores are typically caused by gas
entrapment, incomplete molten pool solidification, or
insufficient metallurgical bonding between materials. A lack of
fusion indicates the presence of gaps or weakly bonded regions
between the clad layer and the substrate, and this can create
structural weak points. Overfusion occurs when the laser output
power is excessively high during cladding. It results in an
overly deep molten pool that compromises the microstructure
and performance of the clad layer.

This study developed a laser cladding system integrated
with a software flowchart and the YOLOVS model to identify
and classify defects and to construct a defect database.
Experimental validation of this system revealed it to achieve
high performance in defect recognition and classification.

The remainder of this paper is organized as follows. Section
I describes the operating principle of the proposed laser
cladding system along with its software flowchart. Section III
presents the experimental results and their analysis. Section IV
concludes the study.



Fig. 2 illustrates the composition of the power supply and
the laser cladding system. The power supply consists of an AC
power source, a power factor correction (PFC) circuit, and a
DC-DC converter. Its operating principle is that AC input
passes through the PFC circuit to align the phase of the input
voltage and current and improve the power factor. Subsequently,
the DC-DC converter transforms high-voltage DC into low-
voltage DC to feed the laser device. The laser cladding system
consists of a laser unit, a powder feeder, an optical filter, a
camera, and a computer. Its operating principle is that the
interaction between the laser beam and the powder feed
generates a melt pool on the workpiece. During this process,
images of the molten pool are captured by the camera through
the optical filter, compiled into a database, and analyzed as
outlined in Fig. 3. After execution of the software flowchart, a
feedback signal, denoted as Sigreedback, 1S generated and
transmitted to the DC-DC converter. Sigreedpack 1S compared
with the internal triangular carrier signal of the converter to
generate the corresponding pulse-width modulation (PWM)
signal. By modulating the PWM signal, the input voltage of the
laser cladding system is regulated, thereby enabling adjustment
of the laser output power.

(a) Pore (b) Lack of fusion

(c) Overfusion

Fig. 1. Defect types in laser cladding.

II. LASER CLADDING SYSTEM

Fig. 3 presents the proposed software workflow, which is
divided into two components: a labeled database on the left and
the YOLOvV5 model on the right. As indicated on the left of the
figure, images are captured by the camera until a clear frame is
obtained. Each image is then processed in Roboflow to a
resolution of 640 x 640 x 3 pixels, and data augmentation is
applied to expand the dataset size by a factor of three.
Subsequently, bounding boxes are applied to annotate the
images into four categories: normal cladding, pore defects, lack
of fusion, and overfusion. These annotated images are then
compiled into training and testing datasets for the YOLOvV5
model. As indicated on the right of Fig. 3, training is conducted
using train.py with the following parameters: batch size = 16,
initial learning rate = 0.001, epochs = 300, confidence score
threshold = 0.25, maximum number of detection operations =
1000, and regional threshold = 1000 px>. An early stopping
mechanism is employed to prevent overfitting and terminate
the training process when the relative variation in validation
loss remains below 1 for 20 consecutive epochs. Finally, the
YOLOvVS5 model is trained and tested using the constructed
datasets, and its performance is evaluated in terms of stability,
confusion matrix, mean average precision (mAP), confidence
score, precision, recall, and F1-score.
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Fig. 2. Laser cladding system.
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Fig. 3. Software flowchart

III. EXPERIMENTAL RESULTS AND ANALYSIS

Fig. 4 depicts the confusion matrix, which demonstrates the
correspondence between the actual annotations and model
predictions, with this used to further evaluate the ability of the
YOLOvV5 model to identify normal and defect phenomena
during laser cladding. In Fig. 4, the horizontal axis represents
the ground-truth labels, whereas the vertical axis represents the
predicted labels. Each numerical value corresponds to a
normalized proportion, with darker colors indicating higher
ratios. As presented in Fig. 4, the classification accuracy for
lack of fusion, normal cladding, overfusion, and pore defects is
100%, 94%, 87%, and 91%, respectively. The background false
positive rate (FP2) for lack of fusion and overfusion is only
20%, indicating the model has high recognition capability for
these two types of defects. However, the false positive rate for
normal cladding is 60%, indicating that under specific
conditions, the model may fail to accurately identify the
cladding region. In practical production lines, such conditions
may lead to reduced yield, which may in turn affect the stability
and automation benefits of laser cladding systems.

To address the aforementioned problems, this paper
presents an analysis of the problems from four perspectives: a
human perspective, a machine perspective, a material
perspective, and a methodological perspective.

1. Human perspective: Nonuniform annotations of normal
laser cladding samples cause learning bias in the model,
whereas a lack of classification knowledge among
annotators results in labeling discrepancies.



2. Machine perspective: The imaging process of the camera is
influenced by environmental and lighting disturbances,
leading to nonuniform image quality and reduced
recognition accuracy.

Lack of fusion:

3. Material perspective: The surface roughness and Normal =
reflectivity of materials introduce errors in mask
segmentation, which in turn affects the model’s ability to
accurately identify cladding regions. Overfusion —

4. Methodological perspective: Inappropriate settings for
training parameters (e.g., anchor, boxes, and learning rate) Pore —
may cause deviations during the training process.

Future studies can enhance the recognition accuracy of the
YOLOVS5 model for laser cladding systems by addressing these

four problems. ' ' | | ]
Lack of fusion Normal Overfusion Pore Background FP

Background FP =

Fig. 5 presents the mAP results. “Box” evaluation involves
an analysis of whether the bounding box drawn by the model ] ) )
successfully “captures” the defect, which is a coarse-level Fig. 4. Confusion matrix
detection criterion focusing on “hit or miss.” “Mask”
evaluation refers to the measurement of the pixel-wise overlap
between the predicted mask and the ground-truth defect contour, mAP 0.992

. . . . 1.0 ¥
and it reflects segmentation accuracy, which provides a fine-
grained assessment of detection quality. At an intersection over

union (IoU) of 0.5—as depicted in Fig. 5(a), “Box” evaluation 08

revealed an mAP of 0.992, and—as depicted in Fig. 5(b)— 0.6

“Mask” evaluation revealed an mAP of 0.987. These results

indicate that at a relaxed overlap threshold, all samples can be 0.4

completely detected and correctly classified. At an IoU of 0.5—

0.95 (step = 0.05)—as depicted in Fig. 5(c), “Box” evaluation 02

revealed an mAP of 0.868, and—as depicted in Fig. 5(d)—

“Mask” evaluation revealed an mAP of 0.838. These results 0.0
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achieves a mean precision of approximately 87% and 84% for Epoch
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Fig. 6 illustrates the precision versus confidence score mAP 0.987

curves of the YOLOVS model for normal cladding and the three 1.0 “m

types of defects. These curves demonstrate the relationship

between prediction confidence scores and precision at varying 0.8

decision thresholds and served as a key reference for selecting

an appropriate confidence score threshold in this study. In Fig. 0.6

6, the horizontal axis represents the confidence scores assigned

by the model to its predictions, whereas the vertical axis 0.4

represents the corresponding precision values. Four

observations can be made from the figure: 0.2

1. When the confidence score increases, the precision of all 0.0 0 50 100 150 200 250
curves demonstrates an upward trend, indicating that Epoch

precision is positively correlated with confidence score.
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2. Compared with other categories, NG _1 (lack of fusion) and () To , askmode

NG _2 (overfusion) exhibit more stable performance, with
smooth curves that rapidly reach high precision, indicating

the model is effective in identifying these types of defects 1.0 )

with distinct characteristics. 0'8‘68
3. Compared with other categories, NG 3 (pores) achieves 0.8

slightly lower precision but still approaches 0.95. This low 0.6

performance is attributable to the irregular shapes and X

relatively small areas of pores, which pose major challenges 04

for the model. '
4. When normal cladding occurs, when the confidence score 02
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Fig. 5. mAP results.
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Fig. 6. Precision versus confidence score curves.

Fig. 7 illustrates the recall versus confidence score curves
of the YOLOV5 model for normal cladding and the three types
of defects. These curves demonstrate the proportion of actual
defects that can be detected. In Fig. 7, the horizontal axis
represents the confidence scores assigned by the model to its
predictions, whereas the vertical axis represents the
corresponding recall rates. Four observations can be made from
the figure:

1. When the confidence score approaches zero, the recall rate
reaches 1.00 across all categories. This result suggests that
with a relaxed prediction threshold, the model can cover all
ground-truth samples, indicating it has strong detection
capability.

2. When the confidence score increases, the recall rate rapidly
decreases, indicating that with a strict prediction threshold,
the model achieves high precision but low recall, which
leads to missed detection.

3. For category NG_3 (pores), the recall rate even remains
high when the confidence score exceeds 0.7, suggesting the
model is able to identify subtle defect features.

4. For categories NG 1 (lack of fusion) and NG 2
(overfusion), when the confidence score is 0.7, the recall
rate remains above 0.8 across all categories, indicating the
model is able to detect unfused and overmelted defects.
However, when the confidence score exceeds 0.7, the recall
rate rapidly decreases, leading to frequent missed detection.
This phenomenon indicates a need for further optimization
in subsequent studies.
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Fig. 7. Recall versus confidence score curves.

Fig. 8 illustrates the Fl-score versus confidence score
curves of the YOLOvVS5 model for normal cladding and the three
types of defects. In this figure, the Fl-score represents the
harmonic mean of precision and recall. In addition, the
horizontal axis represents the prediction confidence scores,
whereas the vertical axis represents the Fl-scores. Three
observations can be made from the figure:

1. When the confidence score ranges from 0.3 to 0.7, the F1-
scores of all categories remain at approximately 0.9,
indicating that the model maintains its performance within
this interval. This range is therefore suitable as a reference
threshold for practical applications.

2. When the confidence score ranges from 0.22 to 0.82,
category NG 3 (pores) achieves the highest performance,
consistently maintaining a high F1-score of approximately
0.9. This finding suggests that pore defects exhibit distinct
characteristics that can be effectively recognized by the
model.

3. When the confidence score ranges from 0.3 to 0.7, the F1-
scores of all categories reach approximately 0.92, indicating
nearly optimal precision and recall. This finding confirms
the appropriateness of the image labeling strategy and the
training methodology utilized by the model.
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Fig. 8. Fl-score versus confidence score curves.
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Fig. 9. Detection results of the YOLOvS model.

In this study, a YOLOVS model was developed to classify
normal and defect phenomena in laser cladding. The model’s
performance was validated on an automated production line. As
presented in Fig. 9, the proposed model identified (a) normal
cladding with a confidence score of 0.86, (b) a pore defect with
a confidence score of 0.87, (c) a lack-of-fusion defect with a
confidence score of 0.86, and (d) an overfusion defect with a
confidence score of 0.85. These experimental results confirm
the model’s high feasibility for practical applications.

IV. CONCLUSION

This paper presents a novel laser cladding system integrated
with the YOLOVS model. This system is capable of identifying
different cladding conditions, including normal cladding, pore
defects, a lack of fusion, and overfusion. For the curves of
precision versus confidence score, when the confidence score
threshold is 0.2, the recognition accuracy of all categories
remains above 0.8, with lack of fusion and overfusion
exhibiting the highest performance. For the curves of recall
versus confidence score, when the confidence score threshold
is 0.7, the recall rate of all categories remains above 0.8,
although the risk of missed detection increases at this threshold.
For the curves of F1l-score versus confidence score, when the
confidence score ranges between 0.3 and 0.7, the F1-scores of
all categories approach 0.92, indicating nearly optimal
precision and recall. According to the results of small-scale
production tests, the confidence scores of all categories fall
within the range of 0.85 to 0.87, confirming the proposed
system’s high stability and strong feasibility. Future studies
should focus on validating the proposed system within large-
scale production environments.
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