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Abstract—This study establishes a laser cladding system 

integrated with the YOLOv5 model. This system can 

identify various cladding conditions, including normal 

cladding, pore defects, lack of fusion, and overfusion, in 

production line applications. Its hardware consists of a 

power supply, a laser cladding module, an optical filter, a 

camera, and a computer, and its software consists of a 

software flowchart and the YOLOv5 model. This flowchart 

enables image acquisition, feature annotation, dataset 

construction, parameter configuration, and model training 

and testing. The YOLOv5 model was evaluated using the 

following parameters: confusion matrix, mean average 

precision, confidence score, precision, recall, and F1-score. 

The experimental results confirm that the proposed system 

achieved high stability and demonstrated strong 

applicability for real-world defect detection in laser 

cladding processes. 
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I. INTRODUCTION 

Laser cladding can be used in surface repair and in the 
reinforcement of mechanical components, molds, turbine 
blades, and aerospace structures. This technique utilizes a high-
power laser beam focused on the workpiece surface to locally 
melt alloy powders, which, upon cooling, form a high-hardness 
coating layer. This process offers several advantages, including 
precise control of the cladding thickness, strong adhesion, and 
high durability [1]–[3]. 

During large-scale laser cladding, defects such as cracks, 
pores, and clad layer delamination are likely to occur. 
Conventional defect detection methods such as ultrasonic and 
X-ray inspection often rely on professional interpretation, 
which introduces subjectivity and poses a risk of misjudgment. 
Therefore, to improve the quality of clad layers, process 
parameters such as laser power, scanning speed, powder feed 
rate, and overlap ratio must be carefully considered. These 
parameters are typically obtained through repeated experiments. 
However, identifying effective values and establishing accurate 
parameter models can be challenging. In addition, traditional 
laser cladding systems operate in an open-loop manner, which 
renders the cladding process susceptible to instability due to 
variations in reflectivity and thermal conductivity and due to 
environmental disturbances. To enhance quality inspection, 
optimize process parameters, and increase system stability, 
deep learning algorithms must be integrated into laser cladding 

systems to enable the real-time image-based control of cladding 
layers [4]–[6]. 

Multiple studies have applied deep learning and machine 
learning algorithms in the field of machining. In [7], machine 
learning algorithms combined with a finite element analysis 
were used to examine the effects of different surface roughness 
parameters on the fatigue life of TC17 titanium alloy impellers. 
In that study, a back-propagation artificial neural network was 
used to predict the influence of surface roughness on fatigue 
life. In [8], feature fusion and sparse Bayesian learning were 
used to reduce the milling machining errors of robotic systems 
and achieve error control for large-scale complex surfaces. In 
[9], support vector machines were used to classify defects such 
as pores and lack of fusion, with this followed by the 
application of Gaussian process regression to predict the effects 
of process parameters such as laser power, scanning speed, and 
powder feed rate on pore formation. In [10], a physics-informed 
machine learning model was proposed that demonstrated 
simplicity, high efficiency, and high accuracy, with the model 
enabling the precise prediction of the notch fatigue life of 
polycrystalline alloys. 

In practical laser cladding production, the quality of the clad 
layer is strongly influenced by process parameters, and 
inappropriate parameter selection may lead to defects such as 
pores, a lack of fusion, or overfusion. These defects prevent the 
clad layer from meeting design requirements, and they increase 
the risk of product failure (Fig. 1). Pores are small voids or 
bubbles that form in the bonding region between the clad layer 
and the substrate. These pores are typically caused by gas 
entrapment, incomplete molten pool solidification, or 
insufficient metallurgical bonding between materials. A lack of 
fusion indicates the presence of gaps or weakly bonded regions 
between the clad layer and the substrate, and this can create 
structural weak points. Overfusion occurs when the laser output 
power is excessively high during cladding. It results in an 
overly deep molten pool that compromises the microstructure 
and performance of the clad layer. 

This study developed a laser cladding system integrated 
with a software flowchart and the YOLOv5 model to identify 
and classify defects and to construct a defect database. 
Experimental validation of this system revealed it to achieve 
high performance in defect recognition and classification. 

The remainder of this paper is organized as follows. Section 
II describes the operating principle of the proposed laser 
cladding system along with its software flowchart. Section III 
presents the experimental results and their analysis. Section IV 
concludes the study. 



Fig. 2 illustrates the composition of the power supply and 
the laser cladding system. The power supply consists of an AC 
power source, a power factor correction (PFC) circuit, and a 
DC–DC converter. Its operating principle is that AC input 
passes through the PFC circuit to align the phase of the input 
voltage and current and improve the power factor. Subsequently, 
the DC–DC converter transforms high-voltage DC into low-
voltage DC to feed the laser device. The laser cladding system 
consists of a laser unit, a powder feeder, an optical filter, a 
camera, and a computer. Its operating principle is that the 
interaction between the laser beam and the powder feed 
generates a melt pool on the workpiece. During this process, 
images of the molten pool are captured by the camera through 
the optical filter, compiled into a database, and analyzed as 
outlined in Fig. 3. After execution of the software flowchart, a 
feedback signal, denoted as SigFeedback, is generated and 
transmitted to the DC–DC converter. SigFeedback is compared 
with the internal triangular carrier signal of the converter to 
generate the corresponding pulse-width modulation (PWM) 
signal. By modulating the PWM signal, the input voltage of the 
laser cladding system is regulated, thereby enabling adjustment 
of the laser output power. 
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Fig. 1. Defect types in laser cladding. 

II. LASER CLADDING SYSTEM 

Fig. 3 presents the proposed software workflow, which is 
divided into two components: a labeled database on the left and 
the YOLOv5 model on the right. As indicated on the left of the 
figure, images are captured by the camera until a clear frame is 
obtained. Each image is then processed in Roboflow to a 
resolution of 640 × 640 × 3 pixels, and data augmentation is 
applied to expand the dataset size by a factor of three. 
Subsequently, bounding boxes are applied to annotate the 
images into four categories: normal cladding, pore defects, lack 
of fusion, and overfusion. These annotated images are then 
compiled into training and testing datasets for the YOLOv5 
model. As indicated on the right of Fig. 3, training is conducted 
using train.py with the following parameters: batch size = 16, 
initial learning rate = 0.001, epochs = 300, confidence score 
threshold = 0.25, maximum number of detection operations = 
1000, and regional threshold = 1000 px2. An early stopping 
mechanism is employed to prevent overfitting and terminate 
the training process when the relative variation in validation 
loss remains below 1 for 20 consecutive epochs. Finally, the 
YOLOv5 model is trained and tested using the constructed 
datasets, and its performance is evaluated in terms of stability, 
confusion matrix, mean average precision (mAP), confidence 
score, precision, recall, and F1-score. 
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Fig. 2. Laser cladding system. 
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Fig. 3. Software flowchart 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

Fig. 4 depicts the confusion matrix, which demonstrates the 
correspondence between the actual annotations and model 
predictions, with this used to further evaluate the ability of the 
YOLOv5 model to identify normal and defect phenomena 
during laser cladding. In Fig. 4, the horizontal axis represents 
the ground-truth labels, whereas the vertical axis represents the 
predicted labels. Each numerical value corresponds to a 
normalized proportion, with darker colors indicating higher 
ratios. As presented in Fig. 4, the classification accuracy for 
lack of fusion, normal cladding, overfusion, and pore defects is 
100%, 94%, 87%, and 91%, respectively. The background false 
positive rate (FP2) for lack of fusion and overfusion is only 
20%, indicating the model has high recognition capability for 
these two types of defects. However, the false positive rate for 
normal cladding is 60%, indicating that under specific 
conditions, the model may fail to accurately identify the 
cladding region. In practical production lines, such conditions 
may lead to reduced yield, which may in turn affect the stability 
and automation benefits of laser cladding systems. 

To address the aforementioned problems, this paper 
presents an analysis of the problems from four perspectives: a 
human perspective, a machine perspective, a material 
perspective, and a methodological perspective. 

1. Human perspective: Nonuniform annotations of normal 
laser cladding samples cause learning bias in the model, 
whereas a lack of classification knowledge among 
annotators results in labeling discrepancies. 



2. Machine perspective: The imaging process of the camera is 
influenced by environmental and lighting disturbances, 
leading to nonuniform image quality and reduced 
recognition accuracy. 

3. Material perspective: The surface roughness and 
reflectivity of materials introduce errors in mask 
segmentation, which in turn affects the model’s ability to 
accurately identify cladding regions. 

4. Methodological perspective: Inappropriate settings for 
training parameters (e.g., anchor, boxes, and learning rate) 
may cause deviations during the training process. 

Future studies can enhance the recognition accuracy of the 
YOLOv5 model for laser cladding systems by addressing these 
four problems. 

Fig. 5 presents the mAP results. “Box” evaluation involves 
an analysis of whether the bounding box drawn by the model 
successfully “captures” the defect, which is a coarse-level 
detection criterion focusing on “hit or miss.” “Mask” 
evaluation refers to the measurement of the pixel-wise overlap 
between the predicted mask and the ground-truth defect contour, 
and it reflects segmentation accuracy, which provides a fine-
grained assessment of detection quality. At an intersection over 
union (IoU) of 0.5—as depicted in Fig. 5(a), “Box” evaluation 
revealed an mAP of 0.992, and—as depicted in Fig. 5(b)—
“Mask” evaluation revealed an mAP of 0.987. These results 
indicate that at a relaxed overlap threshold, all samples can be 
completely detected and correctly classified. At an IoU of 0.5–
0.95 (step = 0.05)—as depicted in Fig. 5(c), “Box” evaluation 
revealed an mAP of 0.868, and—as depicted in Fig. 5(d)—
“Mask” evaluation revealed an mAP of 0.838. These results 
indicate that under stricter conditions, the YOLOv5 model still 
achieves a mean precision of approximately 87% and 84% for 
defect bounding box localization and mask-based segmentation, 
respectively. 

Fig. 6 illustrates the precision versus confidence score 
curves of the YOLOv5 model for normal cladding and the three 
types of defects. These curves demonstrate the relationship 
between prediction confidence scores and precision at varying 
decision thresholds and served as a key reference for selecting 
an appropriate confidence score threshold in this study. In Fig. 
6, the horizontal axis represents the confidence scores assigned 
by the model to its predictions, whereas the vertical axis 
represents the corresponding precision values. Four 
observations can be made from the figure: 

1. When the confidence score increases, the precision of all 
curves demonstrates an upward trend, indicating that 
precision is positively correlated with confidence score. 

2. Compared with other categories, NG_1 (lack of fusion) and 
NG_2 (overfusion) exhibit more stable performance, with 
smooth curves that rapidly reach high precision, indicating 
the model is effective in identifying these types of defects 
with distinct characteristics. 

3. Compared with other categories, NG_3 (pores) achieves 
slightly lower precision but still approaches 0.95. This low 
performance is attributable to the irregular shapes and 
relatively small areas of pores, which pose major challenges 
for the model. 

4. When normal cladding occurs, when the confidence score 
reaches 0.02, the degree of precision remains above 0.8 and 
continues to increase. This result indicates that the model 
rarely misclassifies normal regions as defects, which is 
useful in reducing false positive rates. 
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Fig. 4. Confusion matrix 
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(c) IoU = 0.5–0.95, Box mode 
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(d) IoU = 0.5–0.95, Mask mode 

Fig. 5. mAP results. 
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Fig. 6. Precision versus confidence score curves. 

Fig. 7 illustrates the recall versus confidence score curves 
of the YOLOv5 model for normal cladding and the three types 
of defects. These curves demonstrate the proportion of actual 
defects that can be detected. In Fig. 7, the horizontal axis 
represents the confidence scores assigned by the model to its 
predictions, whereas the vertical axis represents the 
corresponding recall rates. Four observations can be made from 
the figure: 

1. When the confidence score approaches zero, the recall rate 
reaches 1.00 across all categories. This result suggests that 
with a relaxed prediction threshold, the model can cover all 
ground-truth samples, indicating it has strong detection 
capability. 

2. When the confidence score increases, the recall rate rapidly 
decreases, indicating that with a strict prediction threshold, 
the model achieves high precision but low recall, which 
leads to missed detection. 

3. For category NG_3 (pores), the recall rate even remains 
high when the confidence score exceeds 0.7, suggesting the 
model is able to identify subtle defect features. 

4. For categories NG_1 (lack of fusion) and NG_2 
(overfusion), when the confidence score is 0.7, the recall 
rate remains above 0.8 across all categories, indicating the 
model is able to detect unfused and overmelted defects. 
However, when the confidence score exceeds 0.7, the recall 
rate rapidly decreases, leading to frequent missed detection. 
This phenomenon indicates a need for further optimization 
in subsequent studies. 
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Fig. 7. Recall versus confidence score curves. 

Fig. 8 illustrates the F1-score versus confidence score 
curves of the YOLOv5 model for normal cladding and the three 
types of defects. In this figure, the F1-score represents the 
harmonic mean of precision and recall. In addition, the 
horizontal axis represents the prediction confidence scores, 
whereas the vertical axis represents the F1-scores. Three 
observations can be made from the figure: 

1. When the confidence score ranges from 0.3 to 0.7, the F1-
scores of all categories remain at approximately 0.9, 
indicating that the model maintains its performance within 
this interval. This range is therefore suitable as a reference 
threshold for practical applications. 

2. When the confidence score ranges from 0.22 to 0.82, 
category NG_3 (pores) achieves the highest performance, 
consistently maintaining a high F1-score of approximately 
0.9. This finding suggests that pore defects exhibit distinct 
characteristics that can be effectively recognized by the 
model. 

3. When the confidence score ranges from 0.3 to 0.7, the F1-
scores of all categories reach approximately 0.92, indicating 
nearly optimal precision and recall. This finding confirms 
the appropriateness of the image labeling strategy and the 
training methodology utilized by the model. 
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Fig. 8. F1-score versus confidence score curves. 
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Fig. 9. Detection results of the YOLOv5 model. 

In this study, a YOLOv5 model was developed to classify 
normal and defect phenomena in laser cladding. The model’s 
performance was validated on an automated production line. As 
presented in Fig. 9, the proposed model identified (a) normal 
cladding with a confidence score of 0.86, (b) a pore defect with 
a confidence score of 0.87, (c) a lack-of-fusion defect with a 
confidence score of 0.86, and (d) an overfusion defect with a 
confidence score of 0.85. These experimental results confirm 
the model’s high feasibility for practical applications. 

IV. CONCLUSION 

This paper presents a novel laser cladding system integrated 
with the YOLOv5 model. This system is capable of identifying 
different cladding conditions, including normal cladding, pore 
defects, a lack of fusion, and overfusion. For the curves of 
precision versus confidence score, when the confidence score 
threshold is 0.2, the recognition accuracy of all categories 
remains above 0.8, with lack of fusion and overfusion 
exhibiting the highest performance. For the curves of recall 
versus confidence score, when the confidence score threshold 
is 0.7, the recall rate of all categories remains above 0.8, 
although the risk of missed detection increases at this threshold. 
For the curves of F1-score versus confidence score, when the 
confidence score ranges between 0.3 and 0.7, the F1-scores of 
all categories approach 0.92, indicating nearly optimal 
precision and recall. According to the results of small-scale 
production tests, the confidence scores of all categories fall 
within the range of 0.85 to 0.87, confirming the proposed 
system’s high stability and strong feasibility. Future studies 
should focus on validating the proposed system within large-
scale production environments. 
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