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Abstract—With electricity market deregulation and the diversi-
fication of electricity consumption patterns, precise forecasting of
electric demand is crucial for optimal power generation planning
and load balancing. However, the increasing complexity of the
usage patterns makes the accurate appliance-level prediction
more difficult. Water heaters, for example, exhibit distinctive
consumption patterns: high electricity usage during active heat-
ing periods alternates with complete inactivity (0W), resulting
in zero-inflated and high-variance distributions, which are dif-
ficult to handle by conventional prediction methods. This study
therefore proposes a deep multi-task learning (MTL) framework
that simultaneously predicts binary classification (consumed/not
consumed) and regression (the amount of consumption) to
hierarchically correct the prediction errors for household water
heater electricity prediction. We adopt Uncertainty Weighting
(UW) which dynamically optimizes heterogeneous loss functions.
Using IoT logs with 180,805 samples collected from water
heaters in 787 households from January 2022 to May 2024, we
demonstrate significant performance improvements over major
baselines in RMSE reduction: -22.492% (single-task MLP), -
3.962% (Transformer), and -4.223% (LSTM). In addition, the
proposed model showed strong generalizability compared to time-
series Transformer (PatchTST).

Index Terms—deep learning, multitask learning, electric con-
sumption, energy consumption.

I. INTRODUCTION

In recent years, electricity market deregulation with the
unbundling of generation and transmission systems has pro-
ceeded in Japan, which increases the importance of electricity
demand forecasting from the perspective of load balancing.
Additionally, the diversification of household appliances, such
as hybrid water heaters that utilize both gas and electricity for
water and space heating, further complicates demand predic-
tion, necessitating the development of more precise prediction
models.

With the recent advancement in machine learning, particu-
larly deep learning [1], various methods have been proposed
in energy prediction [2], [3], [4], [5]. While deep learning
methods achieve higher accuracy with nonlinear activations
and hierarchical structure compared to traditional models,
there remains challenges in applicability to high-frequency
Internet-of-Things (IoT) data. Thus, further model develop-
ment is necessary for industrial application. In particular, for
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30-minute intervals, the electric consumption of water heater
often becomes zero-inflated distribution. Preliminary analysis
in this study revealed that the model struggles to accurately
predict consumption of 0W even when no power is being
consumed.

Therefore, in this study, with the IoT log which is collected
by the hybrid water heater of gas and electricity, we propose a
deep learning model for zero-inflated time-series data to pre-
dict both the classification whether the electricity is consumed
and the regression how much the electricity is consumed at the
same time and corrects the prediction. The remainder of the
paper is organized as follows: Section 2 summarizes related
research, Section 3 describes the proposed model structure,
Section 4 summarizes the analysis and results, and Section 5
concludes with the findings and challenges of this study.

II. RELATED STUDY

A. Energy Forecasting

Time-series prediction has been addressed through three
major paradigms. First, statistical modeling methods, includ-
ing autoregression (AR), ARIMA, and ARIMAX [6], pro-
vide classical approaches grounded in stochastic processes.
Second, machine learning methods, such as support vector
regression (SVR) [7], random forest (RF) [8], LightGBM
[9], and XGBoost [10], leverage non-linear mappings and en-
semble learning. Third, deep learning architectures, including
multi-layer perceptron (MLP) [11], Long Short-Term Memory
(LSTM) networks [12], and Transformer [13], have become
increasingly prominent. Among these, Transformer-related
architectures have demonstrated remarkable effectiveness in
time-series forecasting [14]. Representative variants include
Informer [15], Autoformer [16], and PatchTST [17].

Regarding energy prediction, previous studies have primar-
ily focused on area-level [18], household-level [2], [3], [4],
and commercial building [19] electricity consumptions. Many
studies adopt machine learning and deep learning architec-
tures [20], including LSTM-based [2], CNN-based [21], and
Transformer-based [18] approaches.

However, an appliance-level electricity consumption in
household, which has yet to be well explored, exhibits
fundamentally different characteristics. For instance, some
studies [22], [23] using MLP and LSTM pointed out that



there remains challenges to capture the indirect relationship
between customer-specific behaviors and exogenous features
(e.g., temperatures, energy price). Thus, unlike household-
level consumption that maintains relatively continuous power
draw, appliance-level prediction is more extraneous. In case
of water heater, electricity usage follows a highly intermittent
pattern: periods of high consumption during boiling and 0W
consumption during inactive state, resulting in zero-inflated
and high-variance distributions (cf. Dataset Overview).

The actual zero-inflated distribution can be expressed as the
mixture distribution:

P (Y = y) = πI(y = 0) + (1− π)P (Y = y|Y > 0)I(y > 0)
(1)

where π indicates P (Y = 0). In this study, the parameter
π = 0.731 in a training set, whose nature poses signifi-
cant challenges for conventional prediction methods. While
previous studies have addressed variability and non-linearity
in energy consumption, to the best of our knowledge, zero-
inflated regression models (e.g., zero-inflated Gamma distri-
bution) have yet to be applied to appliance-level electricity
prediction. Thus, this study addresses a distinct challenge in
dealing with such complex distributions.

B. Multi-Task Learning

In recent years, multi-task learning (MTL) [24] which si-
multaneously optimizes the multiple tasks has been developed.
In MTL, learning shared representations for multiple tasks can
improve the expressiveness of the model and contributes on the
model robustness [25]. However, in many cases, since the loss
distributions between tasks differ significantly, the design of
a loss function across the entire model becomes a significant
challenge for the conventional techniques, such as weighted
averaging [24] and online regularization [26].

To address these challenges, uncertainty weighting (UW)
[25] has been proposed, which learns the variance of loss
functions across multiple tasks as uncertainty within the
model. In the original UW paper [25], authors conducted an
empirical study by internally dividing an image recognition
into semantic, instance, and depth tasks, optimizing each
loss function, and then integrating their task-level outputs to
determine the final output and demonstrated that the model
outperformed the aaaaa bbb acccc.

III. PROPOSED MODEL

A. Basic Structure

As shown in Fig 1, the proposed model adopts MLP, the
typical form of feed-forward neural network with L number
of hidden layers. In addition, to address the prediction of exact
0W usage, we construct the hierarchical model which predicts
both the probability and amount of energy consumption. More
specifically, we set up Task I (classification task) and Task
II (regression task) inside the hidden layer (task layer) and
calculate the final output value by multiplying the two task-
level outputs (output layer).
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Ŷ(1)

Ŷ
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Fig. 1. Model Architecture. The proposed model has a MLP architecture
with two tasks: Y1 (whether the electricity is consumed) and Y2 (how much
electricity is consumed).

In this study, we use three hidden layers (L = 3), hidden
layer l = {0, 1, 2, 3} including input layer l = 0. We use
Gaussian error unit (GELU) [27] in hidden layers. GELU
conducts probabilistic normalization, which is widely adopted
in the deep learning models including Transformer. The feature
map hl ∈ Rbs×diml , denoted bs for batchsize and diml for
number of dimensions in hidden layer l. The state of the unit
can be obtained as:

h(l) = ϕl(h
(l−1)Wl + bl) (2)

where Wl ∈ Rdiml−1×diml for weights, bl ∈ R1×diml for
bias, and ϕl for activation function. Input layer h0 = X ∈
Rbs×dim0 where dim0 indicates the number of input variables.
In this study, the actual number of dimensions in hidden layers
are [diml]

3
l=1 = [512, 256, 128].

From the structure above, h(3) is the shared representation
for the each task. Hereinafter, following UW paper [25], task-
level outputs are denoted as Y(1) ∈ {0, 1}bs×1 and Y(2) ∈
Rbs×1, respectively.

B. Task I: Classification

First, for Task I, we predict whether the household i in time
t consume the electricity or not. Combining the shared repre-
sentation h(3), task-specific parameters θ(1) = (W(1),b(1)),
and sigmoid function sigm(u) = 1/(1 + e−u) for the activa-
tion, the predicted values are obtained as follows:

Ŷ(1) = sigm(h(3)W(1) + b(1)) ∈ [0, 1]bs×1 (3)

Although the predicted value in this stage is [0, 1]bs×1

which is continuous values, we need to quantize it with the
threshold thr. We adopt golden-section search (GSS) [28],
which effectively optimize an 1-dim continuous parameter,
compared to grid-search. In the actual exploration, thr is
computed with a train set to maximize F1 score of the



classification and apply it to validation and test sets. Therefore,
the quantized matrix of Ŷ(1) as

Ỹ(1) = I
(
Ŷ(1) > thr

)
∈ {0, 1}bs×1 (4)

C. Task II: Regression

Second, for Task II, we predict the amount of consumption
Ŷ(2). As well as Task I, we create task-level output using
rectified linear unit (ReLU) [29] relu(u) = max(0, u) for the
activation. The predicted value is obtained as follows:

Ŷ(2) = relu(h(3)W(2) + b(2)) ∈ [0,+∞)bs×1 (5)

D. Output Layer

Finally, we combine two task-level outputs Ỹ(1), Ŷ(2). The
final output is obtained with the multiplication of each element
of the outputs as

Ŷ = Ỹ(1) ⊙ Ŷ(2) ∈ [0,+∞)bs×1 (6)

where ⊙ indicates Hadamard product. By using this structure,
we can strictly predict 0W, compared to the direct prediction
of the amount of consumption.

IV. EXPERIMENTS

A. Dataset Overview

In this study, to construct a time-series prediction model,
we divide one day into 48 units and predict electric con-
sumption in the time unit t ∈ {1, 2, · · · , 48} in day d ∈
{31, 32, · · · , Dk} for each household k ∈ {1, 2, · · · ,K}1.

We utilize IoT logs collected from water heaters installed in
individual households from January 2022 to May 2024. Our
prediction task involves forecasting electricity consumption
across 48 time slots per day (30-minute intervals) based on
the time-series data from the preceding 30 days, requiring
a minimum data collection period of 31 days per sample.
Given that water heater installation dates vary across house-
holds, the duration of available log data differs substantially
between households. To mitigate potential overfitting to house-
holds with extended data collection periods, we implement
a balanced sampling strategy. We randomly extract up to 50
samples for each household and exclude the anomaly samples,
including outliers stemming from the defects of the machines
and churn in the period.

The dataset2 finally has 787 households (K = 787) with
sample size n = 180, 805. To prevent data leakage, we
implement a household-stratified data split, randomly extract-
ing the households and ensuring that all samples from each
household were assigned exclusively to either the training
(70%), validation (15%), or test (15%) set.

As shown in Table II, both electricity and gas usages have
the significantly zero-inflated and high-volume distributions.
In addition, even in the same household, the usage pattern

1Since the model predicts the usage amount based on IoT logs obtained in
the past 30 days, the day indicator d starts from 31.

2For example, if samples were obtained from 3 households for 7 days each
with 48 frames per day, the sample size would be 3×7×48 = 1008 without
any outliers.

drastically changes depending on the seasons. Therefore, to
precisely forecast the usage of the electricity, it is crucial to
address such zero-inflated and high-variance fitting method
with the high generalizability.

Based on the information available in IoT logs, we extract
key features from the obtained samples, as shown in Table I.
Regarding the temperature-related features, since our logs do
not contain the location information of each device, we employ
Tokyo meteorological data as a proxy, sourcing previous-day
weather forecasts from open datasets [30]. Historical consump-
tion and operational duration features incorporated both same-
frame values and 3-frame windowed averages (comprising
the target frame and two neighboring frames) across the
preceding 30-day period, thereby accommodating potential
temporal shifts in routine usage behaviors. The resulting
dataset constitutes a multi-household multivariate time series
with 657 input dimensions and a temporal depth of 30 days.

B. Optimization

First, we set up two task-level loss functions with binary
cross-entropy (BCE) and log mean square error (log-MSE) as
follows:

L(1) = −
bs∑
i=1

[
y
(1)
i log(ŷ

(1)
i ) + (1− y

(1)
i ) log(1− ŷ

(1)
i )

]
(7)

L(2) =
1

bs

bs∑
i=1

[
log(ŷ

(2)
i )− log(y

(2)
i )

]2
(8)

where we assume mini-batch learning and calculate the losses
for each batch.

In general deep learning, MSE is often used for the evalua-
tion metrics; however, in the power usage of water heater, there
is significant variation in consumption, and to take into account
cases where sudden large consumption close to outliers occur,
we employ log-MSE to calculate the loss for Task II.

As described, since the scales of these task-level loss
functions significantly differ and the scale will also change in
accordance with the training process, we dynamically weight
the change of the scale between tasks and epochs. Therefore,
we introduce UW using the variances of each losses (σ2

1 , σ
2
2),

the loss function for the overall model is set as follows:

L =

2∑
m=1

[ 1

2σ2
m

L(m) + log(σ2
m)

]
(9)

UW utilizes the uncertainty parameters (log(σ2
1), log(σ

2
2))

based on the task-level variances and these parameters them-
selves are also renewed with stochastic gradient descent
[31] during the training process. This mechanism effectively
optimized the multiple loss functions with different scales
simultaneously.

For the optimizer, this study adopts AdaMax [32] which
has strength in sparse modeling. The regularization method
is not employed. Weights and biases are initialized with the
uniform distribution and zero-filling, respectively. As for other
hyper-parameters, batch size bs = 256, a number of epochs



TABLE I
VARIABLE DESCRIPTION

Names Description

Date, Time year, month, week, day-of-week, time frame
Temperature Forecast values from the previous day

(min/max temperature, daily temperature range, day-to-day temperature difference)
Past Consumption 1 Electricity/gas consumption at the same time frame over the past 30 days
Past Consumption 2 Average electricity/gas consumption across adjacent 3-frame windows over the past 30 days
Usage duration Log data both for same time frame and adjacent 3-frame averages

(remote control on-time, bathtub filling time, combustion time, boiling time, heat retention time)

TABLE II
SUMMARY STATISTICS FOR ENERGY CONSUMPTION IN 30MIN INTERVAL

Features Mean Std Median

Electricity (W) 34.757 76.987 0.000
Gas (0.001m3) 74.177 32.422 0.000

is 300, and the best model is evaluated with the checkpoint
when the highest accuracy is obtained with the validation set.
The model performance is calculated with root mean square
error (RMSE) for a test set.

C. Baselines

To validate the effectiveness of the proposed model, we set
up several baselines. First, we construct a typical single-task
MLP which directly predicts Y(2) as an output. Second, we
employ LSTM networks [4] with a 2-layer Stacked LSTM
architecture with serial connections, followed by feedfor-
ward hidden layers for output generation. Third, we con-
struct Transformer-based model with the Transformer en-
coder (model dimension dimmodel = 128, attention heads
numhead = 8) followed by two feedforward hidden layers of
sizes [128, 64]. In addition, we also implement PatchTST for
the advanced time-series Transformer baselines. For machine
learning-based baselines, XGBoost, LightGBM, and Linear
SVR are adopted. Finally, we employ ARIMAX [6] as a
statistical time series method, representing an autoregressive
model with exogenous variables. Moreover, we implement
zero-inflated Gamma GLM, which is the hierarchal model to
predict the target variable Y(1), Y(2), and Y with Logistic re-
gression, Gamma regression, and multiplication, respectively.

D. Results

1) Overall Performance: Table III shows the results, indi-
cating the relative scale in RMSE based on the MLP. First,
the proposed model outperforms all the baselines in both
validation and test sets.

2) Effect of MTL: Compare between the proposed model
and Single-Task MLP, the proposed model significantly re-
duces the prediction error by -22.492% in the test set. This im-
provement demonstrates that, even though the model structure
becomes more complex, the hierarchical correction mechanism
plays a crucial role in handling zero-inflated distributions.

TABLE III
RESULTS (LIFT, VALIDATION-BEST)

Model Train Val Test

Multi-Task MLP (Proposed) 0.606 0.658 0.703
Transformer 0.604 0.732 0.732
LSTM 0.797 0.699 0.734
GLM (Zero-Inflated Gamma) 0.742 0.810 0.870
LightGBM 0.276 0.912 0.897
Single-Task MLP 1.000 0.907 0.907
PatchTST 0.609 0.957 0.945
XGBoost 0.072 0.967 0.960
ARIMAX 0.898 1.204 1.209
SVR 1.604 1.915 1.682

The classification performance of Task I is shown in Table
IV. The cross entropy demonstrates that Task I effectively
distinguishes between consumption and non-consumption pe-
riods, with reasonable generalization performance (test CE:
0.469). The optimal threshold thr calculated from a training
set was 0.618, indicating that approximately 62% confidence
is required to predict positive consumption.

This classification accuracy directly contributes to the
RMSE improvement in two ways: (1) accurate zero-detection
prevents false positive predictions during non-consumption
periods, and (2) the binary classification task provides reg-
ularization effects that improve the regression task’s perfor-
mance. The substantial improvement validates our hypothesis
that zero-inflated time-series prediction benefits from explicit
modeling of the binary consumption decision process.

TABLE IV
PERFORMANCE OF TASK I (CLASSIFICATION)

Metrics Train Val Test

Cross Entropy 0.358 0.443 0.469

3) Comparison with Transformer and LSTM: Both Trans-
former and LSTM basically outperform the other baselines on
validation and test set, consistent with the previous studies
[4], [2]. However, the proposed model achieves further im-
provements with RMSE reductions of -3.962% and -4.223%,
respectively.

This performance relationship suggests that, while atten-
tion mechanisms (Transformer) and memory cells (LSTM)



effectively capture temporal dependencies, they struggle with
the zero-inflated nature of water heater consumption. In our
effective multi-task approach, the classification head addresses
the zero-inflated nature while the regression head addresses the
high-variance nonlinear nature.

Regarding PatchTST, despite comparable performance to
the proposed model, it exhibits clear overfitting tendency on
validation and test sets. This behavior highlights a critical
limitation of complex Transformer architectures when applied
to zero-inflated appliance-level data, where the challenge lies
not in capturing long-range dependencies but in accurately
modeling the intermittent consumption patterns. The superior
generalization of our proposed model compared to PatchTST
demonstrates that task-specific architectural design (multi-task
learning for zero-inflation) is more effective than simply scal-
ing model complexity for this particular prediction problem.

4) Comparison with Other baselines: For other baselines,
we adopt XGBoost, LightGBM, Linear SVM, and ARIMAX.
Boosting methods, such as XGBoost and LightGBM tends to
be high performance in a training set while they underperform
in a test set. ARIMAX, as a linear auto-regressive model,
naturally underperforms compared to the Single-Task MLP
due to its limited capacity to capture non-linear relationships
in the data. However, the performance of Linear SVM is
significantly lower than even ARIMAX across all metrics.
This suggests that temporal dependencies play a crucial role in
water heater electricity prediction. While ARIMAX explicitly
models autoregressive structure and incorporates external vari-
ables (e.g., temperature, day-of-week, seasons), Linear SVM
treats each time point independently despite receiving 30
days of historical features. Consequently, Linear SVM fails to
capture the inherent temporal correlations and periodic usage
patterns (daily, weekly, monthly cycles) that are essential for
accurate electricity consumption forecasting.

Interestingly, the statistically principled Zero-Inflated
Gamma GLM outperforms several sophisticated deep learning
architectures, highlighting the importance of incorporating
domain knowledge about the zero-inflated nature of the data
rather than relying solely on model complexity.

5) Generalizability: The proposed model has the best per-
formance in both validation and test sets. Even compared with
the Transformer, the discrepancy between the train and test
performance is smaller in the proposed model. Even though
LightGBM and XGBoost has significant high performances in
training set, low generalizability of these boosting-based mod-
els are compliant with the previous study [33], [34]. Moreover,
as described, PatchTST has poor generalization to the hold-out
samples, including validation and test. These indicate that the
proposed model has a well-balanced generalizability among
the baselines.

6) Effect of Uncertainty Weighting: Finally, Fig. 2 shows
the change of the uncertainty weights in the training process.
As can be seen from these results, the degree of uncertainty in
each task clearly changes as learning progresses. In particular,
the importance of the regression task increases relatively as
learning progresses. These results suggests that uncertainty

weighting which dynamically adjusts the importance of the
multiple tasks is shown to be effective for the multi-task
learning between different loss functions.

Fig. 2. Change of Uncertainty
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V. CONCLUSION

A. Summary

This study implements deep multi-task learning model to
predict the appliance-level electricity consumption of the water
heater in each household. To address distinct challenges of
zero-inflated and high-variance prediction on the time-series
data, we simultaneously optimize both classification and re-
gression using Uncertainty Weighting and correct the final
output in 30-min intervals. Through the exhaustive analysis,
the proposed model which concurrently predicts whether the
electricity is consumed and the amount of the consumption
shows the best performance, compared with the deep learn-
ing architectures, machine learning methods, and time-series
statistical models.

B. Theoretical Implications

This study has several theoretical implications. First, as far
as authors know, this study is the first application of UW to
zero-inflated time-series prediction. In particular, zero-inflated
modeling requires both strict binary classification and precise
regression, which is suitable task for UW. This approach
can be extended to other zero-inflated time-series applications
such as intermittent demand forecasting, fault detection, and
renewable energy generation. Second, we demonstrate UW
effectiveness between BCE and log-MSE which are hetero-
geneous loss functions. Although the original UW paper [25]
optimized three loss functions, it did not handle loss functions
with properties as different as those in this study. Also, the
model shows the superiority in generalization. In particular,
even with Transformer, performance was almost equivalent to
the proposed model during training, but performance declined
significantly during testing. Most of the sophisticated archi-
tectures like PatchTST struggles with the hold-out samples,
indicating that to address zero-inflated distribution is critical
issue for the model complexity.



C. Practical Implications

This study offers several practical implications for industry
applications. First, accurate predictions of zero-inflated elec-
tricity usage enable utilities to optimize peak load management
strategies, leading to improved demand response program
effectiveness. Second, unlike the Transformer-based archi-
tectures that require extensive embedding preprocessing, the
proposed model enables direct integration with the customer
database. Finally, the model’s capability for high-frequency
IoT data extends beyond energy management to broader
applications. The real-time analysis of household consumption
patterns provides valuable insights for lifestyle-based market-
ing, such as offering optimal price plan recommendations and
sending personalized energy-saving notifications.

D. Limitation

Finally, we organize the limitations of our study. First,
although we have collected IoT data over two years, the
experiment adopts 48 frames × 30 days = 1,440 steps for the
actual sequences. While PatchTST significantly underperforms
the proposed model, Transformer-based time-series models
are basically built for extremely long sequences (e.g., 10,000
steps), which may not be optimal for our experimental design.
Therefore, future work should investigate the effectiveness
of the proposed model with the longer steps. Second, this
study does not collect the personalized information, such
as the size, constitutions, location information, and contract
plans with electric power companies of each household. These
information facilitate the personalized predictions.
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