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Abstract—This paper presents a real-time speech enhancement
Al model based on TRU-Net, implemented in Pure C for deploy-
ment on resource constrained edge devices. High-level machine
learning frameworks such as PyTorch and TensorFlow can
impose significant limitations in edge environments due to their
memory footprint, power consumption, and real-time control
constraints. Accordingly, this study emphasizes the importance
of architecture design that prioritizes efficient memory utiliza-
tion in addition to computational performance optimization. By
implementing the model in Pure C, memory access patterns,
buffer sizes, computational methods, and parallel processing
structures are precisely controlled, enabling an experimental
analysis of the trade-offs between performance and memory
usage. Based on these analyses, an optimized NPU architecture
is proposed that minimizes memory consumption, improves
the efficiency of intermediate tensor and buffer management,
and enhances parallel processing performance through loop
unrolling. Experimental results demonstrate that the proposed
Pure-C-based model significantly reduces per-frame memory
usage and achieves more than a 70% reduction in execution
time, validating its effectiveness for real-time, low-power edge
Al systems.

Keywords—Speech enhancememt; Environmental Noise Re-
duction; Deep Neural Network; TRU-Net; Pure-C model;

I. INTRODUCTION

In the fields of Artificial Intelligence (AI) and Machine
Learning (ML), inference refers to the process by which a
trained model makes predictions or draws conclusions from
previously unseen data. It enables machines to perform tasks
that mimic human intelligence. Among deep learning models,
Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs) are commonly employed architectures for
processing sequential data and are typically developed using
Machine Learning (ML) frameworks such as TensorFlow and
PyTorch. While ML frameworks provide high scalability and
flexibility by offering a wide range of functions and libraries,
they are typically loaded into memory as a whole. Due to
this architectural characteristic, ML frameworks often face
challenges in finely controlling system-level constraints such
as cost, power consumption, and performance [1].
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Advancements in edge Al have enabled real-time decision-
making by facilitating the direct execution of inference pro-
cesses on local devices, thereby obviating the need to transmit
data to centralized cloud servers. This transition is primarily
driven by the need to reduce latency, enhance user privacy,
lower data transmission costs, support real-time responsive-
ness, and enable operation in offline environments. When
deploying AI models on resource-constrained edge devices,
recent studies suggest that memory-centric architectural op-
timizations frequently yield greater efficiency than strategies
focused solely on computational throughput [2]. Therefore,
it is essential to experimentally evaluate and adjust various
system parameters for finding the optimal trade-off between
performance and memory usage.

Recently, the demand for edge AI models capable of re-
moving ambient noise and reconstructing clean speech has
grown significantly. Applications such as automatic speech
recognition (ASR) [3], hearing aids [4], and emergency de-
tection [5] require highly efficient and low-latency processing
under resource-constrained environments. Deploying Al mod-
els on embedded edge devices necessitates resolving complex
trade-offs among execution performance, memory usage, and
power consumption. Pure C-based development enables fine-
grained control over system resources, including memory
access, buffer allocation, computational strategy selection, and
parallel processing structures. These capabilities make the
approach particularly suitable for embedded systems and edge
Al scenarios, where precise resource management is critical.

In this study, a real-time de-noising AI model based on
TRU-Net was implemented entirely in pure C for edge de-
ployment. The model consists of multiple hierarchical CNN
layers designed to remove environmental noise. To satisfy the
strict requirements of cost, power, and performance, CNN
inference must be carefully optimized, which is challenging
when using high-level, Python-based frameworks. Therefore,
an edge-oriented implementation in pure C was adopted.

The proposed model was designed to meet the following
key requirements:

1) Maximizing computational efficiency through NPU archi-
tecture optimization.

2) Efficient memory utilization by adjusting buffer sizes and
managing intermediate tensor storage.

3) Enhancing parallelism via loop unrolling and operation
reordering.
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II. BACKGROUND

This section describes the overall architecture of the pro-
posed speech enhancement framework as shown in Fig. 1,
which is built upon a TRU-Net based encoder—decoder struc-
ture.

A. Short Time Fourier Transform

In most deep learning-based audio processing applications,
raw audio signals in the time domain are first converted
into the time-frequency domain using the Short-Time Fourier
Transform (STFT). The STFT transforms a 1D time-domain
signal z(t) € RT into a 2D complex-valued spectrogram
X(f,t) € CF*T" where F denotes the number of frequency
bins and 7" is the number of time frames:

N-—1
X(f,t) = Z a(r +tH) - w(r) - e 32T IT/N 0
7=0

where w(7) is a window function of size N, and H is the
hop size. The resulting complex spectrogram X (f,¢) contains
both magnitude and phase information:

X(f.t) = |X(f,1)]-e?UD )

Either the magnitude spectrogram |X(f,t)] € RF*T',
or both real and imaginary parts are used as the input to

convolutional or recurrent neural networks.

B. Phase Encoder

In Phase Encoder (PE), phase information is encoded to
preserve temporal consistency during later reconstruction. It
performs a series of complex-valued convolution operations
and amplitude estimation. This module is designed to process
the input complex spectrogram and encode the underlying
temporal dynamics in a differentiable and learnable manner.

Let the input spectrogram be denoted by a pair of real-
valued tensors X,.(f,t) and X;(f,t), representing the real and
imaginary parts of the STFT output, respectively. We express
the complex-valued input as:

Following the approach of complex convolution proposed
in [6], the complex convolution is defined as:
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Yr:Xr*Wr_Xi*Wi (4)

Here, W, and W, denote the real and imaginary parts
of the learnable kernel weights, and * denotes convolution.
This structure follows the property of complex multiplication,
and has been shown to preserve both magnitude and phase
structure [7].

After obtaining the real and imaginary components Y, and
Y, we compute the amplitude (magnitude) spectrum:

Y (£, 1) = VYo (f.6)2 + Yi(f.1)2 (6)

This amplitude is used either as a feature for subsequent
encoder deep learning network or directly for inverse trans-
formation via Magnitude Estimation and Adjustment (MEA).

C. Encoder

Tiny Recurrent U-Net (TRU-Net) based on a modified vari-
ant of U-Nets [8] is suitable for real-time speech enhancement.
This architecture is designed to enable efficient decoupling of
computations along the the frequency and time axis, allowing
for real-time frame-by-frame processing.

Let X € RT*F be the input spectrogram, where 7' denotes
the number of time frames and F' is the number of frequency
bins.

U-Net-based models typically apply 2D convolution over
both time and frequency axes:

Y = Conv2D(X) = O(T - F - K; - K§)

where K; and K are the convolution kernel sizes in the
time and frequency dimensions, respectively.

In contrast, the proposed TRU-Net architecture decouples
the computation along these two axes. First, a 1D convolution
is applied along the frequency axis:

Y’ = ConvlD(X) = O(F - Ky)

The encoder of TRU-Net comprises a stack of six 1D
Convolutional Neural Network (1D-CNN) layers, each imple-
mented as a combination of pointwise and depthwise con-
voluations. These layers progressively reduce the feature map



dimensionality from 256 to 16 using strided convolutions.
This downsampling effectively compresses the frequency res-
olution, which can result in the loss of fine-grained spectral
information [9]. Such degradation is particularly detrimental
to speech enhancement tasks, where accurately modeling the
spectral content over a wide frequency range is essential.

To address this limitation, a Frequency-axis Self-Attention
(FSA) block is applied into the encoder.

Let the input be X € R¥*d  where F is the number
of frequency bins and d is the feature dimension. The self
attention mechanism computes:

Q=XW?e K=xwEK v=xwV (7

Attention(Q), K, V') = softma (QKT) Vv (8)
1 ’ ’ = X
Vdy,
Here, the matrix product QKT € RF*F encodes all
pairwise interactions among frequency bins. Second, a FSA
is applied along the frequency axis:

Y" = SelfAttention; (X') = O(F? - d)

Assuming d is relatively small and constant, this is often
approximated as O(F?) in practice. The use of Frequency-
axis Self-Attention (FSA) enables the model to extract richer
spectral representations by capturing long-range dependencies
and global contextual relationships along the frequency axis,
thereby enhancing its ability to improve speech quality.

D. Decoder

The decoder is composed of a Time-axis Gated Recurrent
Unit (TGRU) block and 1D Transposed Convolutional Neural
Network. The output of the encoder is pass through a Time-
axis Gated Recurrent Unit (TGRU) layer to aggregate infor-
mation along the temporal axis. The TGRU block consists
of a Gated Recurrent Unit (GRU), a pointwise convolution,
batch normalization (BN), and a ReLU in sequence. The
Gated Recurrent Unit (GRU) is a type of Recurrent Neural
Network (RNN) architecture specifically designed to model
sequential data. It efficiently captures temporal dependencies
and contextual information over time while mitigating the
vanishing gradient problem through gating mechanisms. A
GRU unit maintains a hidden state h; at each time step ¢
and updates it based on the current input x; and the previous
hidden state h;_; as follows:

z = o(W.x; +U.hy ) ©)
ry =o0(W,x; + U,hy_4) (10)
h, = tanh(W,x, + Uy (r; © hy_1)) (11)
h,=(1-2z)®h_;+2zOhy (12)

Here, o(-) denotes the sigmoid activation function, ® rep-
resents element-wise multiplication, and z,;, ry are the update
and reset gates, respectively. These gates regulate the flow of
information, allowing the GRU to selectively retain relevant
temporal features and discard outdated ones.

To restore the output size to the original spectrogram size,
a 1D-TrCNN block is employed. This block takes two inputs:
(1) the output of the previous layer(TGRU) and (2) a skipped
tensor from the encoder at the corresponding hierarchical level.
These are then combined and upsampled to match the original
resolution. The upsampling process refers to reconstructing the
reduced temporal or frequency resolution back to its original
size, which is a common operation in decoder architectures.
By leveraging skip connections, a key feature of the U-Net
architecture, this structure facilitates the recovery of temporal
and spectral details in the reconstructed output.

E. Magnitude Estimation and Adjustment (MEA)

Magnitude Estimation and Adjustment (MEA) module re-
fines the enhanced magnitude spectrum by applying phase
information from PE. This process improves spectral accu-
racy, contributing to better reconstruction quality as a post-
processing component within the overall speech enhancement
network. The process is composed of the following four steps:

o Magnitude and Phase Decomposition: The complex
STFT input is separated into magnitude and phase com-
ponents. The phase is obtained via the atan2 operation
applied to the real and imaginary parts.

o Magnitude Correction via Masking: Multiple convolu-
tional layers are used to estimate magnitude masks. These
masks are activated by ReLLU and applied to the original
magnitude to generate enhanced magnitude features.

o Phase Adjustment and Reconstruction: A separate
convolutional path is utilized to predict the phase mask.
The estimated mask is added to the original phase, and the
adjusted phase is used to reconstruct real and imaginary
components using cosine and sine operations.

o Complex STFT Recomposition: The final real and
imaginary parts are stacked and permuted to form the
enhanced complex STFT output, preserving the original
sequence and spectral structure.

F. Inverse Short-Time Fourier Transform

Inverse Short-Time Fourier Transform (ISTFT) reconstructs
the enhanced time-domain signal from the MEA. The Inverse
Short-Time Fourier Transform (ISTFT) is used to reconstruct
the enhanced time-domain waveform from the output of the
Magnitude Estimation and Adjustment (MEA) module. Specif-
ically, the complex spectrogram S e CT*F where T is the
number of time frames and F' is the number of frequency
bins, is transformed back into a one-dimensional time-domain
signal & € R” using ISTFT.

Given the estimated magnitude M; ; and phase ¢ s, the
complex spectrum is reconstructed as:

Stj — Mt,f .ejé%,f, (13)

where t and f denote the time frame and frequency bin indices,
respectively.

The final waveform is then obtained by applying the ISTFT
with an overlap-add method:

&[n] = ISTFT(S; ), (14)



where a synthesis window function and hop size are used to
ensure smooth reconstruction.

This process allows the model to generate an enhanced time-
domain signal that reflects both the estimated magnitude and
corrected phase information from the MEA module.

III. PROPOSED METHODE

Low latency refers to minimizing the time delay between
input and output. This is critical for maintaining real-time
responsiveness in practical applications. In systems such as
hearing aids, simultaneous interpretation, robotic voice con-
trol, and real-time meeting noise suppression, excessive la-
tency can degrade performance by causing delayed feedback
or unnatural interaction.

To address this issue, we adopt a frame-by-frame processing
that does not rely on future context. Each incoming audio
frame is processed and output sequentially in real time. In
this study, we implement a Pure-C model based on TRU-Net
Architecture, ensuring low-latency operation suitable for time-
sensitive environments.

Algorithm 1 outlines the proposed frame-by-frame speech
enhancement pipeline. The process begins with system ini-
tialization and data loading through load_data (). This
includes reading the input waveform and model parameters.

Each frame is processed sequentially to ensure low-latency
inference. The input signal is first transformed to the time-
frequency domain via STFT. Phase-related features are ex-
tracted and passed through the encoder. The decoder recon-
structs the enhanced representation using a TGRU block and
transposed convolution.

MEA refines the spectral magnitudes, and ISTFT converts
the signal back to the time domain. Finally, the enhanced
signal is written using write_output (). This structure
supports real-time processing without future context.

Algorithm 1: Speech Enhancement Process
1 init()

2 load_data()

3 1 = frame dimension

4 fori =11t 1] do
STFT()
PHASE_ENCODER()
ENCODER()
DECODER()

MEA()

10 ISTFT()

o e N & »n

11 write_output ()

The proposed model is fully implemented in Pure C,
offering several benefits for real-time and embedded speech
enhancement. First, C provides low-level control over memory
and computation, making it suitable for optimization on DSPs,
microcontrollers, and embedded SoCs. Second, it avoids run-
time dependencies and dynamic memory allocation, ensuring
predictable and reliable execution. Finally, Pure C allows

easy integration into existing audio pipelines without external
libraries, resulting in a lightweight and portable solution.
These features make the model ideal for on-device, real-time
speech enhancement in edge environments.

Algorithm 2 describes a general 1D convolution process
that supports multi-channel inputs and outputs with dilation.
For each output position lo and each output channel co, the
algorithm accumulates a weighted sum over all input channels
and kernel positions. Dilation is applied when accessing input
elements to enlarge the receptive field without increasing the
kernel size. A bias term is added per output channel, and
boundary checks ensure valid input indexing.

Algorithm 2: General 1D Convolution Alogorithm

Input: Input X[L x Ci,], weights W [Cloy * Cip % K],
bias B[Cou]

Output: Output y[L * Coy * Cip)

1 L: output length, Ci,: input channels, Cqy: output

channels
2 K: kernel size, d: dilation factor
3 forlo=11to L do

4 for co=1 ro C,,; do

5 mac = b[co]

6 for ci =1 to C;, do

7 for k=11t K do

8 if 0 < x_idx < L then

9 mact+ = X|ci xlo+ d * k] * W]co *
L cixk+cix K+ k]

10 Y[co x lo + lo] = mac

As illustrated in the general CNN algorithm, convolution
operations are typically implemented using six or seven nested
for loops. These loops iterate over multiple dimensions,
including input length, kernel size, channels, and output po-
sitions. As a result, convolution accounts for a substantial
portion of the computational cost in deep neural networks
(DNNG). In this paper, we propose an optimization approach to
perform convolution operations more efficiently. The proposed
method focuses on enabling parallel execution of multiply-
accumulate (MAC) operations, which is one of the key chal-
lenges in Neural Processing Unit (NPU) design. To achieve
this, several compiler-level optimization techniques are ap-
plied:

» Fixed configuration: Uses fixed kernel and channel sizes

to eliminate dynamic control logic.

e Branch elimination: Removes conditional branches to

improve execution determinism.

o Loop unrolling: Reduces loop control overhead and

increases instruction-level parallelism.

o Loop reordering: Adjusts loop nesting to enhance data

locality and register reuse.

e Memory reordering: Optimizes memory access patterns

to improve cache efficiency.



TABLE I
LAYER-SPECIFIC OPTIMIZATION STRATEGIES IN TRU-NET

Category | Operation Key Parameters Optimization Method | Effect
PE CNN Cin =1, Cout = 4, Full loop unrolling Maximum parallelism
L=1,K=3
Encoder Point/Depth-wise K=1P=1 Loop re-ordering Improved cache locality
CNN (6 layers) K=3P=1
Decoder Pointwise/Transposed C=128, K=1,P=1 Memory re-ordering Improved cache locality
CNN (6 layers) C = 128, K = 3 or 5,
P=
MEA CNN Cin =4, Cout =1, L = Loop unrolling Simplified structure
256
K=3

Table I summarizes the optimization techniques applied
to each major component of the TRU-Net model and their
corresponding effects. For each network module, including the
Phase Encoder (PE), Encoder, Decoder, and Mask Estimation
and Adjustment (MEA), appropriate optimization strategies
were selected based on the computational characteristics of the
underlying operations. Loop unrolling was primarily employed
in the PE and MEA modules to maximize parallelism, while
loop re-ordering and memory re-ordering were applied to the
Encoder and Decoder convolutional layers with smaller and
larger feature dimensions, respectively, to improve data local-
ity and memory access efficiency. As a result, the proposed
optimizations effectively reduce runtime while preserving the
original network functionality, demonstrating the suitability
of the optimized TRU-Net architecture for real-time and
resource-constrained embedded environments.

This design benefits from loop unrolling, which removes
the overhead associated with loop control and branching. By
eliminating conditional branches, the algorithm achieves a
predictable control flow that improves pipeline utilization and
enhances instruction-level parallelism. In particular, Algorithm
3 performs multiply-accumulate (MAC) operations using 4
parallel MAC, while Algorithm 4 exploiting 8 parallel MAC.
This deeper unrolling significantly increases data throughput
and better utilizes available hardware resources. The use of
a fixed configuration and loop reordering also enables static
memory access patterns that improve cache efficiency and
reduce memory latency. Furthermore, each output channel
computation begins with bias pre-accumulation, reducing re-
dundant memory accesses and allowing for tighter integration
of multiply-and-accumulate (MAC) operations.

These optimizations collectively yield a highly efficient
implementation suitable for low-power embedded platforms
such as Micro-Controller, DSP, and NPU. The predictable
timing, low memory overhead, and compact code structure
support real-time, low-latency inference required in on-device
speech enhancement systems.

IV. CONCLUSION

In this work, we presented a Pure-C implementation of a
real-time speech enhancement model based on TRU-Net, an
efficient deep neural network architecture specifically designed
for embedded devices. Although modern High-Level Synthesis

Algorithm 3: Proposed 1D Convolution Alogorithm in
Phase Encoder(PE)

Input: Input X[L * C,], weights W [Coy * Ciy * K],

bias B[Cou]

Output: Output y[L * Coye x Cip)

mac = B[0]

mac+ = X|[0] * W[0]

mac+ = X[1] « W[1]

mac+ = X[2] « W[2]

Y'[0] = mac

ni A W N -

=)

mac = B3]
mac+ = X|0]
mac+ = X[1]
mac+ = X|2]
Y [3] = mac

=

[9]
10
11

]

* W
* W
* W[11]

10
11

Algorithm 4: Proposed 1D Depthwise Convolution
Alogorithm in Encoder
Input: Input X [L x Cy,], weights W [Coy * Cip * K],
bias B[Cou]
Output: Output y[L * Coy * Cip)
1 Function MAC_FUNCTION (x,w,b):

2 Lreturnb+z0~w0+x1~w1+x2ow2

3 for co=1 to C,y: do

4 Y[0] = MAC(X[1:2], W[0:1], B[O])
5 for lo <1 1to L/8 do

6 Y =MAC(X[0:2], W[0:2], B[O])
7 Y[1]= 1

8§ | | ......

9 Y =MAC(X[6:8], W[0:2], B[O])
10 Y[7] =1

1 Y =MAC(X[7:9], W[0:2], B[O])
12 Y[8] =1

13 X+=8 Y+=8

14 W+=3;B+=1;

(HLS) are theoretically capable of applying loop unrolling and
pipeline optimizations, they often struggle with deeply nested
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loop structures commonly found in convolution operations.
In such cases, automatic optimization fails to fully exploit
available parallelism and memory access patterns. Therefore,
manual optimization strategies, including careful restructuring
of loop ordering and memory layout, are essential. These
approaches are particularly effective for edge devices, where
computational resources, memory bandwidth, and power bud-
gets are severely constrained. By tailoring the computation to
the underlying hardware architecture, significant reductions in
latency and energy consumption can be achieved, enabling
efficient deployment of deep learning models in real-time,
resource-limited environments.

As shown in Fig. 2, the proposed speech enhancement
model effectively improves the perceptual quality and spec-
tral clarity of noisy speech signals. The noisy input con-
tains substantial background noise distributed over the entire
time—frequency domain, which obscures speech components
and degrades intelligibility. In contrast, the enhanced output
demonstrates a clear reduction of background noise, particu-
larly in the low- and mid-frequency regions, while preserving
more distinct speech structures. In addition to improving
speech quality, the proposed approach achieves a significant
reduction in execution time. As shown in Fig. 3, the overall
runtime is reduced by nearly 75% compared to a conventional
CNN-based model. This result indicates that the proposed
architecture not only maintains competitive speech enhance-
ment performance but also provides substantial acceleration,
making it more suitable for real-time and resource-constrained
applications.

It should be noted that this study primarily focuses on
optimizing the encoder layers to improve computational ef-
ficiency. In future work, the optimization will be extended
to the entire network, including the decoder, with the goal
of achieving a real-time factor (RTF) of 0.85 and conducting
comprehensive quantitative comparisons with state-of-the-art
speech enhancement models.
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