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Abstract—Plant leaf diseases lead to large losses in crop harvest
yields every year worldwide. Preventing the spread of such
diseases is therefore essential to guarantee stable food production
and as a result to feed as many people as possible. Manual
field scouting can be tedious, costly, laborious, time consuming
and error prone. As a result, artificial intelligence solutions have
been explored in recent years, to help overcome these issues
and improve field scouting to assure better protection of plant
diseases. Such artificial intelligence models usually take in images
and return whether or not the plant is diseased. Image based
models such as this can be rather large and computationally
heavy though, which can lead to performance issues or even
prevent large models to be used in field, where only mobile end
devices are really feasible. To generate more lightweight models
that can be used in field scenarios, knowledge distillation will be
utilized in this work to train a lightweight student model based
on the knowledge stored in a large scale teacher model that was
trained on the plant leaf disease data previously. The resulting
small student model, which is only has about 6.5% of the large
scales teachers parameters and only about 17.3% of the FLOPS,
still achieves 84.5% accuracy.

Index Terms—Plant Leaf Disease Classification, Plant Pathol-
ogy, CNN, Deep Learning, Knowledge Distillation

I. INTRODUCTION

Plant leaf disease identification is highly important to stop
the spread of these plant diseases in crop fields in order
to minimize losses. Crop production worldwide is constantly
negatively affected by such plant diseases, which leads to large
numbers of potential harvest being lost to them [1]. This results
in valuable food resources, that could have helped combat the
food shortage issue that is still present to this day [2], being
lost. Crops are essential to the food supply all over the world,
being the most common source of calorie and protein supply
worldwide [3], which has led to even further increased crop
production in recent years [3] and in years to come [1]. Plant
diseases, as mentioned above, are the cause for huge losses in
crop production [1]. To contain the spread of diseases and the
losses that come from them, staff need to identify diseases as
soon as possible and react accordingly to minimize the spread.
To spot diseases early, field scouting is often employed. Field
scouting is the traditional manual process of sending out staff
into the field, where they sample plants in field for disease
symptoms multiple times during the growth process of the
crops, to spot diseases as early, fast, and reliable as possible.

This process is, however, laborious, costly, time consuming,
and potentially error prone.

One way of aiding farmers and staff in disease spotting
is artificial intelligence (AI). Using AI models staff can take
images of the plant, which the AI models then analyze before
returning the disease it predicted. Models can do this with very
high accuracy [4], which can aid in the process of correctly
identifying diseases from healthy plants.

Convolutional neural networks (CNN) are a powerful AI
solution that excels in this task [5]. CNN are deep learning
(DL) neural networks (NN) that are specifically designed to
receive and handle image data. Such plant leaf disease classi-
fication models based on CNN have seen a lot of attention in
recent years [4], [6], [7]. CNN come in many different shapes
and sizes, with many different architectures introducing new
methods and advanced methods [5].

Many new CNN models, while very powerful, tend to be
bigger and bigger, with more parameters and floating point
operation (FLOP) counts. Such large models are indeed highly
capable, but at the cost of performance and accessibility. Large
scale models with advanced blocks and methods can only be
run on very powerful GPU machines or even clusters, making
them unable to be run on small and mobile end devices. In
field, however, access to GPU clusters is not a given, and such
smaller mobile end devices like smartphones are more feasible
for usage.

To ensure that in-field usage of highly capable CNN models
is given, training smaller models that are more lightweight and
less computationally demanding is necessary, ideally without
too much loss in performance. While large scale models are
more capable, smaller models can be trained in a teacher
student setting via knowledge distillation (KD) [8].

KD trains a large scale model on the data first. The large
scale model, benefiting from the large number of parameters to
store information, will ideally manage to learn to understand
the data in a deep and nuanced fashion, learning meaningful
representation of the features needed to complete the given
task. This large scale model, while sufficiently powerful, might
however be too heavy to be used in real-world use-cases. This
is where the small scale student model comes into play. The
previously trained large scale model will be used as a teacher
to train the smaller student. The student is trained on the same



data as the teacher, but in addition to the labels provided by
the dataset, the student will also be trained on labels generated
by the teacher. Where the dataset labels are hard absolute
(0 and 1), the teacher provided labels are soft (logits) and
contain additional more nuanced information such as class
similarity. This combination allows the smaller model, which
might otherwise not be powerful enough to learn this detailed
information on its own, to obtain that information through the
teacher and perform better than it would otherwise.

Like this the smaller scale model can benefit from the
knowledge stored within the pre-trained larger model and learn
to better understand the target data. Through this methodology
of knowledge distillation, smaller models can be trained to
understand plant leaf disease images with better understanding
of the nuances like a larger model would, while being small
and lightweight enough to be usable in less computationally
capable environments, as they can be found in field.

So, in this paper we present:
• A reduced DenseNet model called DenseNet-mini that

only has 6.5% of the parameters and only 17.3% of the
Giga FLOPS (GFLOPS) of DenseNet201

• A knowledge distillation approach for rice plant leaf
disease classification using DenseNet201 as the teacher
and DenseNet-mini as the student

• Comparative results of the student DenseNet-mini to the
results of DenseNet-mini being trained without the help
of the teacher model alongside further comparison to
other models

The remainder of the paper is structured as follows: In
Section II a brief review of related works is presented, before
Section III describes the methodology used in this paper.
Section IV presents the results generated in the experiments
and Section V discusses the results, limitations and future
work, before Section VI concludes this work.

II. RELATED WORKS

Recent work in plant leaf disease identification using AI has
seen different approaches and methods.

In [9] Huang et al. present a KD approach for plant leave
disease detection using the plantDoc dataset. By nature of this
being a detection approach, the teacher and student models
are a variant of the YOLO architecture. 4 different students
were trained (YOLOR-Light-v1, YOLOR-Light-v2, Mobile-
YOLOR-v1, and Mobile-YOLOR-v2), with the teacher being
the larger YOLOR model. KD was carried out in a multi-
stage process, with the backbone, the neck and the head being
distilled. Results were promising, showcasing the validity of
the approach.

Dong et al. [10] focus on apple leaf disease classification
in their paper. Their proposed student model, was trained with
ConvNeXt-Base acting as the teacher. The dataset utilized
images of multiple datasets, combining them into a single
large scale dataset to train the models on. While the teacher
did outperform the student in their results, the student did
achieve high accuracy scores, while reducing the model size
significantly.

TABLE I: Dataset information for the Paddy Doctor [14] Dataset
used in this work.

Parameter Value

Image Size (224, 224, 3)
Total Images 8,323
Diseases Healthy, Bacterial Leaf Streak,

Tungro, Brown Spot, Dead
Heart, Hispa, Downy Mildew,
Bacterial Panicle Blight, Blast,
Bacterial Leaf Blight

Number of Classes 10
Plants Rice Paddy
Train-Test Split 80-20

Ghofrani et al. [11] present a KD set of experiments with the
lab data only dataset PlantVillage. The teacher was a Xception
model, with the student being a tiny version of the MobileNet
architecture. The dataset came with 39 classes and roughly
54,000 images. The teacher did outperform the student, but
the student, which is much more lightweight, did manage to
post high accuracy.

Hu et al. [12] make use of channel wise KD. Channel wise
KD taps into the backbone prior to the output layers and
compares embeddings channel by channel, while keeping the
width and height dimensionality intact. The loss is calculated
per channel per layer and summed up to achieve the total loss
of the KD portion of training. This is said to better take into
account the channel information stored in the layers.

In [13] Zhang et al. showcase their results of combining
knowledge distillation with mix augmentation techniques to
train a model that is lightweight yet capable on diverse data
in a field where large datasets are sparse. Their ablation study
shows that combining the two methods manages to outperform
the pure baseline ResNet34, the baseline with only KD and
the baseline with only mix augmentation.

III. METHODOLOGY

A. Dataset

To facilitate the KD experiments a sufficient dataset is
needed. In this work, the Paddy Doctor [14], [15] dataset was
used to train the teacher and student networks. The dataset is
captured in field and contains 10 classes. In the experiments
the train and validation subsets are used, which total 8,323
images which are train-validation split with a ratio of 80-20
(see Table I for information).

B. Models

The networks used as teacher and student are based on the
DenseNet architecture [16] which have proven to work very
well in the field of plant leaf disease classification [4], [5].
DenseNet uses so called dense blocks with appended residual
connections to carry over the information of earlier convolu-
tional layers in the block to later ones, which can benefit from
this extra information, resulting in stronger performance (see
Figure 1 for a detailed architectural overview of the DenseNet
models used in this work). Regular DenseNet201 was used as



Fig. 1: The model architectures that were used as the teacher and student models in the experiments.

TABLE II: Parameter and GFLOP counts of the models used in this
work.

Model Parameters GFLOPS

DenseNet201 18,341,194 8.63
DenseNet-mini 1,196,138 1.49
MobileNetV3-Small 1,540,218 0.12
NASNetMobile 4,280,286 1.15
EfficientNet-B0 4,062,381 0.79

the teacher, with a much smaller custom layer count DenseNet
(DenseNet-mini) being used as the student (see Figure 1 for
both models). The models are compared to EfficientNet-B0
[17], MobileNetV3-Small [18], and NASNetMobile [19]. All
models and their parameter counts as well as GFLOPS can be
seen in Table II. It becomes apparent that the DenseNet-mini
model used and proposed as the student model in this work is
both small and computationally lightweight, as can be seen by
the parameter and GFLOP counts. Note that only very small
and efficient models were used in this comparison besides the
rather large teacher model. The student model is only 6.5% of
the size of the teacher in terms of parameters and only about
17.3% in terms of FLOPS.

Then the teacher was trained on the dataset first, before
aiding the student during knowledge distillation training (see
Figure 2), where the student is trained with the teachers output
as soft labels and the dataset labels as hard labels, which are
combined in the loss calculation (see (1), (2) and (3)). The
hyperparameters used can be seen in Table III. The training

of the teacher is conducted just like regular supervised learning
for classification CNN, here the teacher was trained for 100
epochs, but with early stopping enabled with a patience of 10.
The trained teacher is then used as a teaching model during
the training of the student. The student receives 2 sets of labels
during training, one are the regular labels contained within the
dataset, which are called hard labels, since labels are absolute
(100% probability for the actual class of the image and 0%
for all others). The other labels are called soft labels and come
from the teacher. The teacher receives the same image as the
student, but while the student is learning, the teacher is in
inference mode. It predicts the logits for the image it received,
which become the soft labels (here the class prediction is a
probability distribution that is not 100% one single class, but
the slightly imperfect prediction of the teacher, which contains
class similarities which can help the student model learn more
nuanced relations than only hard labels do).

LKD = τ2 · KL
(

softmax
(
ŷteach.

τ

)
, softmax

(
ŷstud.

τ

))
(1)

Lstud.(y, ŷstud.) = −
C∑
i=1

1[y=i] · log (softmax(ŷstud.)i) (2)

Ltotal = α · Lstud.(y, ŷstud.) + (1− α) · LKD(ŷteach., ŷstud.) (3)

The hard labels generate loss through simple sparse cross
entropy (see (2)) with the predicted student labels, while the



TABLE III: List of Hyperparameters used.

Parameter Value

Image Size (224, 224, 3)
Batch Size Teacher Training 64
Batch Size Student Training 32
Loss Categorical Crossentropy
Optimizer Adam
Learning Rate 0.001
Temperature 1
Alpha 0.99
Epochs Teacher 100
Early Stopping Teacher Patience 10
Epochs Student 10

TABLE IV: System Configuration used during Development.

Component Specification

CPU AMD Ryzen 7 5800X 8-Core @ 3.80 GHz
RAM 64GB
GPU NVIDIA GeForce RTX 3090 24GB
Storage 500GB

teacher’s soft labels are compared to the student output via
KL-Divergence (see (1)), where τ is the temperature which
can further soften the labels. Then both losses are combined
through Equation (3), where α also denotes the factor that
weights both functions. Both values can be found in table
III. All experiments were carried out on the GPU box listed
in Table IV. The 3 other models, as well as the DenseNet-
mini model with no teacher help are trained for comparison.
These models use the same hyperparameters as the student, but
without KD loss, soft labels, or any of the other KD specific
methods, and rather just use regular supervised learning with
cross entropy loss.

IV. RESULTS

After training the teacher, the student, as well as the
comparison model results are listed in Table V. Here we
can see that the teacher model manages the highest accuracy
scores, as one would expect, with the model being so much
larger than all the other models and with the teacher being
given more time to train. When looking at the small scale
models, however, we can see that the proposed DenseNet-
mini student model trained through KD manages to outperform
the other models as well as the DenseNet-mini model which
was trained without the teacher. KD trained DenseNet-mini
outperforms the DenseNet-mini without KD by over 9%, while
managing to outperform the EfficientNet-B0 model by over
2.5%, while being considerably smaller in terms of parameters.
Both NASNetMobile and MobileNetV3-Small heavily overfit
to the data and never managed to learn any proper class
representations in our experiment runs with our setup.

These results showcase that the lightweight KD trained
student DenseNet-mini manages to perform within under 7%
of the teacher, while outperforming all other models at the
same time, beating the non KD DenseNet-mini by over 9%.
This proves that KD can be a viable option in training small

TABLE V: Results obtained. Teacher and Student training settings
can be found in Table III. All other models were run with the same
settings as the student.

Model Val. Acc.

DenseNet201 - Teacher 91.29%
DenseNet-mini - Student 84.50%
DenseNet-mini - Standalone 75.48%
MobileNetV3-Small 16.47%
NASNetMobile 15.75%
EfficientNet-B0 81.91%

scale models for plant leaf disease classification and that the
teacher’s soft labels can benefit the student during training.

V. DISCUSSION

The methods and results presented in this paper show that
KD can be of benefit for the training of small scale models in
the field of plant leaf disease classification, with the students
improvement over the regularly trained model observed during
training. These smaller models are much more applicable
to real world usage in field, as these smaller models are
much more lightweight, allowing them to run quicker and to
run on lower-end end-devices, which can then be employed
in field, while large scale models require lots of time and
computational power.

In future work, the methods presented in this work could
be tested in more challenging environments, with more and
different models as the teacher, student and for comparison.
Other data could also be used to train these models, to see how
robust they are to different scenarios. Different variations and
methods for KD could also be tested and compared, as well
as different parameters and setups. Experiments could also be
run more extensively than they were in this work to generate
more robust and general results, to verify how well KD fits
the field more broadly and generally.

VI. CONCLUSION

In this work, we presented a knowledge distillation approach
to rice plant leaf disease classification, reducing the teacher
models size by 93.5% in terms of parameters and by 82.7%
in terms of GFLOPS, while only losing 6.79% in accuracy
performance, with the student still reaching 84.50%. The
student model trained through knowledge distillation manages
to outperform the same model architecture trained without
knowledge distillation by 9.02% accuracy. These results show-
case that the knowledge distillation approach of reducing the
final models size, and allowing it to run on weaker end-devices
which will help in field usage, does have merit in the field and
can effectively allow the training of smaller, yet still capable
models.
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Fig. 2: The workflow of knowledge distillation, as it was used in this work, visualized.
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