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Abstract—Epilepsy is a neurological disease affecting millions
worldwide. This paper proposes the use of deep learning, com-
bined with advanced signal-processing techniques employing the
Adaptive Chirplet Transform (ACT), to detect seizure states in
real time. The ACT is capable of detecting and analyzing the
fast rhythmic activity that occurs during seizure periods, which
traditional time and frequency domain features often fail to
effectively capture. Data from the CHB-MIT dataset was used,
and each patient was analyzed to ensure sufficient and relevant
data were available. A convolutional neural network using
inception-style blocks was trained and evaluated using leave-one-
out cross-validation (LOOCV) for each patient. Two different
models using different ACT features and further postprocessing
techniques were also evaluated for a total of four different sets
of results. This study yielded promising results, with a recall of
84.54% and an F1 score of 81.58% for the best model. This study
introduces an advanced signal-processing technique optimized for
hardware implementation, demonstrating potential applications
in future real-time seizure-state detection systems.

Index Terms—Seizure, epilepsy, EEG, chirplet, neural network,
detection

I. INTRODUCTION

Epilepsy is a neurological disease that affects 50 million
individuals worldwide [1]. It often entails recurring seizures,
caused by excessive electrical discharges of brain cells.
Epilepsy can be a devastating disease, as it can cause loss
of control in movement and other cognitive activities. This
can also lead to mental and financial burdens due to the
medications necessary to treat the disease. Patients may also
not be able to live safely even with medication, as it is reported
that a third of adults living with epilepsy are considered drug-
resistant [2]. Surgery is a potential solution, but it carries
complications and may lead to further issues.

With recent advances in wearable technologies and im-
plantable devices [3]–[7], there is potential to develop a
system capable of detecting seizures and administering nec-
essary treatments to support patients. Previous works have
utilized various time and frequency domain features, such as
power spectral density and wavelet features [8]–[14], to detect
seizures. However, these models often require substantial
computational resources or large amounts of data, as well as
deep neural networks. Furthermore, window sizes are often
large, which is detrimental for seizure state detection as the

latency from the seizure onset would be too large to diagnose
and react to the seizure in time.

This paper proposes the use of the Adaptive Chirplet
Transform (ACT) to analyze and classify EEG data, leveraging
both time and frequency domain features, which is partic-
ularly effective for processing the complex, intricate EEG
data associated with seizures. With recent advances in chirplet
processing, such as GPU Chirplet [15], we can now process
EEG data in real time. Furthermore, our choice of a machine
learning model that utilizes 1-D convolutional layers in an
inception-style block aims to reduce computational complexity
and runtime. We aim to efficiently and accurately classify EEG
data to detect seizure states.

II. BACKGROUND

A. Seizure Detection

Seizure detection has been a challenge for decades, with no
definitive solution. Without a reliable measure to detect seizure
onsets, millions of patients worldwide have suffered from
seizures. There is a need for a system capable of identifying
seizures and taking autonomous actions to reduce the harm.

EEG data is often classified into four states: interictal, ictal,
preictal, and postictal. The interictal state is the period between
seizures, whereas the ictal state is the period during the seizure,
from onset to offset. The preictal state and postictal state are
periods preceding and following a seizure, respectively. A sig-
nificant challenge has been distinguishing between the preictal
and interictal states for seizure prediction, as EEG activity in
the preictal state often resembles that in the interictal state.
The ictal state is the most notable, with activity typically
occurring in the frequency ranges of 3-30 Hz, with rhythmic
low frequency activity near 0.5 Hz, and fast rhythmic activity
in the 40-50 Hz range [16]. For our work, we will examine
only the interictal and ictal states, as our current goal is to
evaluate the potential of the ACT for seizure detection rather
than prediction.

B. Adaptive Chirplet Transform

The chirplet is a windowed chirp function in which the
frequency varies linearly with an independent variable, such
as time or space [17], [18], [20] as is demonstrated in Fig. 1.



Fig. 1: Chirplet transform fundamentals, with a comparison
between waves and wavelets to chirps and chirplets [17]–[19]

The ACT revolves primarily around the quadratic chirplet (q-
chirplet), and the equation for the Gaussian chirplet is defined
in Eq. 1. Our method for the ACT is based on the work of
Bhargava et al. [21], in which we generated a dictionary of
Gaussian chirplets parameterized by I = (tc, fc, log(∆t), c).
With smaller step sizes, we can obtain smoother and more
accurate approximations, albeit at the expense of higher com-
putational cost. As such, it is crucial to strike the right balance,
particularly in a classification as time-sensitive as seizure
detection.
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Mann and Haykin initially introduced the ACT [17] to
reduce the dimensionality of the output space of the non-
adaptive transform. Previous studies have also demonstrated
the effectiveness and potential of the ACT for EEG anal-
ysis purposes. Cui et al. [22] initially utilized the ACT to
characterize visual evoked potentials (VEP), marking the first
reported instance of the ACT successfully applied to EEG
signals. Bhargava et al. improved on their ACT algorithm and
showed success in classifying P300 signals. Recently, Mann
et al. [19] further demonstrated the effectiveness of the ACT
in multi-state classification through their work with sleep-
state detection. With their prior success, there is potential in
extending their work into seizure state detection. One caveat is
that this work will utilize different parameters and frequency
ranges, as seizures often extend into higher frequency bands.

III. METHODOLOGY

A. Dataset

This paper utilized the Children’s Hospital Boston-
Massachusetts Institute of Technology Scalp EEG dataset
[23]–[25], which was collected from 22 patients: 5 males,
aged 3 to 22, and 17 females, aged 1.5 to 19. Recordings
were grouped into 23 cases, with chb21 taken 1.5 years
after chb01 from the same patient. The EEG recordings were
sampled at 256 Hz with a 16-bit resolution, utilizing electrodes
placed according to the international 10-20 system of EEG

electrode positions. The ictal data were obtained directly from
the samples within the labeled seizure onset and offset periods
from the dataset. In contrast, interictal data were obtained from
samples in records at least 2 hours before seizure onset or
after seizure offset. Fig. 2 shows an ictal and interictal period
taken from the dataset. We also considered the number of
lead seizures per patient, with a lead seizure defined as a
seizure with at least 4 hours from the previous seizure. To
ensure sufficient data from each patient, we included only
patients with at least 4 lead seizures and 5 hours of interictal
data, ensuring an adequate amount of preictal data relative to
interictal data.

Furthermore, to reduce the dimensionality of the data, we
selected only four channels for analysis across all patients:
FP1-F3, FP2-F4, P7-O1, and P8-O2. These channels, as cho-
sen by Chung et al. [11], represent four common locations
for wearable electrodes to be easily attached, along with
similar electrode locations for portable EEG systems, such
as the Muse Athena, for potential real-time implementation.
In Chung et al., neurologists reviewed the seizures of all
patients and determined the seizure locations and electrodes.
The patients with seizures without a precise location and
patients without seizures close to the chosen electrodes were
excluded in their work, which our work also followed. The
final patients chosen for this work are chb01, chb05, chb08,
and chb10.

Fig. 2: EEG data of an ictal and interictal period taken from
patient chb01, measured in quantigraphic units.



B. Preprocessing

The EDF files provided from the dataset were preprocessed
using the MNE-Python library. A bandpass filter and a notch
filter were utilized in the process.

The bandpass filter utilized a finite impulse response filter
set between 1 Hz to 50 Hz, as most seizure activity can be
observed within this range [16].

The MNE library utilizes a windowed time-domain design
(firwin) method, employing a Hamming window with a 0.0194
passband ripple and 53 dB of stopband attenuation. The lower
transition bandwidth was 0.50 Hz with a -6 dB cutoff at 0.75
Hz, and the upper transition bandwidth was 12.50 Hz with a
-6 dB cutoff at 56.25 Hz.

A notch filter at 60 Hz was also applied to remove the
powerline noise. A firwin method was employed, utilizing a
Hamming window with 0.0194 passband ripple and 53 dB
stopband attenuation. The lower passband edge was 59.35 Hz,
with a lower transition bandwidth of 0.50 Hz and a -6 dB
cutoff frequency at 59.10 Hz. The upper passband edge was
60.65 Hz, with an upper transition bandwidth of 0.50 Hz and
a -6 dB cutoff frequency at 60.90 Hz.

C. Adaptive Chirplet Transform Features

The features used as inputs to the neural network were the
parameters and coefficients, similar to Bhargava et al. and
Mann et al. Furthermore, we hypothesized that the RMSE of
our ACT approximation relative to the actual EEG could also
serve as a valuable feature for the neural network, given the
EEG’s unpredictable behaviour during seizure onset. During
ictal periods, seizures were more volatile and the peaks were
more challenging to capture through the approximation with
the range of chirp rates, compared to interictal periods. The
volatility could potentially be captured by a higher RMSE,
which could improve the model’s accuracy. As such, we
trained two different models: one with RMSE as a feature and
one without, to compare the results. Each epoch was flattened
to a 4x3 vector in the RMSE model and a 4x2 vector in the
model without RMSE to account for the four channels.

D. Convolutional Neural Network

We utilized a 1-D Convolutional Neural Network (1-D
CNN) with multi-branch inception-style blocks as the clas-
sifier, as seen in Fig. 3. The 1-D CNN layers are utilized
due to their ability to identify temporal patterns within time
sequences. The inputs to the CNN, the 1-second epochs, are
then concatenated into 6-second sequences. File boundaries
and seizure boundaries are enforced to ensure all sequences
are time-consecutive. The inception-style blocks enable us to
evaluate both shorter events with smaller kernels and full
sequential patterns with larger kernels [26]. For the train set,
due to the imbalance of the ictal to interictal samples, the ictal
sequences were generated with a 3-second overlap. For the test
patient, the ictal sequences have a 5-second overlap, resulting
in a shorter detection latency from the onset of the seizure. The
training set is downsampled across all interictal files to achieve
a 5:1 interictal-to-ictal sample ratio, to reduce overfitting

on interictal sequences. The test set is also downsampled
across all interictal files to have a 1:1 ratio, ensuring that
all ictal samples are captured while providing balanced recall
and F1 scores without bias toward interictal samples. The
inputs are standardized using Scikit-learn’s StandardScaler.
The evaluation was performed using LOOCV, with the model
trained on three patients and tested on the remaining patient.

The inputs are initially processed using a layer normaliza-
tion to standardize feature activations. Afterwards, the first
inception-block concatenates four convolutional layers with
1, 2, 3, and 6 kernels each, 64 units for each layer, and
the ReLU activation function, to evaluate multiple temporal
patterns throughout the sequence. The second inception block
concatenates two convolutional layers with 1 and 3 kernels,
64 units, and the ReLU function to extract features from the
first block. Both blocks also include a dropout layer of 0.25 to
reduce overfitting. Afterwards, a global average pooling layer
is applied, and the result is then fed to a Dense layer with 128
units and a ReLU activation function. A dropout layer of 0.3
is used to further reduce overfitting, and then fed to a Dense
layer with 1 unit and the sigmoid activation function to output
the probability that the sequence is ictal. A threshold of 0.50
was utilized, meaning the final output must be 0.50 or higher
to be considered ictal.

Early stopping was also implemented, given that the dataset
is relatively small and prone to overfitting.

E. Postprocessing

Although typically not used for seizure detection due to the
importance of short latency for onset detection, our use of a 5-
second overlapping sliding window may warrant postprocess-
ing to reduce mislabeled events, as the high overlap mitigates
the effects of high detection latency. The k-of-n method with
no overlap was utilized, with k = 3 and n = 5, meaning
for five consecutive sequences, if three or more sequences
were labeled ictal, the set of sequences were labeled ictal.
Using overlapping sliding windows, this method evaluated five
new epochs of input data, except for the first and last five
sequences, which were evaluated over ten epochs in total.

IV. RESULTS

A. Adaptive Chirplet Transform Parameters

With the high spikes of activity during ictal periods, a
suitable and accurate set of parameters for the ACT dictionary
and calculation was necessary. The order of the approximation
was crucial to avoid overestimating the signal, and the length
of each epoch was essential to account for sudden amplitude
changes. Our results were compared using the RMSE value of
the approximation compared to the original signal.

The parameters tc and fc represent the time and frequency
centers, respectively, and the parameter c represents the chirp
rate, all of which influence the reconstruction of the approx-
imate signal. As the epoch size changed, the upper tc bound
was altered to account for the duration. As the bound increased
from 256 to 1280, it no longer captured the rapid changes in



Fig. 3: CNN model utilizing Inception-style blocks with 1-D convolutional layers. This diagram is based on the model which
includes RMSE as a feature.

the signal during ictal samples, so a final upper bound of 1280
was utilized.

Similarly, as the upper bound of fc increased, it was capable
of capturing more of the frequency changes in the ictal period.
Seizures are often captured at frequencies up to 50 Hz, so the
upper bound of fc was set to 45 Hz to capture this range.

The chirp rate served as the most critical feature, as
this parameter dictated how fast the chirplet could change
frequencies. During ictal periods, frequencies could rapidly
oscillate, which could only be captured with higher chirp rates.
After thorough testing, the optimal balance of accuracy and
computational expense was found to be a chirp rate magnitude
of 10.

Testing with various orders also proved challenging, as it
was difficult to balance between computational efficiency and
accuracy. Overall, a fifth-order approximation yielded the best
results.

Fig. 4 shows the comparison of the raw EEG and the
approximation from the ACT, with our final parameters for
the dictionary set as:
tc: (0, 256, 64)
fc: (0.5, 45, 0.5)
c: (-10, 10, 0.5)
Order = 5
Epoch = 1 second

B. Ictal State Classification

The CNN model represented in Figure 3 was tested with and
without RMSE as an input feature. Table I presents the average
results across all four patients for the model with RMSE as a
feature and for the model without it. The two most important
metrics for seizure state detection are recall and F1-score,
as they provide insight into ictal sequences and the model’s
ability to classify them effectively relative to interictal states.
Ictal states are dangerous if misclassified, and an emphasis
on false negatives is crucial. Surprisingly, including RMSE
as an input feature has reduced our metrics, and the model
performs better without RMSE as an input; therefore, RMSE
will not be included in our final comparison and for future
work. Postprocessing appeared to improve the model’s results
marginally. Table II presents the results of the model with
postprocessing applied.

Since postprocessing increases classification latency due to
the larger number of windows required, real-time deployments
should omit postprocessing and rely on the raw outputs of each
sequence. However, our model is limited by the available data,

(a) Ictal period; RMSE = 21 µV

(b) Interictal period; RMSE = 14 µV

Fig. 4: Comparison of six epochs of filtered EEG data from
channel FP1–F3 against the approximation from the ACT for
ictal and interictal intervals, measured in quantigraphic units.

and it would be beneficial to develop a per-patient model for
deployment. This is because seizures vary significantly across
patients, making it challenging to identify a generalized pattern
in all patients [24].

RMSE
Included AUC Accuracy Precision Recall F1
Yes 88.02% 79.14% 82.34% 84.21% 81.08%
No 88.42% 79.51% 82.42% 84.54% 81.58%

TABLE I: Model performance metrics and comparison be-
tween including and excluding RMSE as an input feature



RMSE
Included AUC Accuracy Precision Recall F1
Yes 87.89% 78.14% 81.93% 85.59% 81.22%
No 89.41% 79.81% 81.85% 88.45% 83.26%

TABLE II: Model performance metrics and comparison be-
tween including and excluding RMSE as an input feature after
postprocessing

C. Power Spectral Density Comparison

A common feature previously used for ictal state detection is
the power spectral density (PSD) of the Delta, Theta, Alpha,
and Beta frequency bands. As such, we have modified the
CNN to utilize the PSD values as inputs, further evaluating
the potential improvements that the ACT may hold in seizure
detection. The average for all four patients has an AUC of
0.7333, an accuracy of 66.28%, a precision of 72.91%, a
recall of 68.33%, and an F1 score of 68.09%. As shown,
the ACT model drastically outperforms the PSD model, with
16.21% and 13.49% improvements in recall and F1 score,
respectively, indicating that the ACT model is significantly
better at detecting ictal states than the PSD model.

With the complexity and unpredictable behavior of neurons
during a seizure, it is evident that advanced signal processing
techniques, such as the ACT, are imperative for accurately
detecting seizure states.

D. Computational Runtime

For wearable options, the system must be capable of de-
tecting seizures as early as possible to administer the nec-
essary treatment immediately upon onset. While we have
demonstrated that our model can effectively process EEG data
and infer results through it successfully, it is still crucial to
ensure a feasible computational runtime for potential future
implementations.

The processing and inference of the ACT were performed
on a NVIDIA 5070 GPU. Table III shows the average epoch
processing time for each patient along with the average
inference time for the model for each sequence. As we
can see, our runtime for all patients is approximately 0.07
seconds, indicating that our model can effectively process
and diagnose signals at a high rate. With future efforts to
implement processing and inference on hardware, there is
potential to rapidly and accurately diagnose seizure onsets
through the ACT.

Patient
Avg. Epoch

Runtime / µs
Avg. Inference
Runtime / µs

Tot.
Runtime / µs

chb01 71110.40 2.90 71113.30
chb05 70197.47 2.30 70199.77
chb08 70694.65 1.30 70695.95
chb10 71324.62 2.59 71327.21

TABLE III: ACT Processing and model inference runtimes
across all four patients

V. CONCLUSION

This work shows a promising approach to accurately de-
tecting seizure onset, with an average recall of 84.54% and an
F1 score of 81.58% across all four patients, with an average
computation time of 70834.06 µs. Reducing the total number
of channels analyzed reduced dimensionality and computa-
tional expense, while also demonstrating potential practical
implementations by utilizing common electrode locations for
wearable systems. Our work has effectively shown the possible
application of the ACT in seizure detection systems.

VI. FUTURE WORK

Our current results are constrained by the lack of patient-
level data, as the available dataset contains limited information
for each individual. A majority of patients have only ictal
data recorded, with little to no interictal or preictal data.
Therefore, we applied strict exclusion criteria to ensure each
patient had a reasonable balance of samples from each class.
For future work, we aim to collect our own data, subject
to the requirements for improved data collection. Seizures
also exhibit distinct patterns for each individual, so a patient-
specific system would be preferable, given that more data
are available for each patient and that sufficient samples are
available for both ictal and interictal periods. There will be
emphasis placed on patient-specific models to ensure reliable
deployment.

Compared with scalp EEG data, intracranial EEG (iEEG)
data often yield better seizure detection results due to the
higher signal quality and improved localization of signals
within the brain. Analysis and training on iEEG data rather
than scalp EEG data could yield a stronger model.

Hardware implementations and evaluations of our work are
also worth exploring. Our data was processed using a desktop
GPU, which is impractical for a portable system. As such, we
aim to evaluate the potential of a mobile, hardware-efficient
system.

Lastly, we aim to extend our work into seizure prediction.
As it currently stands, detection can help reduce further
complications from secondary seizures, but this does not solve
the issues caused by lead seizures. With a predictive model,
we can intervene to prevent seizures outright or identify the
necessary support at the onset. We intend to next predict the
preictal state of a seizure with the ACT.
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