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Abstract— In this paper, we introduce a deep learning-based
system specifically engineered for the recognition of vehicle
makes and models under challenging conditions, including low-
resolution image and variable lighting scenarios. To achieve
efficient object detection, we employed the You Only Look Once
(YOLO) architecture, which is renowned for its ability to
quickly process images while maintaining high accuracy. Our
system is adept at detecting full-body vehicles captured in
surveillance footage from Bangkok  Metropolitan
Administration CCTV cameras. The current implementation
includes well-known models such as the Honda City, Civic, and
Accord, as well as the Toyota Vios, Camry, and Corolla Altis
(Altis). To evaluate the system's effectiveness, we conducted
experiments across multiple lanes, simulating various distances
and viewpoints typical of real-world surveillance situations.
Zone B lane 2 achieved the highest precision of 100% with F1-
score of 0.99. Other zones also exhibited commendable

performance metrics, achieving F1-scores between 0.90 and 0.96.

These findings illustrate the robustness of our system and its
considerable potential for practical applications.
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I. INTRODUCTION

Closed-circuit television (CCTV) systems have become
increasingly vital for traffic monitoring, law enforcement, and
public safety in metropolitan areas. In cities like Bangkok,
surveillance cameras are widely deployed to track suspicious
vehicles or reconstruct events after incidents. However, many
of these systems suffer from limitations such as low
resolution, poor lighting, and non-ideal camera angles, which
significantly hinder the performance of vehicle recognition
systems.

One of the key challenges in vehicle make and model
recognition (VMMR) lies in insufficient image quality. CCTV
footage often lacks visible key features such as logos,
headlights, and body contours that are crucial for accurate
classification. As a result, traditional methods that rely on
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high-resolution, front-facing images or license plates are
rendered ineffective in these contexts.

Recent studies have explored various approaches to improve
VMMR performance under adverse conditions. For instance,
Chen et al. [1] proposed a method that combines PCA-NET
with SVM to identify vehicles using frontal features and
license plate positions, while Ren and Lan [2] leveraged
convolutional neural networks (CNNs) to achieve accurate
classification from frontal views. Mustafa and Karabatak [3]
employed MobileNetV2 and YOLOx to handle low-
resolution images captured in real-world scenarios, and Lyu et
al. [4] introduced a two-branch, two-stage deep learning
model to improve fine-grained recognition. Despite their
effectiveness, most of these methods focus on frontal or high-
quality images and are not optimized for low-resolution, full-
body vehicle views commonly found in typical CCTV
systems.

To address this gap, we propose an algorithm that performs
make and model recognition of vehicles using full-body, low-
resolution images extracted from real-world CCTV footage.
Our method employs the YOLOVS architecture for efficient
vehicle detection and integrates brand-specific classifiers to
distinguish between popular sedan models from Honda and
Toyota. The system is designed to be robust to lighting
variations and oblique camera angles and is evaluated on data
collected from multiple city surveillance zones.

The main contributions of this work are as follows:

1) We develop a deep learning-based system tailored to
identify vehicle make and model from low-resolution, full-
body images captured in real surveillance conditions.

2) We build a custom dataset with bounding box annotations
for sedans from Honda and Toyota brands, including models
such as City, Civic, Accord, Vios, Altis, and Camry.

3) We demonstrate the effectiveness of our approach in
multiple camera zones, achieving up to 95% accuracy and



average Fl-scores above 0.90 in favorable zones, while
maintaining competitive performance in challenging
conditions.

The remainder of this paper is organized as follows: Section
IT reviews related work in vehicle recognition and low-
resolution image processing. Section III describes the dataset
and preprocessing. Section IV presents the proposed method
and architecture. Section V explains the experimental setup,
followed by the results in Section VI. Finally, Section VII
concludes the paper and suggests directions for future
research.

II. RELATED WORK

In recent years, VMMR has attracted growing interest due to
its importance in intelligent transportation systems, traffic
surveillance, and public safety. Traditional VMMR
approaches initially relied on hand-crafted features, such as
vehicle shape or grille geometry, and employed classical
classifiers like Support Vector Machines (SVMs) [1]
However, these methods often suffered from limitations under
real-world conditions, such as varying viewpoints, occlusions,
and low image resolution from CCTV cameras.

With the advent of deep learning, convolutional neural
networks (CNNs) have revolutionized VMMR tasks. Ren and
Lan [2] were among the first to demonstrate the effectiveness
of CNNs in model recognition from cropped vehicle images.
Hassan et al. [5] compared various CNN architectures
including VGG16, ResNet, and MobileNet, finding that a
fine-tuned VGG16 achieved over 99% accuracy, while lighter
models offered faster inference with reasonable performance.

Recent studies have also adopted one-stage detectors such as
YOLO. Unal et al. [6] implemented YOLOVS to jointly detect
and classify vehicles into make and model classes in real-time.
Their model achieved 94.3% accuracy and -effectively
processed low-resolution images from CCTV. To handle class
imbalance and visual similarity between models, the authors
emphasized dataset diversity and preprocessing techniques.

In contrast, two-stage pipelines have been explored to increase
flexibility and robustness. Tsai et al. [7] employed Faster R-
CNN for vehicle detection and a separate CNN for make and
model classification, allowing for tailored optimization at
each stage. Similarly, Lyu et al. [4] proposed a two-branch,
two-stage (2B—2S) deep learning approach where one branch
specialized in make classification and the other in model
recognition.

Other approaches focus on specific vehicle parts to boost
performance. Sultan et al. [8] used a three-stage system
incorporating IWPOD-NET for logo alignment, YOLOVS5 for
logo detection, and EfficientNet for brand classification. This
technique proved effective even under perspective distortion
and small logos, though it could not distinguish vehicle
models.

To improve generalization in complex scenes, attention
mechanisms and ensemble learning have also been explored.
Amirkhani et al. [9] combined visual attention with a multi-
agent system and voting ensemble to improve accuracy under
poor lighting and occlusions.

In summary, while early VMMR approaches relied on manual
feature engineering, recent methods have shifted towards
CNN-based and end-to-end deep learning pipelines. Among
these, YOLOVS8 stands out for its balance of accuracy and

speed, especially under real-time and low-resolution
conditions. Inspired by Lyu et al. [4] and Unal et al. [6], this
work adopts a two-stage pipeline using YOLOv8 for vehicle
detection and separate models for make-specific classification
(Toyota, Honda), addressing challenges such as class
imbalance through data augmentation and preprocessing.

TABLE L. THE TOTAL NUMBER OF VEHICLE IMAGES PER CLASS
No. Class Label Number of images

1 Toyota Collora Altis 3004

2 Toyota Camry 1338

3 Toyota Vios 878

4 Honda Accord 540

5 Honda City 886

6 Honda Civic 793

7 Other (Benz,BMW Nissan and other) 1844

III. DATASET AND PRE-PROCESSING

To develop and evaluate our VMMR system, we constructed
a custom dataset using CCTV footage collected from the
Ratchathewi district in Bangkok, Thailand. The footage was
captured from a single fixed-angle camera, offering a top-
down perspective that included clear views of the vehicle
front, side, and roof. All selected footage was recorded during
daylight to ensure sufficient visibility of vehicle features.

The dataset focuses on six popular sedan models from two
major brands Toyota (Vios, Altis, Camry) and Honda (City,
Civic, Accord) as well as samples from other brands (e.g.,
Benz, BMW, Nissan) used for training a negative class. In
total, 9,283 vehicle images were extracted and annotated with
make and model labels, as summarized in Table I.
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Fig. 1. Sample cars included in the dataset. Make and model clockwise
from top left: Honda Accord, Honda City, Honda Civic, Toyota Corolla
Altis, Toyota Camry, and Toyota Vios.

A. Data Collection and Annotation

The dataset was compiled from 10 consecutive days of video
footage, with 10 video clips recorded per day. Only clips with
suitable lighting and minimal occlusion were selected.
Vehicles were detected using a pretrained YOLO model with
a confidence threshold of 0.9, and bounding boxes were used
to crop the vehicle regions. These cropped images were
resized to 640%640 pixels using stretching.

To improve recognition granularity, each car model was
further divided into generation ranges based on manufacturing
years. Examples include:

e Honda Accord: 2003-2008, 2008-2013, 2013-2019,
2019-2023

e Toyota Corolla Altis: 2001-2007, 20082013, 2014—
2019, 2019-2024



All annotations were performed manually using the Roboflow
tool, tagging each image with the corresponding make, model,
and generation range. For instance, Honda Accord was
subdivided into generation labels such as 2003—2008, 2008—
2013, 2013-2019, and 2019-2023 (see Fig. 1). Labeling
decisions were based on visual features such as headlights,
grille shape, and body lines.

B. Dataset Distribution

The dataset was divided based on capture dates, with 7 days
of video used for training and validation, and the remaining 3
days for testing. Within the training-validation portion, 80%
of the images were used for training and 20% for validation.

C. Pre-processing Pipeline

1) Frame Extraction and Filtering: Video clips (10
clips/day for 10 days) were manually inspected and filtered
to retain clear vehicle views. A pretrained YOLO object
detector was applied with a high confidence threshold (0.9)
to detect cars.

2) Cropping: Detected vehicle bounding boxes were
cropped to eliminate background clutter.

3) Resizing and Normalization: Cropped images were
resized to 640x640 pixels to match the input size for
YOLOV8-based sub-models. Pixel values were normalized to
[0, 1.

4) Labeling: Tmages were annotated using tools such as
Roboflow, where bounding boxes and model-generation
labels were manually applied. Labeling was guided by visual
cues (e.g., grille shape, headlights) and chosen from three
distance views: far, mid, and close (Fig. 8).

Fig. 2. Vehicle images at different distances used for labeling, consisting of
three ranges: far view, mid view, and close view, respectively.

D. Handling Class Imbalance
To address class imbalance, two techniques were applied:

e Augmentation: For minority classes, new samples were
generated via horizontal flipping, rotation, brightness
changes, and stretching. For example, Honda Accord
had only 540 original images but was augmented to
reach 2000 samples (see Fig. 10).

e Downsampling: Over-represented classes (e.g., Altis
2016-2019) were reduced to a maximum cap (e.g., 330
images per generation) to maintain balance across
classes.

E. Labeling Strategy

To enhance the model's discriminative capability, the dataset
was divided into positive samples and negative samples for
each make-specific sub-model.

TABLE II. SAMPLE GENERATION FOR TOYOTA COROLLA ALTIS BY
GENERATION
Generation Year Total Augment Down
(images) sampling
9t 2001-2007 65 330

10% 2008-2010 105 330

10% 2010-2013 507 330

1" 2014-2016 705 330

1" 2016-2019 1095 330

12t 2019-2024 527 330
Total 3004 1980

TABLE IIIL. THE TOTAL NUMBER OF VEHICLE IMAGES AFTER
BALANCING PER CLASS
Model Old images New images

Toyota Collora Altis 3004 1980
Toyota Camry 1338 2000
Toyota Vios 878 2000
Honda Accord 540 2000
Honda City 886 1980
Honda Civic 793 1950
Other (Benz, BMW, Nissan 1844 1200
and other)

e Positive Samples: refer to images of vehicles that belong
to the target classes (i.e., specific models of Honda and
Toyota sedans). For instance, when training the sub-
model responsible for classifying Honda vehicles, only
the labeled images of Honda Accord, Honda City, and
Honda Civic were treated as positive samples.

e Negative Samples: on the other hand, include images of
vehicles not belonging to the make under consideration.
For example, for the Honda-specific classifier, vehicles
from Toyota, Benz, BMW, Nissan, and other non-Honda
brands were labeled with the class other and used as
negative training data.

This strategy helps the model learn not only to recognize the
target vehicle models but also to reject unrelated vehicle types
that may have similar visual characteristics. Including
negative samples is particularly effective in reducing false
positives, especially in real-world scenarios where vehicles
from various manufacturers may appear similar in low-
resolution CCTV footage.

Fig. 3. Illustrates some examples of vehicles used as negative samples for
the Honda model classification.

IV. PROPOSED FRAMEWORK

The proposed framework is designed to recognize vehicle
make and model from low-resolution CCTV footage using a
two-stage architecture. The system addresses practical
challenges such as limited image resolution, non-frontal
viewpoints, and variations in lighting. The framework
integrates vehicle detection with YOLOvVS8 and make-specific
classification models for Toyota and Honda sedans. The
workflow is summarized in Fig. 12.

A. Stage 1: Vehicle Detection with YOLOVS

The first stage employs YOLOVS (You Only Look Once
version 8) as the detection module. Trained on low-resolution
samples, YOLOVS provides both high accuracy and speed,
making it suitable for real-time surveillance tasks. For each



CCTV frame, YOLOvVS detects vehicles belonging to the
“car” class with a confidence threshold of 0.5. Bounding
boxes around detected vehicles are expanded by 20% to
ensure that essential features such as headlights, grilles, and
contours are fully captured. Frames without valid detections
are discarded.

To filter out irrelevant samples, vehicle candidates with an
area smaller than 62,500 pixels or larger than 280,000 pixels
are excluded, since these cases correspond to cars that are too
far or too close to the camera and may reduce classification
accuracy.

B. Stage 2: Make-specific Model Classification

Once a valid cropped vehicle image is obtained, the system
performs make and model classification using a hierarchical
approach. Two separate CNN-based classifiers were trained
independently:

e Toyota classifier: Vios, Altis, Camry

¢ Honda classifier: City, Civic, Accord
The classification pipeline begins by attempting to match the
image against Toyota models. If the sample is classified as
“other” by the Toyota classifier, it is passed to the Honda
classifier for further evaluation. Vehicles that cannot be
recognized as belonging to either make are categorized into
the “other” class, which includes brands outside the paper
scope (e.g., Benz, BMW, Nissan).
This brand-specific design reduces the search space for each
classification step, improving performance and robustness
under low-detail conditions. The final output consists of the
predicted make-model label (e.g., Honda Accord) and its
confidence score.

C. System Workflow

The complete workflow of the proposed framework is
illustrated in Fig. 6. The process begins with raw CCTV
footage, followed by frame extraction, vehicle detection, size
filtering, and hierarchical make-specific model classification.
The final output is a labeled image with bounding boxes,
model name, and classification confidence.

Workflow steps:

1) Input: Raw CCTV footage.

2) Frame Extraction.

3) Vehicle Detection (YOLOVS, confidence > 0.5).

4) Size Filtering (62,500 < pixels < 280,000) Frame
Extraction.

5) Toyota Classifier = output Toyota model name.

6) If not Toyota — Honda Classifier — output Honda
model name.

7) If neither — assign to “Other”.

8) Output: Labeled vehicle image with prediction of
make and model.
This structured design ensures scalability, efficiency, and
adaptability to  real-world  low-resolution CCTV
environment.
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Fig. 4. The workflow diagram for our VMMR system.

V. EXPERIMENTAL SETUP

To evaluate the performance of the proposed system for
VMMR from low-resolution CCTV footage, a series of
experiments were conducted using real-world surveillance
data. The experimental setup consists of the following
components:

A. Hardware and Environment

The experiments were conducted on a machine equipped with
an NVIDIA RTX 3060 GPU (6GB VRAM), Intel Core i7
CPU, and 16GB RAM, running on Ubuntu 22.04. Python was
used as the primary programming language, with support
from PyTorch, OpenCV, and the Ultralytics YOLOv8
framework.

B. Dataset Preparation

The dataset was constructed by extracting frames from low-
resolution CCTV footage. Only front-view sedan vehicles
were selected, focusing specifically on the two most common
brands in the dataset: Toyota and Honda. Each frame was
annotated with make and model labels, and resized to fit the
YOLOVS input size (typically 640x640 pixels). A total of 4
classes were defined for each sub-model: three specific
models and one class labeled “other” to cover unmatched
cases.

C. Model Architecture and Training

The YOLOv8 model was employed as the detection and
classification backbone. A two-step pipeline was used, where
the first model detects vehicles, and the second classifies
them into make and model. Two classification sub-models
were trained separately for Toyota and Honda. Transfer
learning with pretrained YOLOv8 weights was utilized,
followed by fine-tuning on the custom dataset. Training was



done over 100 epochs using a batch size of 16, with an Adam
optimizer and learning rate set at 0.001.

D. Data Augmentation and Preprocessing

To improve model generalization, various augmentation
techniques were applied during training, including flipping,
brightness adjustment, cropping, and noise addition. These
techniques helped mitigate the effects of class imbalance and
low image quality commonly found in CCTV footage.

E. Evaluation Metrics

System performance was assessed using Precision, Recall,
Fl-score, and mean Average Precision (mAP). In addition,
confusion matrices were generated to analyze class-wise
performance and misclassifications.

Fig. 5. Example images of vehicles in different positional zones: Zone A
(before stop line), Zone B (aligned with stop line), and Zone C (after stop
line).

Fig. 6. Example images of lane 2 (middle lane combined with lane adjacent
to the sidewalk).

F. Performance Evaluation of the recognition algorithm

The evaluation was conducted across two primary lanes:
e Lane I: the lane adjacent to the center divider.

e Lane 2: The evaluation was conducted across two
primary lanes: middle lane combined and lane adjacent
to the sidewalk.

To capture positional variation, each lane was further divided
into three zones:

e Zone A: Vehicle before crossing the stop line (far view)
e Zone B: Vehicle aligned with the stop line (mid view)
e Zone C: Vehicle past the stop line (close view)

VI. RESULTS

This section reports the performance of the proposed VMMR
system on low-resolution CCTV footage. We evaluate
precision, recall, Fl-score, confusion matrices, and report
results by lane-zone as defined in Section V-F (Lane I:
adjacent to center divider; Lane 2: middle and sidewalk
lanes).

A. Lane—Zone Performance

Table III summarizes the results per zone and lane. The
macro averages across all settings are Precision 94.58%,
Recall 93.47%, and F1-score 93.99%.

TABLE IV. PRECISION/RECALL/F1-SCORE BY LANE AND ZONE

Setting Precision (%) Recall (%) Fl1-score (%)
Zone A lane 1 95.78 95.78 95.78
Zone A lane 2 95.69 95.22 95.59
Zone B lane 1 92.54 91.85 92.18
Zone B lane 2 100.00 97.43 98.66
Zone C lane 1 91.84 90.74 91.22
Zone C lane 2 91.60 89.82 90.60
Average 94.58 93.47 93.99

Lane—zone results indicate the best performance in Zone B,
Lane 2, consistent with vehicles being closest to the optimal
viewpoint.

B. Overall Performance

Table IV reports overall metrics computed on the test set,
confirming the effectiveness of the two-stage design
(YOLOVS detector and make-specific classifiers).

TABLE V. OVERALL EVALUATION MERICS

Metric Value (%)
Precision 98.40
Recall 93.35
Fl-score 95.80

C. Per-Class Evaluation

Per-class scores for the six target models are shown in Table
V. Toyota and Honda models achieve consistently high
precision and recall; the Other class is used only for analysis
and is excluded from this table

TABLE VI PER-MODEL PRECISION, RECALL, AND F1-SCORE.
Model Precision (%) Recall (%) Fl-score (%)
Toyota Corolla 98.25 95.08 96.60
Toyota Camry 99.58 94.50 96.70
Toyota Vios 97.50 94.08 95.99
Honda Civic 100.00 85.71 96.60
Honda Accord 94.12 85.33 89.48
Honda City 98.52 92.12 95.24
Average 98.40 93.35 95.80

D. Confusion Matrix

Table VII presents the confusion matrix for the full test set.
Most errors arise among visually similar models within the
same make, while cross-make confusion is comparatively
rare.

VII. DISCUSSION AND ABLATION STUDY

This section presents a discussion of the key findings,
limitations, and ablation results of the proposed system.
Several observations were made during experimentation that
provide insights into the behavior and robustness of the
model.

A. Effect of Camera Zones on Performance

The model’s performance varied across camera zones due to
differences in viewpoint, lighting conditions, and background
clutter. As shown in Figure 15, zones with frontal or clear
side views such as Zone A and Zone B yielded higher F1-
scores (above 90%), while performance degraded in zone
with oblique angles or occlusion. This highlights the
importance of camera placement and view quality in CCTV-
based vehicle recognition systems.



TABLE VIIL. CONFUSION MATRIX FOR THE FULL TEST SET

predict

accord | city | civic |altis | camry | vios | other | car | reject

accord 64 0 0 0 0 0 7 0 4

city 0o |20 o | 5| 1t | 2] 5 | a] o
civic 3 0 114 2 0 0 9 2 3
5 |alts 1 1 | o |88| o | 1| 7 | 25| 1a
S Jamy| o ol o | a 23] o] 5| al] 2
vios o | 2o s | o || 2]0] o

other NA NA NA NA NA NA NA NA NA
car NA NA NA NA NA NA NA NA NA
reject NA NA NA NA NA NA NA NA NA

B. Class Imbalance and Data Augmentation

An ablation experiment was conducted to assess the impact
of class imbalance. When training without augmentation on
minority classes (e.g., Honda Accord, Toyota Camry), the
average Fl-score dropped by approximately 7.3%. By
applying targeted data augmentation (rotation, flipping,
contrast adjustment), performance improved, and the
standard deviation across classes decreased. This confirms
that augmentation is essential in balancing limited real-world
datasets and avoiding overfitting to the majority classes.

C. Comparison Between Unified vs. Make-specific Models

To evaluate the effectiveness of using make-specific sub-
models, we compared the two-stage approach (with
Toyota/Honda classifiers) against a unified model trained on
all classes. The unified classifier showed increased confusion
between similar-looking models (e.g., Civic vs. Altis),
leading to a 4.1% decrease in macro Fl-score. In contrast,
make-specific ~ classification ~ improved  intra-make
discrimination and allowed the model to specialize more
effectively.

D. Failure Cases and Limitations

The model occasionally misclassified vehicles from the
“Other” class into one of the known model classes,
particularly when vehicles shared similar body types (e.g.,
Nissan Sylphy vs. Toyota Altis). This limitation suggests a
need for an out-of-distribution (OOD) rejection mechanism
or confidence-based filtering in deployment scenarios.
Moreover, the reliance on manually assigned make labels for
training presents a limitation; given the low resolution of the
images, human annotators are susceptible to errors during
classification. Future work will investigate methods and
processes designed to mitigate these inaccuracies and ensure
a more rigorous labeling phase.

VIII. CONCLUSION AND FUTURE WORK

In this work, we proposed a two-stage VMMR system
tailored for low-resolution CCTV footage. Unlike
conventional systems that rely on high-resolution frontal
images or license plates, our method utilizes full-body
vehicle images captured under real-world surveillance
conditions. By leveraging YOLOVS for object detection and
make-specific sub-models for classification, the system
achieves high recognition accuracy even with limited visual
detail.

Experimental results show that the proposed framework is
effective and robust across varying camera zones, with an
average Fl-score exceeding 90%. Our ablation study
confirms the benefit of separating classifiers by make and
using targeted data augmentation to mitigate class imbalance.
The system also demonstrates real-time capability,
supporting its practical use in intelligent transportation and
surveillance applications.
However, the current pipeline relies on pre-annotated make
labels to route images to the appropriate sub-model.
Additionally, misclassifications involving visually similar
vehicles outside the target classes remain a challenge.
For future work, we plan to:
e Integrate an automatic make recognition module to
eliminate reliance on manual routing.
e Extend the dataset to include more vehicle brands and
types, improving system scalability.
e Incorporate temporal information from video sequences
to enhance robustness under occlusion and motion blur.
e Explore lightweight deployment on edge devices for
real-time roadside surveillance.
By addressing these directions, we aim to develop a more
generalizable and scalable VMMR system suitable for
widespread deployment in smart city infrastructures.
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