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Abstract— In this paper, we introduce a deep learning-based 
system specifically engineered for the recognition of vehicle 
makes and models under challenging conditions, including low-
resolution image and variable lighting scenarios. To achieve 
efficient object detection, we employed the You Only Look Once 
(YOLO) architecture, which is renowned for its ability to 
quickly process images while maintaining high accuracy. Our 
system is adept at detecting full-body vehicles captured in 
surveillance footage from Bangkok Metropolitan 
Administration CCTV cameras. The current implementation 
includes well-known models such as the Honda City, Civic, and 
Accord, as well as the Toyota Vios, Camry, and Corolla Altis 
(Altis). To evaluate the system's effectiveness, we conducted 
experiments across multiple lanes, simulating various distances 
and viewpoints typical of real-world surveillance situations. 
Zone B lane 2 achieved the highest precision of 100% with F1-
score of 0.99. Other zones also exhibited commendable 
performance metrics, achieving F1-scores between 0.90 and 0.96. 
These findings illustrate the robustness of our system and its 
considerable potential for practical applications. 

Keywords—CCTV Footage, Vehicle Model Recognition, 
Vehicle Make Recognition, YOLO 

I. INTRODUCTION 
Closed-circuit television (CCTV) systems have become 
increasingly vital for traffic monitoring, law enforcement, and 
public safety in metropolitan areas. In cities like Bangkok, 
surveillance cameras are widely deployed to track suspicious 
vehicles or reconstruct events after incidents. However, many 
of these systems suffer from limitations such as low 
resolution, poor lighting, and non-ideal camera angles, which 
significantly hinder the performance of vehicle recognition 
systems. 

One of the key challenges in vehicle make and model 
recognition (VMMR) lies in insufficient image quality. CCTV 
footage often lacks visible key features such as logos, 
headlights, and body contours that are crucial for accurate 
classification. As a result, traditional methods that rely on 

high-resolution, front-facing images or license plates are 
rendered ineffective in these contexts. 

Recent studies have explored various approaches to improve 
VMMR performance under adverse conditions. For instance, 
Chen et al. [1] proposed a method that combines PCA-NET 
with SVM to identify vehicles using frontal features and 
license plate positions, while Ren and Lan [2] leveraged 
convolutional neural networks (CNNs) to achieve accurate 
classification from frontal views. Mustafa and Karabatak [3] 
employed MobileNetV2 and YOLOx to handle low-
resolution images captured in real-world scenarios, and Lyu et 
al. [4] introduced a two-branch, two-stage deep learning 
model to improve fine-grained recognition. Despite their 
effectiveness, most of these methods focus on frontal or high-
quality images and are not optimized for low-resolution, full-
body vehicle views commonly found in typical CCTV 
systems. 

To address this gap, we propose an algorithm that performs 
make and model recognition of vehicles using full-body, low-
resolution images extracted from real-world CCTV footage. 
Our method employs the YOLOv8 architecture for efficient 
vehicle detection and integrates brand-specific classifiers to 
distinguish between popular sedan models from Honda and 
Toyota. The system is designed to be robust to lighting 
variations and oblique camera angles and is evaluated on data 
collected from multiple city surveillance zones. 

The main contributions of this work are as follows: 

1) We develop a deep learning-based system tailored to 
identify vehicle make and model from low-resolution, full-
body images captured in real surveillance conditions. 

2) We build a custom dataset with bounding box annotations 
for sedans from Honda and Toyota brands, including models 
such as City, Civic, Accord, Vios, Altis, and Camry. 

3) We demonstrate the effectiveness of our approach in 
multiple camera zones, achieving up to 95% accuracy and 



average F1-scores above 0.90 in favorable zones, while 
maintaining competitive performance in challenging 
conditions. 

The remainder of this paper is organized as follows: Section 
II reviews related work in vehicle recognition and low-
resolution image processing. Section III describes the dataset 
and preprocessing. Section IV presents the proposed method 
and architecture. Section V explains the experimental setup, 
followed by the results in Section VI. Finally, Section VII 
concludes the paper and suggests directions for future 
research.  

II. RELATED WORK 
In recent years, VMMR has attracted growing interest due to 
its importance in intelligent transportation systems, traffic 
surveillance, and public safety. Traditional VMMR 
approaches initially relied on hand-crafted features, such as 
vehicle shape or grille geometry, and employed classical 
classifiers like Support Vector Machines (SVMs) [1] 
However, these methods often suffered from limitations under 
real-world conditions, such as varying viewpoints, occlusions, 
and low image resolution from CCTV cameras. 

With the advent of deep learning, convolutional neural 
networks (CNNs) have revolutionized VMMR tasks. Ren and 
Lan [2] were among the first to demonstrate the effectiveness 
of CNNs in model recognition from cropped vehicle images. 
Hassan et al. [5] compared various CNN architectures 
including VGG16, ResNet, and MobileNet, finding that a 
fine-tuned VGG16 achieved over 99% accuracy, while lighter 
models offered faster inference with reasonable performance. 

Recent studies have also adopted one-stage detectors such as 
YOLO. Ünal et al. [6] implemented YOLOv8 to jointly detect 
and classify vehicles into make and model classes in real-time. 
Their model achieved 94.3% accuracy and effectively 
processed low-resolution images from CCTV. To handle class 
imbalance and visual similarity between models, the authors 
emphasized dataset diversity and preprocessing techniques. 

In contrast, two-stage pipelines have been explored to increase 
flexibility and robustness. Tsai et al. [7] employed Faster R-
CNN for vehicle detection and a separate CNN for make and 
model classification, allowing for tailored optimization at 
each stage. Similarly, Lyu et al. [4] proposed a two-branch, 
two-stage (2B–2S) deep learning approach where one branch 
specialized in make classification and the other in model 
recognition. 

Other approaches focus on specific vehicle parts to boost 
performance. Sultan et al. [8] used a three-stage system 
incorporating IWPOD-NET for logo alignment, YOLOv5 for 
logo detection, and EfficientNet for brand classification. This 
technique proved effective even under perspective distortion 
and small logos, though it could not distinguish vehicle 
models. 

To improve generalization in complex scenes, attention 
mechanisms and ensemble learning have also been explored. 
Amirkhani et al. [9] combined visual attention with a multi-
agent system and voting ensemble to improve accuracy under 
poor lighting and occlusions. 

In summary, while early VMMR approaches relied on manual 
feature engineering, recent methods have shifted towards 
CNN-based and end-to-end deep learning pipelines. Among 
these, YOLOv8 stands out for its balance of accuracy and 

speed, especially under real-time and low-resolution 
conditions. Inspired by Lyu et al. [4] and Ünal et al. [6], this 
work adopts a two-stage pipeline using YOLOv8 for vehicle 
detection and separate models for make-specific classification 
(Toyota, Honda), addressing challenges such as class 
imbalance through data augmentation and preprocessing. 

TABLE I.  THE TOTAL NUMBER OF VEHICLE IMAGES PER CLASS 

No. Class Label Number of images 
1 Toyota Collora Altis 3004 
2 Toyota Camry 1338 
3 Toyota Vios 878 
4 Honda Accord 540 
5 Honda City 886 
6 Honda Civic 793 
7 Other (Benz,BMW,Nissan and other) 1844 

III. DATASET AND PRE-PROCESSING 
To develop and evaluate our VMMR system, we constructed 
a custom dataset using CCTV footage collected from the 
Ratchathewi district in Bangkok, Thailand. The footage was 
captured from a single fixed-angle camera, offering a top-
down perspective that included clear views of the vehicle 
front, side, and roof. All selected footage was recorded during 
daylight to ensure sufficient visibility of vehicle features. 

The dataset focuses on six popular sedan models from two 
major brands Toyota (Vios, Altis, Camry) and Honda (City, 
Civic, Accord) as well as samples from other brands (e.g., 
Benz, BMW, Nissan) used for training a negative class. In 
total, 9,283 vehicle images were extracted and annotated with 
make and model labels, as summarized in Table I. 

   

   

Fig. 1. Sample cars included in the dataset. Make and model clockwise 
from top left: Honda Accord, Honda City, Honda Civic, Toyota Corolla 
Altis, Toyota Camry, and Toyota Vios. 

A. Data Collection and Annotation 
The dataset was compiled from 10 consecutive days of video 
footage, with 10 video clips recorded per day. Only clips with 
suitable lighting and minimal occlusion were selected. 
Vehicles were detected using a pretrained YOLO model with 
a confidence threshold of 0.9, and bounding boxes were used 
to crop the vehicle regions. These cropped images were 
resized to 640×640 pixels using stretching. 

To improve recognition granularity, each car model was 
further divided into generation ranges based on manufacturing 
years. Examples include: 

• Honda Accord: 2003–2008, 2008–2013, 2013–2019, 
2019–2023  

• Toyota Corolla Altis: 2001–2007, 2008–2013, 2014–
2019, 2019–2024 



All annotations were performed manually using the Roboflow 
tool, tagging each image with the corresponding make, model, 
and generation range. For instance, Honda Accord was 
subdivided into generation labels such as 2003–2008, 2008–
2013, 2013–2019, and 2019–2023 (see Fig. 1). Labeling 
decisions were based on visual features such as headlights, 
grille shape, and body lines. 

B. Dataset Distribution 
The dataset was divided based on capture dates, with 7 days 
of video used for training and validation, and the remaining 3 
days for testing. Within the training-validation portion, 80% 
of the images were used for training and 20% for validation. 

C. Pre-processing Pipeline 
1) Frame Extraction and Filtering: Video clips (10 

clips/day for 10 days) were manually inspected and filtered 
to retain clear vehicle views. A pretrained YOLO object 
detector was applied with a high confidence threshold (0.9) 
to detect cars. 

2) Cropping: Detected vehicle bounding boxes were 
cropped to eliminate background clutter. 

3) Resizing and Normalization: Cropped images were 
resized to 640×640 pixels to match the input size for 
YOLOv8-based sub-models. Pixel values were normalized to 
[0, 1]. 

4) Labeling: Images were annotated using tools such as 
Roboflow, where bounding boxes and model-generation 
labels were manually applied. Labeling was guided by visual 
cues (e.g., grille shape, headlights) and chosen from three 
distance views: far, mid, and close (Fig. 8). 

   

Fig. 2. Vehicle images at different distances used for labeling, consisting of 
three ranges: far view, mid view, and close view, respectively. 

D. Handling Class Imbalance 
To address class imbalance, two techniques were applied: 

• Augmentation: For minority classes, new samples were 
generated via horizontal flipping, rotation, brightness 
changes, and stretching. For example, Honda Accord 
had only 540 original images but was augmented to 
reach 2000 samples (see Fig. 10). 

• Downsampling: Over-represented classes (e.g., Altis 
2016–2019) were reduced to a maximum cap (e.g., 330 
images per generation) to maintain balance across 
classes. 

E. Labeling Strategy 

To enhance the model's discriminative capability, the dataset 
was divided into positive samples and negative samples for 
each make-specific sub-model. 

TABLE II.  SAMPLE GENERATION FOR TOYOTA COROLLA ALTIS BY 
GENERATION 

Generation Year Total 
(images) 

Augment Down 
sampling 

9th 2001-2007 65 330  

10th 2008-2010 105 330  
10th 2010-2013 507  330 
11th 2014-2016 705  330 
11th 2016-2019 1095  330 
12th 2019-2024 527  330 

Total  3004 1980 

TABLE III.  THE TOTAL NUMBER OF VEHICLE IMAGES AFTER 
BALANCING PER CLASS 

Model Old images New images 
Toyota Collora Altis 3004 1980 
Toyota Camry 1338 2000 
Toyota Vios 878 2000 
Honda Accord 540 2000 
Honda City 886 1980 
Honda Civic 793 1950 
Other (Benz, BMW, Nissan 
and other) 

1844 1200 

• Positive Samples: refer to images of vehicles that belong 
to the target classes (i.e., specific models of Honda and 
Toyota sedans). For instance, when training the sub-
model responsible for classifying Honda vehicles, only 
the labeled images of Honda Accord, Honda City, and 
Honda Civic were treated as positive samples. 

• Negative Samples: on the other hand, include images of 
vehicles not belonging to the make under consideration. 
For example, for the Honda-specific classifier, vehicles 
from Toyota, Benz, BMW, Nissan, and other non-Honda 
brands were labeled with the class other and used as 
negative training data. 

This strategy helps the model learn not only to recognize the 
target vehicle models but also to reject unrelated vehicle types 
that may have similar visual characteristics. Including 
negative samples is particularly effective in reducing false 
positives, especially in real-world scenarios where vehicles 
from various manufacturers may appear similar in low-
resolution CCTV footage. 

   

Fig. 3. Illustrates some examples of vehicles used as negative samples for 
the Honda model classification. 

IV. PROPOSED FRAMEWORK 
The proposed framework is designed to recognize vehicle 
make and model from low-resolution CCTV footage using a 
two-stage architecture. The system addresses practical 
challenges such as limited image resolution, non-frontal 
viewpoints, and variations in lighting. The framework 
integrates vehicle detection with YOLOv8 and make-specific 
classification models for Toyota and Honda sedans. The 
workflow is summarized in Fig. 12. 

A. Stage 1: Vehicle Detection with YOLOv8 
The first stage employs YOLOv8 (You Only Look Once 
version 8) as the detection module. Trained on low-resolution 
samples, YOLOv8 provides both high accuracy and speed, 
making it suitable for real-time surveillance tasks. For each 



CCTV frame, YOLOv8 detects vehicles belonging to the 
“car” class with a confidence threshold of 0.5. Bounding 
boxes around detected vehicles are expanded by 20% to 
ensure that essential features such as headlights, grilles, and 
contours are fully captured. Frames without valid detections 
are discarded. 
To filter out irrelevant samples, vehicle candidates with an 
area smaller than 62,500 pixels or larger than 280,000 pixels 
are excluded, since these cases correspond to cars that are too 
far or too close to the camera and may reduce classification 
accuracy. 

B. Stage 2: Make-specific Model Classification 
Once a valid cropped vehicle image is obtained, the system 
performs make and model classification using a hierarchical 
approach. Two separate CNN-based classifiers were trained 
independently: 
• Toyota classifier: Vios, Altis, Camry 
• Honda classifier: City, Civic, Accord 

The classification pipeline begins by attempting to match the 
image against Toyota models. If the sample is classified as 
“other” by the Toyota classifier, it is passed to the Honda 
classifier for further evaluation. Vehicles that cannot be 
recognized as belonging to either make are categorized into 
the “other” class, which includes brands outside the paper 
scope (e.g., Benz, BMW, Nissan). 
This brand-specific design reduces the search space for each 
classification step, improving performance and robustness 
under low-detail conditions. The final output consists of the 
predicted make-model label (e.g., Honda Accord) and its 
confidence score.     

C. System Workflow 
The complete workflow of the proposed framework is 
illustrated in Fig. 6. The process begins with raw CCTV 
footage, followed by frame extraction, vehicle detection, size 
filtering, and hierarchical make-specific model classification. 
The final output is a labeled image with bounding boxes, 
model name, and classification confidence. 
 
Workflow steps:  

1) Input: Raw CCTV footage. 
2) Frame Extraction. 
3) Vehicle Detection (YOLOv8, confidence ≥ 0.5). 
4) Size Filtering (62,500 ≤ pixels ≤ 280,000) Frame 

Extraction. 
5) Toyota Classifier → output Toyota model name. 
6) If not Toyota → Honda Classifier → output Honda 

model name.  
7) If neither → assign to “Other”. 
8) Output: Labeled vehicle image with prediction of 

make and model. 
This structured design ensures scalability, efficiency, and 
adaptability to real-world low-resolution CCTV 
environment. 
 

 

Fig. 4. The workflow diagram for our VMMR system. 

V. EXPERIMENTAL SETUP 
To evaluate the performance of the proposed system for 
VMMR from low-resolution CCTV footage, a series of 
experiments were conducted using real-world surveillance 
data. The experimental setup consists of the following 
components: 

A. Hardware and Environment 
The experiments were conducted on a machine equipped with 
an NVIDIA RTX 3060 GPU (6GB VRAM), Intel Core i7 
CPU, and 16GB RAM, running on Ubuntu 22.04. Python was 
used as the primary programming language, with support 
from PyTorch, OpenCV, and the Ultralytics YOLOv8 
framework. 

B. Dataset Preparation 
The dataset was constructed by extracting frames from low-
resolution CCTV footage. Only front-view sedan vehicles 
were selected, focusing specifically on the two most common 
brands in the dataset: Toyota and Honda. Each frame was 
annotated with make and model labels, and resized to fit the 
YOLOv8 input size (typically 640×640 pixels). A total of 4 
classes were defined for each sub-model: three specific 
models and one class labeled “other” to cover unmatched 
cases. 

C. Model Architecture and Training 
The YOLOv8 model was employed as the detection and 
classification backbone. A two-step pipeline was used, where 
the first model detects vehicles, and the second classifies 
them into make and model. Two classification sub-models 
were trained separately for Toyota and Honda. Transfer 
learning with pretrained YOLOv8 weights was utilized, 
followed by fine-tuning on the custom dataset. Training was 



done over 100 epochs using a batch size of 16, with an Adam 
optimizer and learning rate set at 0.001. 

D. Data Augmentation and Preprocessing 
To improve model generalization, various augmentation 
techniques were applied during training, including flipping, 
brightness adjustment, cropping, and noise addition. These 
techniques helped mitigate the effects of class imbalance and 
low image quality commonly found in CCTV footage. 

E. Evaluation Metrics 
System performance was assessed using Precision, Recall, 
F1-score, and mean Average Precision (mAP). In addition, 
confusion matrices were generated to analyze class-wise 
performance and misclassifications. 
 

   

Fig. 5. Example images of vehicles in different positional zones: Zone A 
(before stop line), Zone B (aligned with stop line), and Zone C (after stop 
line). 

   

Fig. 6. Example images of lane 2 (middle lane combined with lane adjacent 
to the sidewalk). 

F. Performance Evaluation of the recognition algorithm 
The evaluation was conducted across two primary lanes: 
• Lane 1: the lane adjacent to the center divider. 

• Lane 2: The evaluation was conducted across two 
primary lanes: middle lane combined and lane adjacent 
to the sidewalk. 

To capture positional variation, each lane was further divided 
into three zones: 

• Zone A: Vehicle before crossing the stop line (far view) 

• Zone B: Vehicle aligned with the stop line (mid view) 

• Zone C: Vehicle past the stop line (close view) 

VI. RESULTS 
This section reports the performance of the proposed VMMR 
system on low-resolution CCTV footage. We evaluate 
precision, recall, F1-score, confusion matrices, and report 
results by lane–zone as defined in Section V-F (Lane 1: 
adjacent to center divider; Lane 2: middle and sidewalk 
lanes). 

A. Lane–Zone Performance 
Table III summarizes the results per zone and lane. The 
macro averages across all settings are Precision 94.58%, 
Recall 93.47%, and F1-score 93.99%. 
 
 

TABLE IV.  PRECISION/RECALL/F1-SCORE BY LANE AND ZONE 

Setting Precision (%) Recall (%) F1-score (%) 
Zone A lane 1 95.78 95.78 95.78 
Zone A lane 2 95.69 95.22 95.59 
Zone B lane 1 92.54 91.85 92.18 
Zone B lane 2 100.00 97.43 98.66 

Zone C lane 1 91.84 90.74 91.22 
Zone C lane 2 91.60 89.82 90.60 

Average 94.58 93.47 93.99 

Lane–zone results indicate the best performance in Zone B, 
Lane 2, consistent with vehicles being closest to the optimal 
viewpoint. 

B. Overall Performance 
Table IV reports overall metrics computed on the test set, 
confirming the effectiveness of the two-stage design 
(YOLOv8 detector and make-specific classifiers). 

TABLE V.  OVERALL EVALUATION MERICS 

Metric Value (%) 
Precision 98.40 
Recall 93.35 
F1-score 95.80 

C. Per-Class Evaluation 
Per-class scores for the six target models are shown in Table 
V. Toyota and Honda models achieve consistently high 
precision and recall; the Other class is used only for analysis 
and is excluded from this table 

TABLE VI.  PER-MODEL PRECISION, RECALL, AND F1-SCORE. 

Model Precision (%) Recall (%) F1-score (%) 
Toyota Corolla 98.25 95.08 96.60 
Toyota Camry 99.58 94.50 96.70 
Toyota Vios 97.50 94.08 95.99 
Honda Civic 100.00 85.71 96.60 

Honda Accord 94.12 85.33 89.48 
Honda City 98.52 92.12 95.24 
Average 98.40 93.35 95.80 

D. Confusion Matrix 
Table VII presents the confusion matrix for the full test set. 
Most errors arise among visually similar models within the 
same make, while cross-make confusion is comparatively 
rare. 

VII. DISCUSSION AND ABLATION STUDY 
This section presents a discussion of the key findings, 
limitations, and ablation results of the proposed system. 
Several observations were made during experimentation that 
provide insights into the behavior and robustness of the 
model. 

A. Effect of Camera Zones on Performance 
The model’s performance varied across camera zones due to 
differences in viewpoint, lighting conditions, and background 
clutter. As shown in Figure 15, zones with frontal or clear 
side views such as Zone A and Zone B yielded higher F1- 
scores (above 90%), while performance degraded in zone 
with oblique angles or occlusion. This highlights the 
importance of camera placement and view quality in CCTV-
based vehicle recognition systems. 



TABLE VII.  CONFUSION MATRIX FOR THE FULL TEST SET 

 

B. Class Imbalance and Data Augmentation 
An ablation experiment was conducted to assess the impact 
of class imbalance. When training without augmentation on 
minority classes (e.g., Honda Accord, Toyota Camry), the 
average F1-score dropped by approximately 7.3%. By 
applying targeted data augmentation (rotation, flipping, 
contrast adjustment), performance improved, and the 
standard deviation across classes decreased. This confirms 
that augmentation is essential in balancing limited real-world 
datasets and avoiding overfitting to the majority classes. 

C. Comparison Between Unified vs. Make-specific Models 
To evaluate the effectiveness of using make-specific sub-
models, we compared the two-stage approach (with 
Toyota/Honda classifiers) against a unified model trained on 
all classes. The unified classifier showed increased confusion 
between similar-looking models (e.g., Civic vs. Altis), 
leading to a 4.1% decrease in macro F1-score. In contrast, 
make-specific classification improved intra-make 
discrimination and allowed the model to specialize more 
effectively. 

D. Failure Cases and Limitations 
The model occasionally misclassified vehicles from the 
“Other” class into one of the known model classes, 
particularly when vehicles shared similar body types (e.g., 
Nissan Sylphy vs. Toyota Altis). This limitation suggests a 
need for an out-of-distribution (OOD) rejection mechanism 
or confidence-based filtering in deployment scenarios. 
Moreover, the reliance on manually assigned make labels for 
training presents a limitation; given the low resolution of the 
images, human annotators are susceptible to errors during 
classification. Future work will investigate methods and 
processes designed to mitigate these inaccuracies and ensure 
a more rigorous labeling phase. 

VIII. CONCLUSION AND FUTURE WORK 
In this work, we proposed a two-stage VMMR system 
tailored for low-resolution CCTV footage. Unlike 
conventional systems that rely on high-resolution frontal 
images or license plates, our method utilizes full-body 
vehicle images captured under real-world surveillance 
conditions. By leveraging YOLOv8 for object detection and 
make-specific sub-models for classification, the system    
achieves high recognition accuracy even with limited visual 
detail. 

Experimental results show that the proposed framework is 
effective and robust across varying camera zones, with an 
average F1-score exceeding 90%. Our ablation study 
confirms the benefit of separating classifiers by make and 
using targeted data augmentation to mitigate class imbalance. 
The system also demonstrates real-time capability, 
supporting its practical use in intelligent transportation and 
surveillance applications. 
However, the current pipeline relies on pre-annotated make 
labels to route images to the appropriate sub-model. 
Additionally, misclassifications involving visually similar 
vehicles outside the target classes remain a challenge. 
For future work, we plan to: 
• Integrate an automatic make recognition module to 

eliminate reliance on manual routing. 
• Extend the dataset to include more vehicle brands and 

types, improving system scalability. 
• Incorporate temporal information from video sequences 

to enhance robustness under occlusion and motion blur. 
• Explore lightweight deployment on edge devices for 

real-time roadside surveillance. 
By addressing these directions, we aim to develop a more 
generalizable and scalable VMMR system suitable for 
widespread deployment in smart city infrastructures. 
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