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Abstract—Unmanned Aerial Vehicles (UAVs) often face chal-
lenges that eventually occur with their power consumption, this
is because UAVs have small battery capacity and continuous
operating systems. To overcome this uncertainty, accuracy in
predicting power consumption is needed so that UAVs can fly
for a longer time. This study explores the prediction of UAV
energy consumption using four different deep learning models,
such as Long LSTM, GRU, LSTM-SA and GRU-SA. The results
show that the model incorporating self-attention mechanisms,
especially GRU-SA, significantly outperforms the other models,
achieving the lowest MAE (0.0343), RMSE (0.0567) and MSE
(0.0032). Self-attention improves prediction accuracy by focusing
on important input features during dynamic transitions. This
work highlights a strong foundation for improving UAV energy
consumption.

Index Terms—Self-attention, deep learning, energy consump-
tion, prediction, GRU-SA

I. INTRODUCTION

Focusing on the current trend, the rapid increase in the
use of Unmanned Aerial Vehicles (UAVs) in various sectors
such as industry, entertainment, military, and transportation
has led researchers to conduct extensive research on this
topic. Although UAVs have numerous advantages, their limited
battery capacity and energy management are critical challenges
that remain as major obstacles in their implementation [1]- [2].

The most visible challenge in UAV operations are the uncer-
tainties of the surrounding environment. Energy consumption
varies depending on several factors: these include weather con-
ditions, load dynamics, wind speeds, and trajectory paths [3].
Moreover, the operational dynamics of UAVs complicate the
measurement of energy consumption across various scenarios,
underscoring the necessity for reliable predictions.

It is important to account for these uncertainties to ensure
the safety and reliability of UAV operations. Accurate energy
consumption predictions contribute to extended flight time of
the UAVs, manage payloads, and implement effective con-
tingency measures. Integration of deep learning with energy
management systems enables precise prediction of energy
consumption and production, thereby optimizing resource al-
location to improve system performance. By improving energy

efficiency and minimizing risks, accurate energy consumption
predictions play a vital role in enhancing the scalability and
reliability of UAV operations. [4]- [5].

Accurate prediction can also develop and improve energy
allocation, expand flight time, and enhance reliability opera-
tion [1]- [3]. Research on UAV energy consumption prediction
primarily focuses on three key areas: battery life predic-
tion, anomaly detection, and power consumption forecasting.
Among these, power consumption prediction is particularly
crucial, as it directly impacts UAV efficiency and operational
effectiveness, especially in dynamic environments [5].

Recent research focused on advanced hybrid modeling tech-
niques for energy and battery management systems. Shahriar
et al. proposed a hybrid RNN-CNN based model that combines
Temporal Convolutional Networks (TCN) and Gated Recurrent
Units (GRU) with attention on mechanism. This architecture
effectively captures long-term and short-term dependencies
in sequential data while focusing on important features to
improve accuracy and robustness to noise [6]. In addition,
Shahriar et al. applied machine learning approaches, specifi-
cally the Isolation Forest and Local Outlier Factor algorithms,
to detect battery anomalies in the energy system. By analyzing
features such as voltage, current, and temperature, this study
achieved high accuracy in detecting outliers and anomalies that
could compromise battery safety and performance [7].

Furthermore, Various methods have been proposed for
UAV energy consumption prediction. These include traditional
methods and advanced machine learning methods. Recent
advances in UAV energy consumption modeling have explored
and experimented with various approaches to improve predic-
tion accuracy and efficiency. Cabuk et al. used an ensemble
learning approach by combining Random Forest and XGBoost
models to create a data-efficient energy consumption model
for drone swarm operations. This method demonstrated high
accuracy with minimal data requirements, making it suitable
for scenarios with limited datasets [8]. Muli et al. then
proposed an LSTM-based energy model designed to capture
time-series data dependencies in UAV flight data, showing
significant improvements in prediction accuracy compared to



traditional mathematical models [9].
This study conducts a comparative analysis of UAV power

consumption prediction methods, evaluating four the models:
GRU, LSTM, GRU-SA, and LSTM-SA. Through in-depth
comprehensive experiments and detailed analysis, the study
assesses each model’s accuracy and efficiency in forecasting
UAV power consumption patterns. The primary objective is to
identify the model that offers superior prediction accuracy and
robustness in various UAV power consumption scenarios.

The structure of the paper is as follows. Section 2: the data
collection, Section 3: the methodology, Section 4: Implemen-
tation, including training settings and results, Finally Section
5 Conclusion.

II. DATASET DESCRIPTION

The dataset utilized in this study is a publicly available flight
dataset collected from a DJI Matrice 100 quadcopter [10]. It
comprises detailed battery data and state measurements from
209 flights, covering approximately 65 kilometers with a total
flight time of 10 hours and 45 minutes. The data collection
includes numerous variations in ground speed, altitude, and
payload weights, making it highly relevant for predicting
energy consumption.

Among the 209 flights, 195 followed fixed triangular tra-
jectories with variations in altitude (25 m, 50 m, 75 m, and
100 m), speed (ranging from 4 m/s to 12 m/s), and payload
weights of 250 grams and 500 grams. These flights were
repeated to ensure reliability. The remaining 14 flights were
conducted on different paths from the others in order to
be used for data testing. During each flight, high-resolution
data—including inertial measurements, wind speed, battery
voltage, and current—were recorded using onboard sensors
[1].

III. METHODOLOGY

This section provides details the data preprocessing steps
required to prepare the dataset for input into the models for
the learning process. Additionally, it provides an explanation
of the working mechanism of each model.

A. Data Preprocessing

To facilitate effective learning, data preparation is essential
during the preprocessing phase. This involves reading the
dataset and selecting the most influential features through
feature engineering and selection, ensuring the data aligns with
prediction requirements. Since the dataset lacks direct energy
consumption data, We computed the total energy consumption
of each flight by numerically integrating power over time [11].
Power (P) is calculated as the product of current (I) and voltage
(V):

P = I.V (1)

using the equation as follows:

E =

∫
P dt (2)

In addition, the dataset has many features that can in-
crease computational complexity. To overcome this, feature
elimination is carried out using a Pearson correlation-based
selection procedure. The Pearson correlation coefficient is used
to measure the relationship between various features and target
energy consumption, ensuring that only the most relevant
features are used in the model. The equation for Pearson’s
correlation is as follows:

r =

∑
(xi − x̂)(yi − ŷ)√∑

(xi − x̂)2
∑

(yi − ŷ)2
(3)

After calculating the correlation using Pearson correlation,
only a few features have a correlation value greater than
0.10 to the predicted target, energy consumption. Of the total
23 features available in the dataset, only 14 features were
selected to be used in the model training process. These
features include wind speed, state of charge (SOC), payload,
and position (position x, y, z), orientation (orientation x, y, z),
and velocity (velocity x, y, z). The selection of these features
aims to reduce computational complexity while ensuring that
the model uses the most relevant information to improve
prediction accuracy.

B. LSTM and GRU Model

LSTM is an improvement of the simple RNN model. The
vanishing gradient problem was successfully solved in the
LSTM model through a number of modifications to its network
architecture. In this study, we build the LSTM architecture by
referring to the explanation in [9]. This model is proposed
with the aim of improving the performance in capturing long-
term dependencies by utilizing both forward and backward
directions. The architecture uses two LSTM models combined
in one layer, where one LSTM model serves as the forward
layer and the other LSTM model serves as the backward layer.

GRU is a simple form of LSTM [12], where the forget gate
is removed, but still maintaining the update gate and reset gate.
These two gates are capable of carrying out functions similar
to the three gates found in LSTM.

C. Self-Attention Model

Attention is a crucial aspect of human cognition, enabling
us to focus on specific elements while filtering out less
relevant information. Similarly, attention mechanisms in ma-
chine learning provide an effective solution for managing the
dynamics of various features by assigning weights based on
their relative importance. Among all attention mechanisms,
in this study, we introduce the self-attention mechanism, a
specialized form of attention that excels in establishing long-
term dependency relationships. Usually apply the calculation
method of Query vector (Q), key vector (K), and value vector
(V). The main procedure is divided into 2 stages.

Q = WqX

K = WkX

V = WvX



Fig. 1. The structures of LSTM-SA and GRU-SA

First, for each input X, use different linear functions to
generate Q, K, and V vectors, and the calculation is shown
as:

ATT(Q,K, V ) = softmax
(
QK⊤
√
K

)
V (4)

Wq, Wk and Wv are the parameters metrics of linear
transformation. Wq, Wk and Wv are the parameters metrics
of linear transformation. Subsequently, the attention function
is used to calculate the output vector H [13].

D. LSTM-SA and GRU-SA Model

This work adds a self-attention mechanism to LSTM and
GRU models, named LSTM-SA and GRU-SA, to investigate
whether it can help improve the UAV energy consumption
prediction. The structure of LSTM-SA and GRU-SA is shown
in Figure 1. Both models consist of three parts, namely the
LSTM or GRU model, the SA module, and the fully connected
layer. Since Gru and LSTM have almost the same structure,
the same hyperparameters are used. This study also shows that
each hidden size of LSTM and Gru is 128 [13].

IV. RESULTS AND DISCUSSION

A. Training Settings

The training process in this study was conducted using the
Python programming language with the TensorFlow library
to implement and train machine learning models. Computa-
tions performed out on a computer with an Intel(R) UHD
Graphics 770, Nvidia GeForce RTX 3060 GPU configuration,
1 TB storage capacity, and the Windows 11 operating system.
To evaluate the model performance, four evaluation metrics
are used: Mean Squared Error (MSE), Mean Absolute Er-
ror (MAE), Mean Absolute Percentage Error (MAPE), and
Coefficient of determination R2. These metrics provide a
comprehensive assessment of the accuracy and reliability of
the model predictions.

The input data was processed in batches of size 32 and
converted into a sliding window format, in which each sliding
window consisted of 100 time steps. The dataset was divided
into training, validation, and testing sets in a ratio of 60:20:20.

Training uses the ADAM optimization algorithm with a
learning rate of 0.001. The activation function used is Tanh
as it produces outputs with a value range of -1 to 1, which is
in accordance with the preprocessing applied to the data. All
models are trained for 200 epochs to ensure convergence and
stability of the results.

Fig. 2. Prediction results from four different models.

B. Results and Analysis

After the training modeling is done, we test the model using
the testing data that has been separated in the training part. All
models are done with the same conditions by predicting one
flight, namely flight 277. Figure 2 shows the prediction results
of all models combined. It can be seen that the model that
had the added self-attention layer is closer to the actual value.
However, if seen more up close, between the two LSTM-
SA and GRU-SA models, the closest to the actual value
is GRU-SA. This indicates that by adding a self-attention
layer, the predictions produced could be improved. LSTM-
SA’s performance increases when there is a fast transition
such as in the 40th second; However, it is undeniable that in
both LSTM-SA and GRU-SA when reaching the peak there
is a slight oscillation, indicating that this model is sensitive to
noise in the high region. For models LSTM and GRU, both are
capable of dealing with changes in energy consumption and
are more dynamic. However, both are less precise and slow in
capturing high variability.

TABLE I
PERFORMANCE EVALUATION OF DIFFERENT AI MODELS

Model MAE MSE RMSE R2

LSTM 0.0347 0.0035 0.0588 0.9349
GRU 0.0378 0.0043 0.0656 0.9191

LSTM SA 0.0350 0.0033 0.0578 0.9372
GRU SA 0.0343 0.0032 0.0567 0.9395

The evaluation metrics values of all the models are shown
in Table 1. It can be clearly seen that GRU-SA is the most
outperforming model of all. However, it also appeared that the
model when adding a self-attention layer resulted in a smaller
value compared to before. Small MSE, MAE, and RMSE
values indicate that the error between the actual values and the
predicted values is small. Meanwhile, the r square approaching
1 indicates that the predicted values have a pattern that is more
similar to the actual values. So it can be said that in this study,
GRU-SA works better than other models in predicting UAV
power consumption.

V. CONCLUSION

The limited battery capacity of UAVs remains a significant
challenge, acting as a major obstacle to their widespread
implementation. Predicting power consumption on UAVs us-
ing deep learning offers a viable solution to address these



battery constraints. In this study, we compared the perfor-
mance of LSTM, GRU, LSTM-SA, and GRU-SA models in
predicting UAV energy consumption. The results demonstrate
that incorporating self-attention improves the performance of
both LSTM and GRU models by enhancing their ability to
focus on critical features during transitions. This experiment
highlights that combining GRU with self-attention signifi-
cantly improves the accuracy and efficiency of UAV power
consumption predictions, paving the way for more effective
energy management in UAV operations.
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