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Abstract—Scene representation in autonomous driving relies
heavily on extracting meaningful features from images and
accurately mapping them to 3D world coordinates. Traditional
methods, such as ResNet-based backbones pretrained on Ima-
geNet, provide a robust foundation for feature extraction but
are increasingly viewed as limited when it comes to aligning
features with the 3D world. This paper explores the integration
of advanced segmentation models as backbones, focusing on
how feature quality at the extraction stage directly impacts
downstream scene representation tasks. Preliminary experiments
demonstrate the potential for improved feature alignment and
semantic consistency, highlighting the importance of robust
backbone design in modern 3D perception pipelines.

Index Terms—3D occupancy prediction, BEV perception, scene
representation, autonomous driving

I. INTRODUCTION

In autonomous driving, one of the most critical challenges
lies in extracting high-quality features from image inputs and
effectively mapping them to a 3D coordinate system. This pro-
cess, often determined by the backbone network, serves as the
cornerstone for tasks like 3D scene understanding and naviga-
tion. Over time, backbones such as ResNet50 and ResNet101
[14], pretrained on ImageNet [13], have been the default
choices due to their simplicity and robustness. However, these
conventional architectures often fall short in aligning extracted
features accurately with real-world locations, limiting their
suitability for autonomous driving scenarios.

A well-designed image backbone not only enhances the
quality of extracted features but also simplifies the subse-
quent processing stages. If features are accurately aligned
with the 3D world at the backbone stage, the downstream
layers—such as attention modules, decoders, or scene repre-
sentation heads—can be significantly lighter while maintaining
high performance. This streamlined pipeline enables a more
efficient and interpretable learning process for understanding
3D scenes, whether in the context of BEV perception or 3D
occupancy prediction. Both paradigms rely heavily on robust
feature extraction, underscoring the universal applicability of
optimized backbones across these tasks.
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This paper takes a practical approach to evaluate how
advanced segmentation models, typically designed for im-
age tasks, perform when their outputs are projected onto
LiDAR data for downstream 3D perception tasks. Rather
than proposing a complete overhaul of backbone design, we
focus on a preliminary investigation into whether leveraging
segmentation models for this purpose can offer meaningful
insights or improvements. By aligning segmentation outputs
with 3D world coordinates, we aim to highlight the potential
benefits and limitations of such an approach, leaving further
exploration and refinement for future work.

II. RELATED WORKS

Recent advancements in camera-based methods have sig-
nificantly impacted feature extraction and 3D scene represen-
tation. Historically, most approaches have relied on standard
backbone networks like ResNet [14], often pretrained on
ImageNet [13]. While these backbones provide robustness and
simplicity, the ImageNet [ | 3] domain differs significantly from
autonomous driving scenarios. This domain gap raises con-
cerns about the ability of such backbones to capture features
relevant to autonomous driving tasks. Despite their widespread
use, little attention has been given to adapting or optimizing
these backbones specifically for the unique requirements of
autonomous driving datasets, leaving room for improvement
in domain-specific feature extraction.

A. BEV Perception

BEV perception has been widely adopted for spatial un-
derstanding in autonomous driving. BEVFormer [7] employs
ResNet-50 and ResNet-101 with DCN to extract image fea-
tures, which are projected into the bird’s-eye-view (BEV)
space using a spatiotemporal transformer. BEVDepth [&] in-
tegrates depth estimation into the BEV framework, relying
on ResNet-50 for robust image feature extraction. Similarly,
BEVDet [9] leverages ResNet-101 and Swin Transformer
backbones to generate BEV representations through multi-
camera inputs and view transformations. These methods un-
derscore the centrality of ResNet-101 in BEV tasks, while
primarily focusing on downstream processing and view trans-
formations.
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Fig. 1. Comparison of Existing Occupancy Networks and Our Preliminary Experiments. On the left, existing networks rely on an image backbone followed
by a heavy decoding process, including deformable attention, 3D convolutions, and linear layers. On the right, our approach simplifies the pipeline by utilizing
multi-view images and applying segmentation followed by an image-to-LiDAR mapping, global aggregation, and voxelization. Despite only aligning specific
classes from the Occ3D dataset, our results show promising quality and semantic richness in the 3D space.

B. 3D Occupancy Prediction

3D occupancy prediction aims to label the environment
with semantic and geometric information. MonoScene [5] uses
ResNet to process monocular images for semantic scene com-
pletion. TPVFormer [1] extends the BEV paradigm by using
ResNet to lift image features into a tri-perspective view (TPV)
representation for richer scene understanding. GaussianFormer
[8] adopts ResNet to support probabilistic Gaussian modeling,
enabling sparse and efficient 3D occupancy predictions. Sim-
ilarly, GaussianOcc [9] builds on ResNet to introduce self-
supervised learning for scalable occupancy estimation. Sur-
roundOcc [2] utilizes a ResNet, while OctreeOcc [3] employs
the same backbone with a focus on hierarchical queries.

Across these methods, ResNet [14] remains the backbone
of choice, providing reliable feature extraction while leaving
downstream modules to handle task-specific complexities. This
reliance on a generic backbone, however, suggests a missed
opportunity to explore domain-adaptive designs tailored to
autonomous driving. By revisiting this foundational aspect,
future work could unlock significant improvements in feature
extraction and overall system efficiency.

III. METHODS

This section describes the methodology used to explore the
feasibility of leveraging segmentation models for 2D image
segmentation and LiDAR mapping in autonomous driving
tasks. Figure | provides an overview of the proposed pipeline
in comparison to previous occupancy networks. While previ-
ous approaches rely on a complex decoding process involving
deformable attention, 3D convolutions, and linear projections,
our method simplifies the pipeline significantly. By leveraging
segmentation models and direct image-to-LiDAR mapping, we
aim to achieve comparable performance without resorting to
heavy post-processing steps.

A. 2D Image Segmentation

For 2D image segmentation, let Z = I, I, ..., I represent
the set of six input images captured from surrounding cameras.

These images are processed by a segmentation model, denoted
as S, which outputs per-pixel semantic probabilities for each
image. Mathematically, this can be expressed as:

S(I;))=P;, P eRIXWXC  vwic12...,6, (1)

where H, W, and C represent the height, width, and number
of classes, respectively.

For each semantic class ¢ € 1,...,C, the per-class prob-
ability map P; is extracted, and the segmentation mask is
defined as:

1, if ¢ = argmaxy, PF(u,v),

M) =< o

. 2)
otherwise
where (u,v) are pixel coordinates in the image I;.

This segmentation model S is pretrained on the COCO
dataset and fine-tuned on an autonomous driving dataset
to ensure domain relevance. Data augmentation techniques,
including color jittering, random cropping, and flipping, are
applied during training to improve robustness.

B. Image-to-LiDAR Mapping

The segmented outputs P = Py, Ps,..., P are projected
onto the LiDAR coordinate system through a series of trans-
formations. The mapping process assumes access to accurate
camera calibration parameters and ground-truth depth infor-
mation, and it involves the following steps:

Depth Association: Each pixel (u,v) in P; is assigned a
depth value D;(u,v) from the ground-truth depth map D;.
This depth association can be expressed as:

Qi(u,v) = [u v Di(u,v) 1], 3)

where Q;(u,v) represents the homogeneous coordinate in the
image space.

Camera to Ego Transformation: Using the camera intrinsic
matrix K; and extrinsic parameters Teamera—sego> the 2D pixel
coordinates are transformed into the ego coordinate system:

Xego = Tcamera—>eg0 : Ki_l : Qi (ua U)' (4)



Ego to LiDAR Transformation: The coordinates in the ego
system are further transformed into the LiDAR coordinate
system using TegosLiDAR:

XLiDAR = Tego%LiDAR : Xego~ )

Semantic Projection: The semantic probabilities P;(u, v) are
assigned to the corresponding 3D points X ipagr in the LIDAR
coordinate system. The semantic class for each LiDAR point
is determined by projecting the 3D points back into the image
space and retrieving the corresponding semantic labels:

SLiDAR,j = argmax L Pf(u,v), (6)
¢ | j| (u,v)EN;

where N represents the set of image pixels that project to
the 3D point Xyipagr,;j, and j denotes the unique identifier for
each 3D LiDAR point.

This process produces a semantically enriched 3D point
cloud with each point labeled by its most probable class.

C. Visibility Filtering for LiDAR Points

In this step, LIDAR points that cannot be projected into the
field of view of any of the six cameras are excluded from the
final representation. This ensures that only visible points are
considered for semantic enrichment. The filtering process is
described as follows:

Projection into Camera Space: For each LiDAR point
XLipAR,;> project it into the camera coordinate system for all
six cameras:

Xcamera,j = Ki : Tglobal—>camera : XLiDAR,j, (7)

where Tyiopal—scamera 15 the transformation from the global
coordinate system to the camera coordinate system.

Visibility Check: For each projected point X ymera,j, check
if the point falls within the image boundaries and satisfies the
depth constraint:

0<u<W, 0<v<H, and D; >0, )

where (u,v) are the image coordinates derived from Xcamera,;
and Dj is the depth value.

Exclusion of Non-visible Points: Points that fail the vis-
ibility check for all six cameras are excluded from further
processing:

Xuipar,j € V = exclude Xyipar,j, 9

where V is the set of visible points across all cameras.

This filtering ensures that only LiDAR points with valid
projections into at least one camera field of view are retained,
improving the semantic mapping’s accuracy and relevance.

D. Global Aggregation

To account for temporal information and achieve a denser
3D point cloud, multiple frames are aggregated in the global
coordinate system. Specifically, for a time window of 2k

frames (i.e., £ frames before and after the current time t),
the LiDAR points are transformed and merged as follows:

t+k

Xgobat = () Tr—sgtobat - XLipAR 75
T=t—k

(10)

where T’ 10pa Tepresents the transformation from the local
LiDAR frame at time 7 to the global coordinate system. By
aggregating points across this temporal duration, a denser
and temporally consistent 3D representation of the scene is
achieved, capturing information that might be missed in a
single frame.

E. Voxelization

For spatial discretization, the aggregated LiDAR points in
the global coordinate system are voxelized into a 3D grid. The
voxelization process is defined as:

j 't S b 8 ) .f ) ) )
0, otherwise

where V(x,y, z) represents the voxel value at the coordinate
(z,9,2), (x,y, z) is the voxel’s coordinate index, P denotes
the set of LiDAR points within the voxel, and S(p,q,r)
represents the semantic labels of these points.

The voxel grid’s dimensions are determined by the prede-
fined point cloud range and voxel size:

I = LXH B RminJ ’ (12)

s
where I is the voxel index, X, denotes the global coordinates
of the LiDAR points, Ry, is the minimum bound of the point
cloud range, and s is the voxel resolution.

This step ensures a structured and compact representation
of the 3D scene, suitable for downstream processing.

IV. EXPERIMENTS

A. Configurations

The configurations used in the experiments are summarized
in Table I. These configurations were chosen based on prior
research and empirical tuning to optimize performance.

TABLE I
EXPERIMENTAL CONFIGURATIONS
Configuration Value
Segmentation Model YOLOI11l-seg
Pretraining Dataset COCO
Input Image Resolution (H x W) 384 x 640

Number of Classes (C') 5
Voxel Size (s) 0.4 m
Point Cloud Range (Rumin, Rmax) | [—40, —40, —1], [40,40,5.4] m
Temporal Frames (k) 10

In this setup, the number of classes (C) was chosen as
5, representing the subset of COCO [12] categories that
align with the Occ3D-nuScenes [! 1] dataset. The input image
resolution was fixed at 384 x 640, ensuring compatibility with
the YOLOI11l-seg [15] model.
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Fig. 2. Qualitative results of the proposed method. Each row shows input images, ground truth, and prediction (left to right).

B. Experimental Setup

The experiments were conducted to evaluate the perfor-
mance of the proposed pipeline in terms of both accuracy and
computational efficiency.

The segmentation model, YOLO111-seg [ 5], was pretrained
on the COCO [12] dataset and directly used for zero-shot
inference on the Occ3D-nuScenes [ 1 1] dataset. No fine-tuning

was performed, ensuring that the results strictly reflect the
model’s generalization capability without additional dataset-
specific adjustments.

The hardware setup comprised a single NVIDIA A6000
GPU running PyTorch. Specific hyperparameters, such as
voxel size (s), point cloud range (Rpin, Fmax), and temporal
frame aggregation (k), were optimized based on validation



performance.

The evaluation was performed using Intersection over Union
(IoU) and runtime as the primary metrics. These metrics were
selected to assess both the semantic segmentation accuracy
and the computational efficiency of the pipeline.

It is important to note that due to unknown errors encoun-
tered during evaluation on the Occ3D-nuScenes [ 1] validation
set, 30 out of 150 scenes could not be assessed. While the
remaining scenes are substantial enough to provide meaningful
insights into the pipeline’s performance, this limitation slightly
reduces the reliability of direct comparisons with other models.

C. Quantitative Results

The experimental results are presented in Table II, which
reports IoU scores for five key semantic classes: bicycle, car,
motorcycle, bus, and truck. These categories are critical for
autonomous driving tasks and provide a meaningful evaluation
metric for assessing semantic occupancy prediction models.
The evaluation is conducted on a subset of the Occ3D-
nuScenes [! 1] dataset, specifically focusing on representative
samples that reflect real-world complexities.

Table II compares our proposed method, referred to as
”Ours” with several existing methods. Although our method is
not a top-performing approach, it achieves competitive results
across various metrics.

In Table II, the red highlights represent the upper bounds
achieved by existing methods, while the blue highlights denote
the lower bounds. Scores achieved by ”Ours” that fall between
the lower and upper bounds are underlined, showcasing that
our method operates effectively within the competitive range.

TABLE II
QUANTITATIVE RESULTS ON OCC3D-NUSCENES

Method Bicycle Car Motorcycle Bus Truck
MonoScene [5] 4.26 9.38 3.98 4.93 7.17
OccFormer [4] 13.13 37.12 14.02 20.37 | 20.64
TPVFormer [!] 13.67 45.90 19.99 40.78 | 34.17
FB-OCC [6] 30.00 51.54 29.13 46.62 | 39.36
Ours 14.32 16.70 12.15 15.64 | 17.48

These findings illustrate that while our method does not
consistently surpass state-of-the-art approaches, it performs
competitively across most categories. For instance, in the
bicycle category, our method achieves results that are similar to
OccFormer [4] and TPVFormer [1], showcasing its robustness
in this class. Additionally, for the motorcycle category, our
method’s performance is comparable to that of OccFormer [4],
further demonstrating its effectiveness in this specific context.

In conclusion, our method highlights a promising approach
to 3D semantic occupancy prediction by balancing computa-
tional simplicity with semantic accuracy. These results suggest
that accurate alignment of 2D semantics into the 3D domain
can yield competitive results with reduced computational over-
head.

D. Qualitative Results

To further illustrate the performance of our proposed
method, qualitative results are provided in Figure 2. The results

highlight the strengths and limitations of our approach. Static
objects such as buildings and road surfaces are generally well-
predicted, aligning closely with the ground truth. However,
challenges arise in the handling of dynamic objects like
vehicles, where predictions occasionally exhibit elongated or
distorted shapes. For pedestrians, the primary limitation lies
in the lack of sufficient LiDAR points, which often results in
an inability to match the image semantics to corresponding
3D points, preventing proper voxelization. Additionally, some
predictions for cluttered regions or overlapping objects exhibit
noisy outputs, leading to inaccuracies in object boundaries
and semantics. These visualizations demonstrate that while
the method shows promising results in strucfred environments
with clear object boundaries, further refinement may be needed
to robustly handle more dynamic, cluttered, and noisy scenar-
ios, particularly in cases where LiDAR sparsity limits semantic
alignment.

V. CONCLUSIONS

This study demonstrates that 2D image segmentation, when
executed effectively, can significantly reduce the computa-
tional burden associated with 3D semantic occupancy predic-
tion. By focusing on segmentation and projection methods,
we have shown that it is possible to bypass heavy decoding
processes while still achieving results comparable to those pro-
duced by complex models. Figure | highlights this approach,
where a lightweight pipeline delivers meaningful semantic
representations.

The simplicity of this method is its primary strength, as it
avoids the intricate attention mechanisms and 3D convolutions
often employed in existing frameworks. However, it does have
limitations. Dynamic objects, for instance, appear stretched or
misaligned due to temporal aggregation, and certain categories,
such as pedestrians, are challenging to map because they often
lack sufficient LiDAR points. These gaps in representation
highlight areas for future improvement.

Nonetheless, this study establishes an important baseline:
robust 2D segmentation alone can serve as a foundational
step for high-quality 3D occupancy prediction. By focusing
on lightweight and interpretable methods, this work opens
up possibilities for more computationally efficient solutions,
particularly in scenarios where real-time performance and
scalability are critical. Future research could address these
limitations by integrating enhanced temporal dynamics and
better handling of sparse object classes to further improve the
accuracy and applicability of the proposed approach.
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