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Abstract—Alzheimer’s disease (AD) biomarkers are highly
variable, which complicates early prediction. In this study, we
provide a comparative study of machine learning (ML) and
deep learning (DL) techniques integrated with strong feature
selection methods in the context of AD classification. This
paper mainly focuses on one of the most important issues in
this field: how to construct accurate models based on high-
dimensional datasets where the size of the sample is very small.
To tackle this problem, we evaluated various feature selection
methods: minimum redundancy maximum relevance (mRMR),
recursive feature elimination (RFE), and their hybrid variant
based on gene expression data. Models like Multilayer Perceptron
(MLP) and Random Forest Classifier (RFC) were utilized on
a dataset containing 445 samples and 923 features (genes) for
which the small sample size made classification challenging.
Experiments show that the hybrid feature selection method
found the SLLC25A46 gene from the entire dataset and, under
fine-tuning, substantially boosts Alzheimer’s disease classification
performance. The best validation average accuracy rate of 95%
is achieved for the proposed method. This is simple and can be
used in the classification of AD and drug discovery tasks.

Index Terms—Alzheimer’s disease, biomarkers, gene expres-
sion, mMRMR, RFE, random forest.

I. INTRODUCTION

Alzheimer’s disease is one such common neurological disor-
der that manifests as a gradual decrease in cognitive function,
leading to memory loss. This impacts millions across the
globe, infecting brain neurons responsible for language and
memory functions. The disease usually manifests itself after
the age of 65, and the risk of developing it grows exponentially
with age. Alzheimer’s disease (AD) is one of the most frequent
types of dementia [1]. It is a slowly progressive chronic
neurodegenerative disease that presents with subtle changes.
Alzheimer’s is a complex neurodegenerative disease that has
a strong genetic component. Understanding its onset, devel-
opment, and pathophysiological origins is critical to future
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studies and therapeutic approaches. In 2015, approximately
47 million people globally suffered from AD, and the overall
costs exceeded $818 billion. These numbers are expected to
increase in the future [2].

Microarray technology can identify genes that cause
Alzheimer’s disease (AD) in order to predict gene expression
profiles, create efficient AD treatments, and deliver person-
alized healthcare. Processing microarray data comes with a
number of challenges, including redundancy and overfitting
that need to be avoided and managed with caution, given that
such techniques work on a large number of genes and samples.
Unlike most other methods that extract all association genes
(in Alzheimer’s disease context), a certain method, called the
“gene selection approach,” reduces computational cost, im-
proves efficiency, and ensures that researchers can still identify
only the key genes for disease classification. For example,
gene selection is performed here using unsupervised methods
like PCA and SVD for the gene expression microarray data.
These approaches produce lower-dimensional representations
for classification tasks and reveal the structure of datasets [3].
Microarray gene expression data is a more promising approach
for early AD detection than neuroimaging and EEG, each of
which has pros and limitations of its own.

In order to predict Alzheimer’s disease using gene expres-
sion data, Alia et al. [4] employed a hybrid feature selection
strategy. They selected genes using LASSO and ANOVA
methods. The Support Vector Machine (SVM) classifier at-
tained the maximum performance values in just one dataset,
while the Multilayer Perceptron (MLP) classifier achieved the
best performance metrics in four datasets. A deep learning
algorithm was presented by Chihyun et al. [5] to forecast
AD using a dataset that combined DNA methylation and gene
expression. PCA-gene expression, PCA-DNA methylation, t-
SNE-gene expression, and t-SNE-DNA methylation were the



four training examples. The deep neural network’s average
accuracy was 82.3%.

Machine learning-based binary and multiclass classification
for early Alzheimer’s disease diagnosis was proposed by
M. Sudharsan et al. [6]. In a multiclass grouping of sMRI
data from the ADNI dataset, they examined a PCA-based
search strategy. In conjunction with feature selection methods,
RELM significantly improved the accuracy of classifying AD
from MCI and HC individuals. A trustworthy deep-learning
model was created by Mahmoud M. Abdelwahab et al. [3] to
forecast Alzheimer’s disease early. They used GSE63060 and
GSE63061 microarray gene expression data, which included
569 samples and 16,383 genes. Outstanding results on the AD
dataset demonstrated the PCA-CNN model’s efficacy, with
an accuracy of 96.60% and a loss of 0.3503. In contrast,
the SVD-CNN model demonstrated exceptional accuracy,
attaining 97.08% with a loss of 0.2466.

Hala Alshamlan et al. [7] used several feature selection tech-
niques on the large-scale gene expression profiles, GSE33000
and GSE44770, which contained 19,488 genes in total, 257
of which were normal and 439 of which were AD samples,
to determine the best machine learning model for identifying
risk genes linked to AD. With many genes between 20 and 40,
the results show that the mRMR and F-score feature selection
approaches with an SVM classifier produced a high accuracy
of about 84%.

Aliaa SaadEl-Gawady et al. [8] proposed a machine-
learning approach for the prediction of Alzheimer’s disease.
They identified 1058 significant genes using a dataset of 1157
cases and 39,280 genes. The SVM model (sensitivity/recall:
0.97; specificity: 0.97; precision: 0.98; kappa index: 0.945;
AUC: 0.972; accuracy: 0.975) demonstrated the maximum
accuracy. Yi Zhang et al. [9] built multiclass eXtreme Gra-
dient Boosting models (XGBoost) to characterize large-scale
transcriptomic-based blood biomarkers and evaluated their
performances in distinguishing AD from cognitive normal
(CN) and mild cognitive impairment (MCI). For multiclass
classification, this study’s area under the receiver operating
characteristic curve (AUC) was 0.81 (sensitivity = 0.81; speci-
ficity = 0.63).

Using longitudinal MRI images from the ADNI dataset,
Zhentao Hu et al. [10] proposed a novel VGG-TSwinformer
model for early Alzheimer’s disease prediction. Low-level
spatial features of longitudinal sMRI images are extracted
using a CNN based on VGG-16, and these low-level features
are mapped to high-level feature representations. Accuracy,
sensitivity, specificity, and AUC for the sMCI vs. pMCI
classification task were 77.2%, 79.97%, 71.59%, and 0.8153,
respectively. Wujia Yu et al. [11] examined the potential for
genetic and EEG data to be combined for subclassification of
AD. Results from this study indicated that the support vector
machine (SVM) model had noteworthy success in terms of
classification performance with an accuracy of 0.920 and an
AUC value of 0.916.

There is evidence that early diagnosis/treatment in patients
with Alzheimer’s disease (AD) can improve their prognosis.

Machine learning (ML) and deep learning (DL) techniques
have emerged as powerful tools in all sectors [12]-[15] includ-
ing medical areas [13], [16], particularly in the early detection
of Alzheimer’s Disease (AD). Previous studies were performed
using brain imaging data, but some others have also used
gene or cellular point data. Yet, a proper method for feature
selection, not depending on the model, is still needed. Existing
approaches often face issues of underfitting and overfitting.
To address these challenges, we have analyzed ML and DL
models alongside various robust feature selection techniques
to enhance the accuracy of AD predictions, providing support
for medical professionals in clinical decision-making.

II. METHODOLOGY
A. Dataset Description

To define our machine learning (ML) and deep learning
(DL) models for early prediction of AD, we increased the
sample size in this study by combining datasets with the
following identifiers: GSE5281 (161 samples), GSE48350
(253 samples), and GSE1287 (31 samples). This resulted in
a total of 445 samples from various brain regions, including
the hippocampus, entorhinal cortex, medial temporal gyrus,
posterior cingulate, superior frontal gyrus, primary visual
cortex, and post-central gyrus [17]. The combined dataset
contains 923 features (genes), with 256 samples representing
healthy controls and 189 samples associated with Alzheimer’s
Disease (AD).
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C. Feature Selection Methods

Finding genes with the most information regarding the
sample class labels is the aim of any pertinent gene selection
process about microarray gene expression data. In this study,
we have demonstrated two effective features selection methods
that can identify most risk genes in AD.



1) Minimum Redundancy and Maximum Relevance
(mRMR): mRMR select the features with high correlation to
the target vaiable and reduce features when high correlation
themselves In this study, the goal is to minimize the
redundancy of a gene while maximizing its significance with
output. Mutual information difference (MID) has been used
as an objective function to select and reduce genes from
the score metrics. This approach intended two sight such as
the mRMR feature set will be more representative of the
target phenotypes, we expect it to have better generalization
qualities with an equivalent amount of features. Similarly,
a smaller set of mRMR features can effectively cover the
same area as a larger conventional feature set [18]. The MID
function has been shown in Equation 1.

mRMR(X;) = Relevance(X;,Y)
1
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Where X, represents the genes in the dataset and Y repre-
sents the target variable.

Here, Relevance (X;,Y) = mutual information, I(X;,Y)
and Redundancy (X;,Y) = I(X;,Y)

The first feature is selected by the using of equation 2.
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The rest of the features are selected in an incremental way
and earlier selected feature remain in the feature set.

Algorithm 1 Procedure of mRMR.

1: At beginning, feature set S = {}.

2: Calculate mutual information, I(X;;Y") to measure rele-
vance.

3: Select first feature from relevance metrics.

4: Iteratively add features to S by selecting the feature X;
that maximizes the mRM R objective:

i. argmaxmRMR (X;)
X, ¢S

5: Stop when the desired number of features is selected.

2) Recursive Feature Elimination (RFE): In this algorithm,
genes are ranked according to their impact on the value of
estimator means classification algorithm using an iterative
procedure called Recursive Feature Elimination (RFE). First,
the entire genes set is used to train the classifier, and the
classification accuracy is tracked [19]. The desire value of the
classifier is then monitored following each iteration in which
several genes are eliminated from the initial set. The whole
procedure are given below.

3) Steps to Combine mRMR with RFE:

1) To choose a subset of the most pertinent and non-
redundant features, use mRMR. As a result, the dataset’s
dimensionality is decreased but its most informative
properties are preserved.

Algorithm 2 Procedure of RFE.

1: Set ranking criteria w;, which determine the contribution
of classification accuracy, given by:

wi, = (pi; (+) = pi(=))/(0i(+) +0i(=)) 3

Where p1; = mean and o; = standard deviation of the ith
gene.

2: Train the classifier (Random Forest) with weights opti-
mized for cost function using all genes.

3: Compute ranking criteria for all genes.

4: Remove the r number of genes that have the lowest
ranking criterion.

5: Repeat steps 3 to 5.

TABLE I: Hyperparameter search space for RF and MLP
models.

Model Hyperparameters Search Space
Max_depth [10, 20, 40, 100, None]

RF N_estimators [100, 200, 300, 400]
Min_sample_leaf 1, 2, 3,4, 5]
Min_sample_split [1, 2, 4, 6, 8]

Node size in each layer [64, 32, 16, 8, 128, 256]
Activation function [relu, softmax, sigmoid, tanh]
MLP Optimizer [SGD, adam, RMSprop, Nadam]
Batch size [8, 16, 32, 64, 128]
Epoch [50, 100, 200, 300]

2) The Random Forest machine learning model is trained,
and the least significant features are recursively removed
based on the model’s performance (i.e., feature coeffi-
cients or significance scores).

3) The final feature set balances statistical relevance
(mRMR) and predictive performance (RFE).

D. ML and DL Model Developing

This study used RF and MLP architecture to detect between
healthy controls and AD. To find the optimal parameter. we
used grid search technique in search space for both models. In
table 1, [bold] value represent the optimal parameter in search
space.

The following random forest algorithm has been done for
our study:

Input: Dataset D, the number of trees N7, and the threshold
T of Gini impurity.
Output: A random forest for : = 1 to NT':

1) Draw a bootstrap sample D; of size n from the training
set D.

2) Construct a decision tree of the bootstrapped data re-
cursively from the root node. Repeatedly perform the
following steps until the Gini impurity is less than 7T

a) Randomly select a subset of /m features.
b) For j =1 to /m:
o Compute Gini impurity for feature ;.

c) As the split attribute and split value, select the
feature and value with the lowest Gini impurity.



d) Split the internal node into two child nodes accord-
ing to the split feature and value.

We implemented MLP model with three hidden layers,
batch size, and epoch with [32, 6, 8], 128, and 200 respectively
followed by dense layers. In this model, we set learning
rate 0.01 and also used dropout layer to prevent over fitting
problem. The MLP model is implemented with the API of
Google TensorFlow (version 1.4.1).

To evaluate of proposed model, five fold cross validation
technique is used where the process is repeated five time by
one subset for testing and rest of the sets for training for both
models.

III. RESULT AND DISCUSSION

To choose genes utilizing hybrid feature selection tech-
niques, such as merging Minimum Redundancy Maximum
Relevance (mRMR) and Recursive Feature Elimination (RFE),
and comparing the model performance of Multilayer Per-
ceptron (MLP) and Random Forest Classifier (RFC) for
Alzheimer’s disease (AD) prediction, the suggested method
was applied to gene expression datasets. The benchmark
dataset consists of 445 samples and 923 genes, where 256
belong to healthy controls and 189 to AD, as shown in Fig. 2.
A 70:30 split was made between the input dataset’s training
and testing sets. The average values of classification accuracy,
precision, and recall were measured after the experiment was
conducted ten times. To obtain the study’s final results, fivefold
cross-validation was employed.
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Fig. 2: Class Distribution: (Class 0 = Healthy controls, Class
1 = AD).

In table II and III, the details of the MLP model are
presented. The model has 3,466 total parameters, all of which
are trainable, meaning there are no frozen layers. The small
number of parameters indicates that this is a compact model
suitable for tasks requiring low computational resources.
Dropout layers follow each dense layer, which helps prevent
overfitting by regularizing the network. This improves the
model’s generalization on unseen data.

TABLE II: MLP Model architecture.

Layer (type) Output Shape No. of Param

Dense (None, 64) 704
Dropout (None, 64) 0
Dense (None, 32) 2080
Dropout (None, 32) 0
Dense (None, 16) 528
Dropout (None, 16) 0
Dense (None, 8) 136
Dropout (None, 8) 0
Dense (None, 2) 18

TABLE III: MLP Model Parameters.

Total Parameters 3,466
Trainable Params 3,466
Non-trainable Params 0

Table IV presents the optimal hyperparameters used for the
Random Forest model in this study. The model was configured
with 300 estimators (n_estimators) to enhance the robust-
ness and stability of predictions. The max_depth parameter
was set to None, allowing each tree to grow fully until all
leaves are pure or contain fewer than the minimum required
samples. The minimum number of samples required to split
anode (min_samples_split) is set to 2, while the mini-
mum samples required at a leaf node (min_samples_leaf)
is set to 1. For selecting features during the splits, the
max_features parameter was set to ' sqrt’, which opti-
mizes the trade-off between accuracy and computational cost.
The model employs bootstrapping (bootstrap=True) to
sample data with replacement and balances class weights
(class_weight=balanced) to handle class imbalances
effectively. These parameter settings ensure that the Random
Forest model achieves high performance while maintaining
fairness in predictions.

The significance of features ranked using hybrid (mRMR
& RFE) feature selection techniques is depicted in the bar
plot in Fig. 3. This investigation identifies the most important
characteristics influencing the model’s predictive performance.

TABLE IV: Optimal value of parameters for random forest.

Parameter Value
n estimators 300
max depth None
min samples split 2
min samples leaf 1
max features ’sqrt’
bootstrap True
class weight balanced




The hybrid gene selection approach highlighted SLC25A46 as
the most crucial trait, followed by several other significant at-
tributes. These findings can guide focused research or simplify
models, thereby increasing efficiency and interpretability.
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Fig. 3: Desired Selected Gene by Hybrid Method

The hybrid mRMR-RFE approach was used initially sep-
arately and later in tandem for gene selection in the clas-
sification of Alzheimer’s disease (AD). When compared to
separate approaches, the combined mRMR and RFE technique
performed better. The combined strategy with the RF classifier
produced the highest accuracy, precision, and recall values,
which are 0.95, 0.94, and 0.94, respectively, as shown in
Fig. 4. This approach outperformed the MLP model and the
individual gene selection techniques. Notably, compared to
RFE alone, the mRMR filter approach continuously increased
classification accuracy when used in conjunction with RFE.
These results demonstrate that the mRMR-RFE technique
is promising for identifying pertinent genes and effectively
removing redundant ones.
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Fig. 4: Model Performance Comparison Using Various Gene
Selection Methods.

Using the efficacy of hybrid (mRMR-RFE) and individual
gene selection techniques, we have demonstrated the optimal
performance of RF by following different numbers of genes
in Fig. 5. Our study used the Mutual Information Difference
(MID) scheme, which calculated the mRMR score for every
gene in the dataset while reducing gene redundancy. The top
10 genes were then chosen using the RFE approach by the
random forest classifier model. This approach achieved 95%
accuracy from the hybrid method using 10 effective genes.
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Fig. 5: Accuracy of Random Forest Model for Different

Number of Genes.

IV. CONCLUSION

The wuseful suggested feature selection method in
Alzheimer’s Disease (AD) has been examined with machine
and deep learning methods in this study. By altering each step
of the procedure, we demonstrated a number of comparative
experiments. The study’s high dimensionality and small
sample sizes, which impacted the models’ effectiveness,
were its drawbacks. This work used combinaton of minimum
redundancy maximum relevance (mRMR) and recursive
feature elimination (RFE) for gene selection due to the
restrictions of a small number of samples and high-
dimensional data. These techniques lower the dimensionality
of the data, which is crucial for processing gene expression
data.

Each model’s performance was assessed using a variety of
criteria, including recall, accuracy, and precision. In the gene
expression dataset for Alzheimer’s Disease, the hybrid feature
selection with the random forest classifier produced impressive
metric scores. In the future, we intend to use the vast amount
of samples combined with two or more multi-omics datasets
to create a generalizability of our model.
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