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Abstract—This paper proposes a grid-free positioning algo-
rithm for near-field (NF) communications based on machine
learning. Due to the NF effects of large-aperture array an-
tenna, beam training measurements are affected by the angle
and the distance of the user, which makes it possible to be
used for user positioning. Therefore, unlike conventional beam
management, the proposed algorithm is designed to learn the
relationship between beam training measurements and the user
position, enabling not only the establishment of communication
links but also the additional estimation of the user’s position.
Throughout simulations, we compare the proposed algorithm
with the traditional beam training algorithms. The simulation
results confirm that the proposed algorithm achieves higher user
positioning accuracy compared to beam training.

Index Terms—Beam training, near-field, positioning, machine
learning

I. INTRODUCTION

As the carrier frequency increases in next-generation com-
munication systems, ultra-massive MIMO (UM-MIMO) sys-
tems have been proposed as a solution to overcome severe path
loss [1]. Unlike traditional array antenna communication sys-
tems that primarily consider the far-field, UM-MIMO systems
can capture the spherical wave characteristics of signals in
the near-field (NF) [2]. This capability opens new possibilities
for position estimation, which is critical for location-aware
services [3]-[5].

Recent studies have focused on maintaining communica-
tion links in NF environments by leveraging beam focusing
techniques [6], [7]. These works have proposed beam code-
books [6] or discrete grids [7] tailored for NF communication.
While rough position estimation can be achieved by identify-
ing the beam with the highest received signal strength, the
accuracy is insufficient for practical location-based services.
Moreover, the correlation between codebook measurements
and user positions is highly complex [8]-[10], necessitating
innovative methods to reduce computational complexity.

In this paper, we propose a grid-free positioning algorithm
based on machine learning to effectively learn the intricate
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relationship between codebook measurements and user posi-
tions. The proposed algorithm employs a regression model
to achieve a closed-form solution for position estimation,
significantly reducing computational complexity through the
parallel processing capabilities of convolutional neural net-
works (CNNs [11]). Furthermore, we demonstrate that the
algorithm not only maintains communication links using beam
codebook measurements but also accurately estimates user
positions, making it suitable for location-aware services.

Notations : For a matrix A, its transpose, complex conju-
gate, and Hermitian transpose are respectively denoted as AT,
A*, and AM. The symbol ¢ represents the imaginary unit of
complex numbers, (2 = y/—1). The notation CN (i, %) de-
notes the circularly symmetric complex Gaussian distribution
of a random vector with mean vector p and covariance matrix
3. I denotes the identity matrix. The notation ® denotes the
Hadamard product. Re{-} and Im{-} return real and imaginary
parts of a complex values, respectively.

II. SYSTEM MODEL

We consider an uplink communication system, where a
single antenna mobile station (MS) is transmitting pilot signal
to a UM-MIMO base station (BS) with a line-of-sight (LoS)
path channel. The UM-MIMO BS employs uniform linear
array (ULA) antenna with N elements. For each training
episode, BS receives the pilot signal with a combiner code-
book W € CN*N3 introduced as a polar-domain transform
matrix [6] as

W = [wy, wa, ..., Wns], (D
where S is the number of distance rings.

The received signal zj corresponding to the k-th training
signal b (|bx| =1 for k =1,2,...,NS) is expressed as

2k = wihby + wiin, 2)

where h € CV*X! is the NF channel vector, and n ~
CN (Ole,U%INxN) is the additive white Gaussian noise
with standard deviation o,,. The channel vector h between
the user and the UM-MIMO BS is expressed as

h = a(p), 3)
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Fig. 1: Procedure of the proposed NF beam training and positioning algorithm.

where a(p) is the NF array response vector for the MS’s
position p in the Cartesian coordinate. The n-th element of
the NF array vector is expressed as [12]

A 2r
n = —t— - 5 4
an(p) P E— eXp< 1 llen pll) 4)

where A is a wavelength of a carrier frequency and p!, is the
position of the n-th element of UM-MIMO array antenna.

III. GRID-FREE POSITIONING ALGORITHM

At each beam training interval, the BS measures the received
signal z;.;. Traditional beam training selects the beam for
communication with the highest beamforming gain in the
codebook, and the position of MS is estimated as the focusing
point of the selected beam. However, since the focusing point
of combiner codebook is discrete, grid-mismatch exists for
position estimation. In particular, as the distance from the
BS increases, the grid size widens and the grid-mismatch
increases, which is not suitable for location-aware services.

To overcome grid-mismatch of the traditional beam training,
we propose an algorithm that leverages machine learning after
beam training to accurately estimate the MS’s position. The
NF beam training and positioning algorithm procedure follows
Fig. 1. After beam training, the BS prepossesses the received
signal into the real-valued tensor as

X = [Re{Z ®B*}; Im{Z @ B*}] ¢ RZN*5  (5)

where
21 ZN+1 ZNS—N—H_
7 — 22 ZN+2 ZNS—N+2 c (CNXS, ©)
ZN 22N ZNs |
b1 bnia bns—N1]
B_ by bni2 bns—Ni2 cCNxS. (7
by ban bns ]

TABLE I: Simulation parameters

Parameter Description Value
N Number of UM-MIMO antenna elements 128
- number of distance rings 4
- Learning rate 0.001
- Training interval 4
- Mini-batch size 32
- Number of training data 100,000

The real-valued tensor is then feed to the positioning network,
and the positioning network outputs the estimated position of
the user as

p = Net (&), ®)

where Net is a positioning network. The optimization goal of
positioning network is to find the optimal weights and biases
of the network, by minimizing the loss function £ which is a
mean squared error (MSE) between p and p as

L=|p-0pl3, 9)

where ||-||, denotes the {,-norm.

For training, the position of MS is generated within the area
following uniform random distribution. The actual position of
the MS is labeled as the output corresponding to each input
data pair. These data pairs are then used to train the positioning
network. After adequate training, the positioning network is
capable of estimating the position of the MS based on the
input tensor during practical application.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we first introduce the simulation settings and
then compare the performance of the proposed algorithm with
the NF beam training only positioning. The positioning root
mean squared error (RMSE) is compared for the area inside
the focusing points of the codebook.
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Fig. 2: RMSE of position estimation (Beam training).

A. Simulation Settings

The center of the UM-MIMO BS is located at the origin, and
the position of the MS is within the NF codebook area. The
carrier frequency is set as 13 GHz (upper-mid band [13]) and
the wavelength is 0.0231 m. The UM-MIMO BS is equipped
with uniform linear array (ULA) with NV = 128 elements. The
interval between each antenna element is set to half of the
wavelength. The simulation parameters are shown in Table I.
To evaluate the performance of the proposed algorithm, the
RMSE of position estimation was compared at evenly spaced
grid points in the polar domain, within the same range as
the region where the training data was generated. For the
performance analysis, signal-to-noise ratio (SNR) is set to 10
dB.

The positioning performance of conventional beam train-
ing is shown in Fig. 2. Traditional beam training estimates
the MS’s position as the closest focusing point of the NF
codebook. As a result, grid mismatch in the polar domain
is unavoidable. Consequently, at longer distances where the
spacing between codebook focusing locations is larger, the
positioning RMSE significantly increases.

The positioning performance of the proposed algorithm is
shown in Fig. 3. The proposed algorithm estimates the MS’s
position as the output of the positioning network which outputs
the position values in the continuous domain. Therefore, it can
be observed that grid mismatch does not occur, and low RMSE
is maintained across most of the area. There are areas with
high RMSE near the BS, which are areas that require further
performance improvement. The performance of this area is
expected to improve through optional use with existing beam
training-based positioning.
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Fig. 3: RMSE of position estimation (Machine learning-based beam
training and positioning).

V. CONCLUSION

This paper presents a grid-free positioning algorithm based
on machine learning for NF communications. Due to the
NF effects of large-aperture array antenna, user positioning
became possible by leveraging beam training measurements
which are affected by both angle and distance. Proposed
algorithm enables accurate user position estimation by learning
the relationship between beam training measurements and
the user position. Simulation results confirmed the ability
to estimate the user position in the continuous domain and
high positioning performance compared to beam training only
positioning especially when the MS is far from the BS. Future
research providing grid-free positioning for a wider range is
expected.
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