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Abstract—In this paper, we propose a deep learning (DL)-
based joint direction of arrival (DoA) estimation and automatic
modulation classification algorithm to identify overlapped signals.
The proposed algorithm utilizes independent component analysis
for signal separation to estimate two characteristics of each signal
within an overlapped signal. Each separate signal is processed by
MoDANet, a multi-task deep learning model for joint character-
istic estimation. The model estimates DoA and modulation type
and maps these characteristics to the appropriate signal. The
simulation results show that the proposed algorithm performs
classification and estimation accurately.

Index Terms—Automatic modulation classification, direction of
arrival estimation, overlapped signal, multi-task learning

I. INTRODUCTION

Direction of arrival (DoA) estimation and automatic mod-
ulation classification (AMC) are two important processes
for detecting and recovering the overlapped unknown signal.
DoA estimation utilizing data collected from an array of
antennas determines the location of the signal sources [1].
AMC identifies the modulation type and recovers the signal
without modulation-related information such as data rate and
bandwidth allocation [2]. Thus, there have been a lot of efforts
to estimate those two signal characteristics.

The conventional model-driven researches of DoA estima-
tion and AMC degrade performance under channel uncertain-
ties. [2]-[5]. In recent years, data-driven DL approaches have
been studied to achieve higher estimation performance [6],
[7]. The state-of-the-art DL-based approach, MoDANet [8],
employs multi-task learning (MTL) [9] to perform DoA esti-
mation and AMC simultaneously. MTL jointly learns multiple
related tasks to improve their performance through shared
knowledge across the tasks. MoDANet deals with single
signals and is incompatible with overlapped signals. However,
multiple unknown signals are received in practical wireless
environments, so a simultaneous characteristics estimation for
overlapped signals is required [10].

Independent component analysis (ICA) is considered one
of the methods to separate blind overlapped signals [11].
ICA separates the overlapped signals by maximizing the
statistical independence and non-Gaussianity of the individual
signals. The main methods to maximize the independence
are maximum-likelihood estimation [12], minimization of the
mutual information between estimated signals [11], and neural
network approach called infomax [13]. Through the above
research, ICA has proven successful in separating overlapped
signals.
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Fig. 1. Wireless signal reception and processing for joint DoA
estimation and AMC.

In this paper, we propose an MTL-based joint DoA estima-
tion and AMC algorithm for overlapped signals. The proposed
algorithm separates overlapped signals into individual signals
through independent component analysis (ICA), a widely
used method for performing blind signal separation without
prior information [11]. Then, MoDANet is applied to separate
signals to estimate DoA and modulation types simultaneously.
Through this progress, we can map the corresponding charac-
teristics of the individual signals within the overlapped signals.
The simulation results demonstrate that the proposed algorithm
achieves accurate classification and estimation.

II. SYSTEM MODEL

The system model of the proposed algorithm shown in Fig. 1
includes both the signal separation stage and the characteristics
classification stage at the receiving end. A uniform linear array
(ULA) of M antenna elements with inter-element spacing d
receives overlapped signals from G signal sources. Assuming
the first antenna element as a referent phase point, the received
signal vector from the far field x is expressed as

G
X:ZAg-sg+ne<CM“, (1)

g=1

where A, € CM*P is the steering matrix of the g-th signal
source, s, € CP*1 is the multi-path modulated signal vector
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Fig. 2. The proposed joint DoA estimation and AMC algorithm for overlapped signals.

of the g-th signal source, and n is the additive noise. Each
individual is statistically independent from all other signals
and follows a non-Gaussian distribution. Considering both the
line-of-sight (LOS) and non-line-of-sight (NLOS) components
of the individual signals, s, and A, are expressed as

T
Sg:[sgﬁ Sg,1 Sg,(P—l)] ) 2
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where P is the number of multi-path components and s, ; =
QyiSqy(t — 144) for i = 0,---,P — 1. Here, oy, is the
propagation attenuation coefficient, and 7, ; is the time delay.
[]T denotes the transpose. Each element of A, is deter-
mined by the angles of arrival 6, ;, where 6,0 denotes the
LOS component and the rest denote the NLOS components.
v = 2md/\ represents inter-element phase shift, where A
denotes the signal wavelength. The analog output signals from
the antenna array are sampled at T intervals for digitization.
The digital signal X € RY*M with N complex samples is
expressed as

T
Xi1(0)  Xy(T) ... Xa((N-1)T)
X2(0)  Xo(Ts) ... Xo((N—1)Ty)
X = . ) ) . N CO)
Xm(0) X (T5) Xu((N = 1)Ts)
IITI. JOINT AMC AND DOA ESTIMATION FOR OVERLAPPED
SIGNAL

A. Signal Separation

The proposed two-step algorithm depicted in Fig. 2 com-
prises signal separation and characteristic estimation. The
algorithm handles overlapped signals consisting of individual
signals with different modulation types and DoAs. We leverage
ICA to separate overlapped into sub-signals, assuming the
mutual statistical independence of non-Gaussian individual
signals. The ICA model is expressed as
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Fig. 3. MoDANet architecture [8].

Y = WXT e RV, (5)

where Y is the recovered source signal matrix without phase
shift information from the antennas and W € RE*M is the
estimated steering matrix. The ICA algorithm iteratively learns
and updates W' to ensure the statistical independence of sub-
signals within the overlapped signal, thereby estimating the
individual signals.

The recovered signal Z with phase shift information is
obtained by multiplying the transpose of each row of Y with
the corresponding row of W.

B. Signal Characteristics Estimation

MoDANet is an MTL-based deep neural network for si-
multaneous DoA estimation and modulation classification. As
depicted in Fig. 3, the MoDANet architecture comprises con-
volutional (conv)-block, residual (res)-block, and output block.
The conv-block utilizes a conv layer to extract signal features
from the input signal and emphasize meaningful features
through max pooling (pool) and ReLU layers. The res-block
consists of a backbone flow composed of two conv-blocks
and a skip-connection flow composed of one conv-block. By
adding skip-connection flow, the res-block reuses previously
extracted features to enhance feature learning performance and
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Fig. 4. AMC accuracy and DoA estimation RMSE of the
proposed algorithm.

prevent vanishing problem. The output blocks utilize fully
connected (fc) layers to map signal features with specific
classes and softmax layers to derive classification results. Each
of the two output blocks respectively determines the final
results for AMC and DoA estimation.

The goal of the proposed algorithm is to estimate and map
two characteristics of the separate signals simultaneously. To
achieve this objective, we employ MoDANet to process each
signal separated by ICA. ICA does not preserve the order
or scale of signals during separation, making it difficult to
identify the correspondence between separated and overlapped
signals. As a result, determining true labels for the test dataset
becomes a problem for performance evaluation.

To resolve the problem, we utilize the DoAs and modulation
types of overlapped signals as the true labels of the test
dataset. We utilize the trained MoDANet with individual
signals before overlapping. For evaluation, the model tests
the separate signals by ICA from overlapped signals. The
true labels for the separate signals are set to the DoAs and
modulation types of the overlapped signals.

IV. SIMULATION RESULTS AND DISCUSSIONS
A. Dataset Generation and Training Process

The training dataset [8] comprises 450, 120 signals, 12
different modulation types (including PSK, QPSK, 8PSK,
QFSK, 8FSK, 16APSK, 16QAM, 64QAM, 4PAM, LFM,
DSB-SC, and SSB-SC), and 61 DoAs (discrete angles in the
range [0,60]° with the step size of 1°). From this dataset, we
adopt a subset including all modulation types, 13 DoAs (in
the range [0,60]° with the step size of 5°), and 7 SNR levels
(the Gaussian noise in range [—10, 20] dB with step size of 5
dB) for the test. We leveraged the model trained in [8] with
the training dataset. By section II, the overlapped signal is
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Fig. 5. Confusion marix of AMC result when SNR is 20 dB.

generated from two individual signals in the test dataset. Each
individual signal has a different modulation type and DoA.

B. Simulation Results

The performance of proposed algorithm including DoA
estimation RMSE and AMC accuracy of the separate signals
across SNR levels is presented in Fig. 4. For performance eval-
uation, accuracy means the percentage of correct classification
and RMSE is defined as

RMSE = (6)

where J is the number of test signals, 9j is j-th predicted
DoA, and 6; is j-th true DoA.

As shown in Fig. 4, we analyze the RMSE of DoA es-
timation and AMC accuracy across SNRs. Simulation results
demonstrate that the signal separation by ICA is more effective
for modulation estimation of individual signals than DoA. At
SNR 20 dB, the RMSE of DoA estimation is approximately
16°, while the AMC accuracy reaches about 55%. This dis-
crepancy is attributed to the inadequacy of the steering vector
estimated through the ICA.

Furthermore, the analysis highlights that while ICA ef-
fectively separates mixed signals, its performance is highly
sensitive to noise levels, as reflected in the steep improvement
in AMC accuracy and reduction in DoA RMSE with increas-
ing SNR. The results underline the importance of developing
complementary preprocessing techniques or adaptive models
to enhance steering vector estimation accuracy, particularly in
low SNR environments, for improved DoA performance.



The confusion matrix in Fig. 5 depicts the AMC accuracy
of separate signals for all modulation labels at an SNR of 20
dB. Each cell represents the number of matches between true
and predicted labels, visually illustrating prediction accuracy
through colors. The diagonal elements of the matrix represent
the number of correctly classified samples for each modulation
type, indicating the model’s ability to distinguish between
modulation classes. For example, the classification results
show that 16APSK and DSB-SC achieved 98 and 85 correct
predictions, respectively, demonstrating the robustness of the
model for these modulation types. These results underscore the
strengths of the proposed algorithm in accurately classifying
certain modulation types while revealing areas where further
optimization is needed. In particular, reducing misclassifica-
tions among similar modulation types could be achieved by
incorporating more advanced feature extraction techniques or
by improving the discrimination capability of the classifier.

V. CONCLUSION

In this paper, we proposed a DL-based classification algo-
rithm for estimating modulation types and DoAs in overlapped
signals. The proposed utilizes ICA for overlapped signal sepa-
ration and applies a MoDANet-based DL algorithm to estimate
the two characteristics of each individual signal. Sentence to
be inserted for simulation results. Through the results, we con-
firmed that the integration of ICA and MoDANet enables the
estimation of multiple information parameters from overlapped
signals, suggesting its applicability in practical communica-
tion scenarios with multiple signal sources. Future research
will propose a DL architecture designed to outperform the
MoDANet-based algorithm in estimation performance while
achieving a balance between computational complexity.
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