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Abstract—A common challenge in point-cloud acquisition envi-
ronments, such as realizing traffic safety and autonomous driving,
is to determine the placement of sensors and workers and the
rewards to be paid to them. Game theory is available as an ex-
tremely powerful tool for the problem of determining appropriate
rewards for deployed sensors and workers and several previous
studies have proposed methods for determining rewards using
game theory. However, these methods do not consider the affection
of the recognition accuracy of downstream tasks by the AI to
develop these appropriate rewards. In this paper, we propose a
novel characteristic function of game theory by considering the
recognition accuracy of AI. To define our function, we investigate
how the number of viewpoints and the noise level of the point
cloud affect the classification accuracy. In addition, we analyze
which part of the point cloud the recognition model focuses on by
using SHAP, a method to improve the explainability of machine
learning based on the Shapley value.

Index Terms—Point cloud, Characteristic function, Shapley
value, SHAP, Zero-shot point cloud recognition model

I. Introduction
Cooperative point-cloud acquisition environments over a

wide area by multiple LiDAR and other sensors is an important
component of LiDAR-based intersection monitoring [1], [2]
, sensor fusion in autonomous driving [3], etc. A common
challenge in point cloud capture environments is determining
the placement of sensors and workers and the rewards to be
paid to them [4], [5].

When solving the problem of sensor and worker placement,
the accuracy of the point cloud data for downstream tasks,
such as object recognition, detection, and segmentation, plays
an important role [2]. Moreover, we need to pay attention that
point cloud acquired by sensors incur unavoidable noise during
the acquisition process. In the field of image recognition, an
image classification network obtained by learning is strongly
affected by noise present in the input image [6]. This research
sheds light on the relationship between noise in point cloud
capture and recognition accuracy, which has not been given
much attention so far.

Game theory is available as an extremely powerful tool for
the problem of determining appropriate rewards for deployed
sensors and workers. While previous studies have presented
utility functions (characteristic functions) for game theory by
considering the number of point clouds [5] or network band-
width [7], this paper proposes a characteristic function that is

determined by the recognition accuracy of downstream tasks by
the AI.

The major contributions of this paper are as follows
• We investigated how the number of viewpoints and the

noise level of the point cloud affect class classification
accuracy using a zero-shot point cloud recognition model
that can be applied to the recognition of various classes of
objects.

• We defined an appropriate characteristic function based on
the effect of sensors coalition on accuracy, and quantified
imputation to each sensor using Shapley value. This is use-
ful for setting appropriate rewards based on contributions
to sensor installers and cloud workers.

• To qualitatively investigate the effect of point cloud quality
and number of viewpoints on recognition accuracy, we
analyzed which part of the point cloud the recognition
model is focusing on using SHAP, a method for improving
the explainability of machine learning based on Shapley
value.

This paper is organized as follows. Section 2 describes related
work and preliminaries. Section 3 propose our model using
coalitional game theory including of our design of characteristic
function. Section 4 shows the the effect of point cloud quality
and number of viewpoints on recognition accuracy. Section 5
concludes our paper.

II. Related Work And Preliminaries

Cooperative Game Theory. Let𝑁 = {1, 2, ..., 𝑛} be the set of
𝑛 players and 𝑆 ⊆ 𝑁 be a coalition. The characteristic function
𝑣 : 2𝑁 → R is defined to represent the value of each coalition
𝑆. For the empty set ∅, we define 𝑣(∅) = 0. The characteristic
function 𝑣 is superadditive if,

𝑆 ∩ 𝑇 = ∅ ⇒ 𝑣(𝑆 ∪ 𝑇) ≥ 𝑣(𝑆) + 𝑣(𝑇) ∀𝑆, 𝑇 ⊆ 𝑁. (1)

The payoff vector 𝒙 = (𝑥1, 𝑥2, ..., 𝑥𝑛) is called an imputation
if it satisfies the following two properties: collective rationality
(
∑

𝑖∈𝑁 𝑥𝑖 = 𝑣(𝑁)) and individual rationality (𝑥𝑖 ≥ 𝑣({𝑖}) for all
𝑖 ∈ 𝑁).

Shapley value is a solution in cooperative game (𝑁, 𝑣) that
assigns a value to each player in a game and it defined by the



average marginal contribution of a player across all possible
coalitions [8]. The Shapley value of player 𝑖 is defined as follows:

𝜙(𝑣)𝑖 =
∑

𝑆⊆𝑁\{𝑖}

|𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |!

(
𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)

)
(2)

The Shapley value is imputation if the characteristic function 𝑣
satisfies the individual rationality.

Characteristic Function of Point Cloud Data. In order
to derive incentives for obtaining point clouds, we have used
cooperative game theory in our analysis [4], [5]. In this approach,
the characteristic function is expressed in terms of the number
of points that could be acquired refereed to [7]. In particular,
by setting the threshold at the number of point clouds that must
be satisfied as a system, point cloud overlapping by multiple
players is considered.

Hotoyama et al., [2] solve the bandwidth allocation scheme
for transmitting point cloud data at intersections using game
theory. However, the gain function in non-cooperative game
theory, which has similar meaning to the characteristic function,
only takes into account the number of points and distortion in
the frame.

The characteristic functions of these methods fail to take
into account object recognition, which is necessary when
considering services. In this paper, we propose a characteristic
function derived from the accuracy of class classification, one
of the high-level vision tasks.

High-level Vision Tasks for Point Clouds. Advances in deep
learning have enabled the development of various high-level
vision tasks for point clouds, including point cloud classifica-
tion [9], [10], object detection [11], [12], and segmentation [13],
[14].

In recent years, the zero-shot approach, which means that the
model can perform some tasks without task-specific training, has
been applied to point cloud classification and segmentation [15],
[16]. The advantage of the zero-shot approach is that it can
classify or segment objects with very diverse classes without
retraining the model. In particular, PointCLIP-V2 [16] achieved
state-of-the-art performance in zero-shot point cloud classifi-
cation by projecting point clouds into images from multiple
viewpoints and feeding these images into CLIP (Contrastive
Language-Image Pre-training) [17], which is a widely and
successfully used for various tasks such as object detection [18],
image editing [19], and image quality assessment [20], [21].

SHAP. Lundberg et al., proposed SHAP [22] (SHapley
Additive exPlanations) as a method to explain the output of
trained models. The definition of SHAP are based on Shapley
values in cooperative game theory and calculated based on
the average marginal contribution of each feature across all
possible coalitions of features. The gist of SHAP is assuming
feature additivity that the output of a model can be explained
by the sum of the contributions of each feature. SHAP are
widely used in various fields, including computer vision, natural
language processing, and healthcare, to interpret the output of
deep learning models.

In this paper, we use SHAP to interpret the classification
process of PointCLIP-V2 and investigate which part of the point

cloud (more specifically, which part of the projected image) the
model focuses on when classifying objects.

III. Method
We assume that multiple sensors, such as LiDAR, are placed

around the point cloud of an object. In this case, the point
cloud data acquired by each sensor represents one side of the
object. When using a rendering-based point cloud classification
model such as PointCLIP-V2, it is best to consider that the
information from a single sensor is a single image rendered
from the viewpoint of the sensor. By feeding these images into
the pre-trained CLIP, we can estimate which class the point
cloud belongs to. The Fig. 1 shows an overview of the three
experiments we performed in this paper. The details of each
experiment are described below.

Effect of Number of Viewpoints and Noise on Classifica-
tion Accuracy. To investigate the effect of multiple sensors
placement on the classification accuracy when noise occurs
in the point cloud acquisition process, we add i.i.d. Gaussian
noise N(0, 𝜎) to the coordinates of the all points in the original
(clean) point cloud data. When 𝑘 sensors observe one object’s
point cloud with noise of standard deviation 𝜎, integraging the
point cloud data from each sensor results in the noise standard
deviation of 𝜎/

√
𝑘 . On the other hand, when 𝑘 sensors observe

the object’s point cloud from different viewpoints, the noise
standard deviation is still 𝜎, but obtaining the images from
different viewpoints can improve the classification accuracy by
providing more information about the target object. Thus, there
is a trade-off between the number of viewpoints and the noise
level in terms of classification accuracy.

Note that in this study, we assume that the correspondence
between points in the point cloud data acquired by different
sensors with the same viewpoint is known, and that the points
obtained from different viewpoints do not overlap with each
othre, for simplicity.

Design of Characteristic Function. Measuring the contri-
bution of each sensor to the classification accuracy requires
designing a characteristic function 𝑣. The most straightforward
way to design the characteristic function is to define it equals to
classification accuracy. Since this naive characteristic function
is not always superadditive, there i (as shown in our experimental
results in the following section)s no guarantee that it satisfies
individual rationality. Which means that fair imputation does
not always exist.

To address this issue, we design our characteristic function
𝑣(𝑆) for a coalition 𝑆 as,

𝑣(𝑆) = 𝑎(𝑆) − 1
|𝑆 |

∑
𝑗∈𝑆

𝑎( 𝑗) (3)

where, 𝑎(𝑆) is the classification accuracy obtained by in-
tegrating the information from all sensors in coalition 𝑆.
This characteristic function was inspired by the characteristic
function of the cab game [23]. Note that in our characteristic
function, the utility of each sensor when participating in the
game individually is 0 (|𝑆 | = 1 → 𝑣(𝑆) = 0), and as long
as the payoff is non-negative, individual rationality is always
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Fig. 1: Overview of the three experiments performed in this paper.

guaranteed. We use Shapley value to set the appropriate reward
for each sensor based on this characteristic function. As we
mentioned earlier, our characteristic function does not satisfy
superadditivity, but the good properties of Shapley value are
retained even in such cases [24].

Using SHAP for Interpretation of Classification Process.
The model obtained by machine laerning is often a black box,
making it difficult to explain its output. Our main interest in
this paper is to investigate the effect of sensor placement on
point cloud classification under noisy conditions and to set the
appropriate reward for each sensor. However, it is difficult to
understand how the placement of sensors affects the accuracy
by discussing only the final clasiffication accuracy.

Therefore, we use SHAP, which is widely used to explain
the behavior of trained models, to interpret the point cloud
classification process. By focusing on characteristic cases of
classification results, we quantitatively investigate which part of
the image obtained by rendering the point cloud contributes to
the classification result, and from this contribution, we expect to
understand how the images seen from each sensor change under
noisy conditions and how they affect the classification accuracy.

IV. Experimental Results
A. Common Experimental Settings

Observation scenarios In all experiments, we conider the
three LiDAR sensors (𝑁 = {1, 2, 3}) observing point cloud
of an object. Each sensor is placed by selecting one from
multiple viewpoint candidates shown in Fig. 2. We consider

two scenarios: P3V3: each sensor observes the object from a
different viewpoint, and P3V1: all sensors observe the object
from the same viewpoint (viewpoint 1 in Fig. 2).

Evaluation We use the official implementation of PointCLIP-
V2 to investigate the effect of choosing multiple sensor view-
points on the accuracy of point cloud classification. In the
original PointCLIP-V2 model, there are 10 viewpoints for each
object. Thus, we choose 3 viewpoints (original viewpoint ID 0,
7 and 1) from them for our experiments as viewpoint 1, 2 and 3,
respectively (Fig. 2).

For the point cloud dataset, we use the ModelNet40 test
set, which contains 2,468 objects in 40 classes. We use the
classification accuracy (%) as the evaluation metric. Since
ModelNet40 includes 40 classes, the chance level accuracy is
2.5%.

B. Effect of Number of Viewpoints and Noise on Classification
Accuracy

The classification accuracy for each observation scenario and
noise level 𝜎 is shown in Fig. 3. The noise level 𝜎 is varied from
0 to 0.04 in steps of 0.01. The classification accuracy for each
observation scenario and noise level 𝜎 is shown in Fig. 3.

The results show that 1) the accuracy decreases as the noise
level increases, 2) P3V3 is more accurate than P3V1 when the
noise level is low, and the opposite is true when the noise level is
high. In this case, the accuracies of both scenarios are reversed
at about 𝜎 = 0.02.
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Fig. 2: Viewpoints and sensors’ position in our experimental setting for each observation scenario.

TABLE I: Classification accuracy 𝑎(𝑆) (%) for each combination of coalition 𝑆, observation scenario, and noise levels 𝜎 = 0.01
and 0.03.

𝜎 scenario classification accuracy 𝑎
{1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}

0.01 P3V3 40.32 37.72 41.73 49.23 50.28 45.18 52.47
P3V1 40.32 43.72 44.49

0.03 P3V3 17.30 22.08 21.35 24.35 25.73 19.65 25.49
P3V1 17.30 25.04 29.90
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Fig. 3: Classification accuracy for each number of viewpoints
and noise level 𝜎.

Based on these results, we focused on two noise levels,
𝜎 = 0.01 and 0.03. TABLE I shows the class classification
accuracy for each coalition in each scenario. The table shows that
1) classification accuracy generally improves with increasing
coalition size, but there is exception (i.e., monotonicity is
not satisfied), and 2) classification accuracy does not exhibit
superior additivity in Eq. (1), while all cases have inferior
additivity.

C. Imputation by Shapley Value
The Shapley values for each sensor, computed using our

proposed characteristic function, are shown in Table II. From

TABLE II: Shapley value for each sensor with different noise
levels (𝜎 = 0.01 and 0.03) and number of viewpoints.

𝜎 scenario 𝜙 (𝑣)1 𝜙 (𝑣)2 𝜙 (𝑣)3 𝑣({1, 2, 3})

0.01 P3V3 3.06 6.26 3.23 12.55
P3V1 1.39 1.39 1.39 4.17

0.03 P3V3 1.24 3.08 0.92 5.24
P3V1 4.20 4.20 4.20 12.60

this table, we can see that:
• Sensor 2 has the highest Shapley value of 𝜎 = 0.01 and

P3V3. In fact, sensor 2 is the least accurate on its own, but
when combined with other sensors, the accuracy improves
significantly. Thus, we can understand that the rewards from
the partnership are very large.

• For all noise levels, the reward received by each sensor
tends to be greater when the scenario with the highest
overall coalition utility is chosen. This is a good result in
the sense that it allows for the natural selection of scenarios
with overall benefits.

D. Interpretation of Classification Process of PointNet-v2 by
using SHAP

By using SHAP, we investigated how sensor 2, observing
from viewpoint2, contributes to the results in the P3V3 scenario
with 𝜎 = 0.01. Based on a point cloud of guitars selected
from ModelNet40, we investigated from what perspective each
sensor 1-3. Fig. 4 shows the viewpoints from which sensors 1
to 3 viewed the point cloud, which class was estimated to have
the highest probability, and where in the image the results were
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Fig. 4: SHAP values for the classification result for the guitar
point cloud from three viewpoints (𝜎 = 0.01 and P3V3
scenario).
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Fig. 5: SHAP values for the classification result for the airplane
point cloud from one viewpoint and different noise levels, high
(top:𝜎 = 0.03 when S={1}) and low (bottom:𝜎 = 0.03√

3
when

S={1, 2, 3}).

selected. The leftmost column shows the images visible from
each sensor, and the three columns to its right show the SHAP
values corresponding to the three classes. Areas colored red in
these images represent positive contributions to being in that
class. (Blue means the opposite). The red boxes in the images
represent the most probable classes.

The results show the following:
• Sensors 1 and 3 misclassify the image to a class other than

guitar. The angle of sensor 1 makes it clear from the image
that it looks like a TV-stand. Especially, we can see more
clearly from SHAP that such a judgment is made by looking
at the nape of the center portion of the image.

• Sensor 2 correctly identifies the object as a guitar. From
this angle, the characteristic shape and neck of the guitar
are visible, and the SHAP value is positive and large at the
boundary between the object and the background.

Then, an observation of the contribution of the resulting point
cloud to the noise reduction by increasing the number of sensors
in the P3V3 scenario with𝜎 = 0.03 is shown in Fig. 5. True class
object is Airplane. The obtained characteristics are as follows:

• The upper part of the image is the result when there is
only one sensor such as 𝑆 = {1}. This airplane model
is unnaturally raised due to the large noise level, and
the characteristic shapes such as wings and tail are also
somewhat ambiguous. PointCLIP is unable to correctly
classify the class from these factors and PointCLIP failed
to correctly classify the class and misclassified“ Piano”
as the most probable.

• On the other hand, the image in the lower row is the result
when overall coalition, and since the noise level is kept low
(𝜎 = 0.03√

3
), the characteristic shape of the aircraft is more

clear, and the SHAP value also indicates that the correct
decision is made on this basis.

Thus, when the noise level is high, the results show that more
sensors looking at the same viewpoint would be more effective.

V. Conclusion
We experimentally demonstrated that the sensor placement

that maximizes the classification accuracy by AI in a collabo-
rative point cloud acquisition environment varies depending on
the noise level of the acquisition. By considering this problem
as a cooperative game, we also proposed a new characteristic
function that focuses on the point cloud classification accuracy.
Calculating the Shapley value based on the proposed character-
istic function allows us to determine the appropriate reward for
sensors and workers. In the experimental results in this paper, it
was shown that selecting the coalition that maximizes the reward
for each sensor from multiple observation scenarios is equivalent
to selecting the scenario with the highest accuracy at the same
noise level. Moreover, by using SHAP, we visualize where
the point cloud classification method is based on in various
combinations of noise levels and viewpoints in the classification
process. This result can be used as a guide when considering
more complex observation scenarios.

Our future work includes exploring more appropriate charac-
teristic functions and applying our method to other high-level
vision tasks such as object detection and segmentation.
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