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Abstract—Automated fingermark identification, a critical as-
pect of forensic investigations, is often challenged by low-quality
and partial samples. To address some of these challenges, we
participated in the IJCB 2024 Latent in the Wild Fingerprint
Recognition Competition, where our solution achieved third
place. This paper presents several enhancements to our original
approach, including the integration of a Spatial Transformer
Network and a U-Net-based minutiae predictor. Combined with
a contrastive learning strategy, these improvements enable the
generation of highly representative feature vectors capable of
handling complex fingermarks. The revised solution demonstrates
a significant performance improvement, indicating that it would
surpass our original submission and achieve a higher placement
in the IJCB competition.

Index Terms—Ilatent fingerprints, fingermarks, forensics, bio-
metrics, identification, verification, minutiae

I. INTRODUCTION

Fingerprint identification is to this day one of the most
commonly used methods to identify suspects in forensic
investigations. The unique ridge patterns on our fingertips
carry significant informational value, making them highly ef-
fective for identification purposes. However, the identification
of fingermarks (latent fingerprints), which are often partial,
degraded, or distorted impressions, still presents significant
challenge to automated identification systems.

Traditionally, fingermark identification relied on manual and
semi-automated techniques, by leveraging expert knowledge
and heuristic algorithms to extract minutiae and other friction
ridge features. The emergence of deep learning enabled the
automation of feature extraction, however, critical questions
remain about how to best guide the learning procedure. Chal-
lenges include selecting optimal learning strategy, incorporat-
ing domain knowledge, and refining the optimization process
to effectively capture the unique characteristics of fingermarks.
Development of recognition systems also goes hand-in-hand
with work on utility-based quality assessment [1], [2].

This paper proposes an improvement of our existing ap-
proach, which achieved third place at the IICB 2024 Latent
in the Wild Fingerprint Recognition Competition [3]. Despite
securing third place, our approach was notably outperformed
by the other competitors, both of which were submissions from
commercial providers. We now introduce several improve-
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ments to the original design by including a Spatial Transformer
Network (STN) and incorporating an intermediate minutiae
predictor. The improved approach produces a much more
representative feature vector, which is able to capture the
properties of even the more complex fingermarks.

To address the challenges of fingermark identification, we
make the following contributions in this paper:

o Minutiae probability prediction: We train a U-Net
model to predict the probability of minutiae points in
the input image. This probabilistic encoding of minutiae
locations is particularly effective for fingermarks with
ambiguous or incomplete features.

« Rotation invariant feature vector: We address the chal-
lenge of rotated fingermarks. By incorporating a Spatial
Transformer Network (STN), the model is able to learn
rotation transformations, which results in more rotation-
invariant fingermark representations.

o Contrastive learning framework: We employ a con-
trastive learning approach using triplet loss to learn robust
representations and construct a latent space based on
unique fingerprint properties.

II. RELATED WORK

The field of friction has progressed significantly, with
techniques being developed for fingerprint and fingermark
recognition. Since there is a notable overlap between these two
areas, we rather categorize the existing work by distinguishing
between traditional and deep learning approaches.

Traditional Approaches. Notable methods in this area
include NIST’s NBIS [4], which offers several algorithms that
can be used to build an recognition pipeline. The methods in-
clude mindtct for detecting and extracting minutiae points,
and bozorth3, which is a minutiae-based matcher. The more
recent OpenAFQA framework [5] offers a collection of open-
source algorithms for fingerprint and fingermark processing.
Other known techniques focus on combining both local and
global minutiae information [6]. Some approaches also incor-
porate additional fingerprint features, such as singularities and
ridge maps, to improve representation [7], [8]. Additionally,
minutiae clustering methods have been investigated [9], [10].
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Fig. 1. Our proposed method for fingermark identification. The input image is first processed by a Spatial Transformer Network (STN) module, followed
by minutiae detection using U-Net. The transformed image and the minutiae probability map are then concatenated and fed into a ResNet-34 encoder, which

generates the final representation of the input image.

Deep Learning Approaches. Deep learning has automated
feature extraction in fingerprint recognition, but it is often
combined with domain knowledge to address challenges posed
by poor-quality fingerprints. To overcome the limitation of
CNN s lacking rotational invariance, alignment algorithms such
as spatial transformer networks (STN) [11] and orientation
field dictionaries [12] are employed. Patch embeddings are
frequently used to extract minutiae from input images [13],
[14], while virtual minutiae are introduced in some methods
to enhance robustness when dealing with low-quality finger-
marks [15], [16]. MSU Latent AFIS [17], [18] incorporates
three complementary minutiae detection methods and a fourth
texture-based technique, specifically designed to handle cases
with small images or insufficient minutiae.

III. PROPOSED METHOD

In this chapter, we outline the structure of our proposed
method, as illustrated in Fig. 1. The architecture consists
of three main modules: the Spatial Transformer Network
(STN), a ResNet-34 encoder, and a U-Net minutiae probability
predictor.

A. Contrastive learning using Siamese Neural Networks

Forensic laboratories often deal with large open-set datasets,
where the number of possible identities are not known in
advance. To account for this, we opted to train our model in
a Siamese Network configuration [19], [20]. During training,
two or more instances of the same architecture use shared
weights to predict features for multiple images. A specialized
loss functions is then used to update the shared weights based
on the similarity of output vectors.

Loss Function. To facilitate contrastive learning, we use
triplet loss as our loss function. In triplet loss, the model
receives triplets of images as input: one serving as the anchor,
the second as a positive example (similar to the anchor), and
the third as a negative example (dissimilar to the anchor). This
approach helps the model learn to better distinguish between
similar and dissimilar identities. Since we process a triplet of
images at once, we obtain three feature vectors. The distances
between these vectors are then calculated to compute the
loss, with the objective of maximizing the distance between
the negative example and the anchor, while minimizing the
distance between the positive example and the anchor.

Triplet selection. To effectively train the model, the selec-
tion of triplets is crucial, as we aim to construct challenging
triplets that contribute to more effective learning. Our approach
involved randomly selecting two distinct identities from the
dataset (the anchor and positive example belonging to the same
identity, while the negative example came from a different
identity). For the anchor and negative examples, we randomly
selected samples within each identity, regardless of whether
they represented fingermarks or fingerprints. However, for
positive examples, we excluded reference fingerprints from the
selection process to avoid creating “easy triplets”. If the anchor
and positive examples were chosen as different instances of
the same fingerprint, they would likely be more similar to each
other than to the negative example, resulting in an easy triplet
that could degrade the performance of the model.

B. Spatial Transformer Network

As CNNs are not spatially invariant to input data, we
address this limitation by introducing a Spatial Transformer
Network (STN) [21] to our existing approach. We incorporate



it as a trainable module into the network architecture, right
after the input. This allows the network to learn spatial
and rotational invariance dynamically, improving recognition
without prior training or supervision.

An STN comprises three main components: the localization
network, the grid generator, and the sampler. The process
begins with the localization network, which predicts trans-
formation parameters ¢ for an affine transformation using
regression. These parameters are specific to each input image
and guide the spatial transformation. The grid generator uses
f to compute a sampling grid that maps transformed image
coordinates to the original image space. Finally, the sampler
applies bilinear interpolation to produce the transformed out-
put image based on the original image and the sampling grid.

C. Predicting minutiae probability

We integrate domain knowledge as one of the additional
modules. A U-Net-based model is introduced to predict minu-
tiae locations from input images, generating a probability
matrix.

Minutiae Probability Map. For minutiae probability pre-
diction, we adopt the U-Net architecture [22], which is widely
used for semantic segmentation tasks. It consists of an encoder
and a decoder connected by a bridge, with skip connections
between corresponding layers.

The model is designed to output a probability value x €
[0,1] for each pixel, representing the likelihood of a minutia
at that location. To achieve this, we apply a sigmoid activation
function at the final layer. We trained the U-Net on fingermark
images, annotated manually by forensic examiners. Specifi-
cally, we used the minutiae annotations provided by NIST in
the SD 302 dataset. The weights of the U-Net are then frozen
during training of the SNN.

Minutiae detection. By default, the predicted minutiae
probability map is only used internally by the recognition
model, however, it can also be used to extract a corresponding
list of minutiae points. To identify the location of individual
minutiae, local maxima are detected within the probability
map. Additionally, the probability value associated with each
minutia point can be retrieved. This process is illustrated in
Fig. 2.

D. Prediction pipeline

The input image is first processed by an STN and then fed
through a U-Net, generating a probability map for minutiae
locations. This output is combined with the transformed image
to create a two-channel data matrix, which is then fed into the
final encoder. The result is a reduced representation of the
input image, a normalized feature vector of size 512.

Preprocessing. We preprocess the images before feeding
them to our model. Each image is first converted to grayscale,
then padded with white pixels to form a square image. The
images are then resized to 512 x 512 pixels for consistency.
This allows us to retain the proper aspect ratio without
introducing any spatial distortions. By resizing to the same
image dimensions, the model also learns the scale of input

Fig. 2. Intermediate minutiae prediction. By searching for local maxima, the
predicted minutiae probability map (middle) can be converted into a list of
minutiae points along with their probability values (right).

images, thus making making the method agnostic to image
resolution (pixels per inch, PPI).

Image encoder. For the main encoder, we use a Resnet-
34 [23] with pretrained weights. Since the model was origi-
nally trained on RGB images and our fingermark images are
grayscale, we modify the structure by averaging the weights
of the first convolution layer from 3 to 1. We also modify
the final fully connected layer, which typically outputs class
probabilities, to instead produce a feature vector. The output
feature vector is normalized in the end, which effectively puts
all output vectors on a hypersphere.

Matching. During inference, feature vectors are obtained
for the query fingermark image, which is then compared with
feature vectors of fingerprints in the reference dataset. The
feature vectors are compared using the Euclidean distance d,
and the matching score is then computed as 1 — %.

IV. EXPERIMENTS

In this chapter we first describe our experimental settings
and then presents the results of the evaluation using relevant
performance metrics.

A. Experimental setting

Datasets. The data utilized in this study consists of a several
datasets, including NIST SD 302 [24], NIST SD 27 [25] and
the LFIW dataset [26]. In total, we collected 4,640 distinct
identities, each represented by multiple samples.

Metrics. We evaluated our models using several metrics.
To evaluate the performance of the system in an identification
scenario, we report the Rank-25 identification rate. We assess
the performance of verification through the genuine-impostor
distribution, Equal Error Rate (EER) and the Area Under
the Curve (AUC). We also report the Failure To Enroll
Rate (FTER), which indicates the percentage of input images
rejected during inference due to missing features or other
system constraints.

Implementation details. The models were developed using
the PyTorch framework. For training, evaluation, and testing
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Fig. 3. Genuine and impostor distributions for our proposed method.

purposes, we utilized an NVIDIA GeForce RTX 3080 GPU
with CUDA 12.1. Models were trained with batch size of 4
and learning rate of 10~° with Adam optimizer.

B. Results

In this section, we present the results of conducted ex-
periments. The model achieved a Rank-25 identification rate
of 41%. In Fig. 3, we present the genuine and impostor
distributions for our data. It is visible that our model is
generally able to identify genuine pairs, but this comes at
a cost of many false positive attributions. This may be due
to the large number of poor quality fingermark images in the
dataset. Nevertheless, prediction confidence is much higher on
the lower end of the matching score range.

AUC | EER | FTER [%]

MSU-AFIS 0.57 0.48 7.7
MCC 0.75 0.32 36.7
VeriFinger_12.3 0.81 0.27 40.8
VeriFinger_13.1 0.85 0.23 6.2
LatentMinuComp_v0 0.79 0.29 22
Proposed_IJCB 0.55 0.48 0.0

Proposed (this paper) ‘ 0.82 ‘ 0.26 ‘ 0.0 ‘

TABLE I
COMPARISON OF METRICS AUC, EER AND FTER TO BASELINE
COMPETITION MODELS, TOP THREE CONTESTANTS AND OUR NEWLY
PROPOSED APPROACH (BOLD = BEST, UNDERLINED = SECOND BEST).

In Tab. I, we present the scores for performance metrics
AUC, EER and FTER, and compare our new approach to
the results of the IJCB competition. The first three rows are
baseline models, second three are the top three competitors
(with our contribution Proposed_IJCB) and the final row
(Proposed) represents our approach presented in this paper.

Our newly proposed method significantly outperformed the
version we submitted to the competition. It is important to note
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Fig. 4. Qualitative evaluation of our model. In the first row, there is a correctly
identified pair at Rank-1, while the second row shows a genuine pair with a
low matching score (Rank-20 or higher).

that the evaluation was made on a test set, which differs from
competition’s hidden test set, but is sampled from the same
data distribution. As such, the results on the hidden test set
may differ slightly. Nevertheless, we came close to matching
the performance of the competition’s winner as we made
notable improvements in performance metrics, increasing the
AUC by 0.27 and reducing the EER from 0.48 to 0.28. We
also remain the only team to achieve an FTER score of 0%.
Last, we present two pairs of images side by side for
qualitative evaluation of our proposed method in Fig. 4. The
first row shows a correctly identified pair at Rank-1, while the
second displays a genuine pair, which achieved a low matching
score and produced a match outside of the top 25. While both
fingermarks are partial impressions, the top fingermark retains
visible ridge structure despite the background clutter. On the
other hand, the bottom fingermark contains various ambiguous
features due to the thickness of individual ridges and general
blurriness of the image. This qualitative comparison empha-
sizes the role of fingerprint quality in the matching process.

V. CONCLUSION

This paper addresses the challenge of automated finger-
mark identification, integrating a Spatial Transformer Network
(STN), a U-Net-based minutiae predictor, and a contrastive
learning framework. Our method presents an improvement
over our previous approach and closes the gap with the propri-
etary state-of-the-art methods, resulting in better performance
across key metrics, including EER and AUC.

Despite the visible improvements, the final results indicate
that there is still considerable room for progress in this area.



Poor input image quality is likely the main factor behind most
misidentified genuine pairs, and one approach to address this
could be using a quality estimator to filter out low-quality
samples. Another option would be to exclude instances with
an insufficient number of detected minutiae during evaluation,
though at the cost of increasing the FTER. To address the
issue of undetected minutiae, alternative datasets containing
annotated minutiae could also be explored.
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