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Abstract—This paper shows how to predict mm-Wave enabled
V2I (Vehicle to Infrastructure) communication quality. These
days, automated driving is widespread. However, there are blind
spots that cannot be recognized by the sensors installed on
the vehicles. To circumvent this, infrastructure i.e. RSU (Road
Side Unit) which is equipped with camera, LiDAR, which is
a sensor that can emit laser beams and uses the information
from the reflected light to measure the distance to an object and
the shape of the object on the vehicles and antenna can send
information to the vehicles. This paper attempts to predict such
V2I communication quality merely based on images from the
RSU camera. We propose a comprehensive prediction method
that focuses on V2I scenarios and Numerical analyses were
conducted to predict changes in received power of mm-Wave
enabled V2I communication links in a complete simulation
environment.

Index Terms—V2I, Deep Learning, mm-Wave, Prediction

I. INTRODUCTION

Automated driving is becoming increasingly widespread,
paving the way for the realization of Cooperative Perspective
Systems (CPS). CPS also means Cyber Physical System. The
system uses the advanced computational capabilities of cyber
systems to compute physical systems with many uncertainties
and feed them back to the real world [1]. CPS enables vehi-
cles to communicate with other vehicles (V2V) and roadside
units (RSUs) (V2I), allowing them to perceive dynamic road
and intersection environments collaboratively. Through this
communication, vehicles can receive critical information about
pedestrians, bicycles, and other vehicles, even in blind spots,
by relying on data shared by other vehicles or RSUs. Our focus
is on V2I communication in large intersections. For smaller
intersections, the 5.9 GHz wavebands are expected to be suffi-
cient. However, large intersections often involve a high density
of vehicles, which can strain the available bandwidth. To ad-
dress this, we consider the use of mmWave bands due to their
wide bandwidth and high-capacity communication capabilities
[2]. While mmWave bands offer significant advantages over
5.9 GHz, they are more susceptible to blockage losses. To ef-
fectively apply mmWave communication in large intersections,
particularly for scenarios involving a large number of vehicles,
high-speed moving objects, and environments obstructed by
large vehicles, more advanced beamforming technologies will
be essential. These technologies will be critical for ensuring

reliable communication and overcoming the challenges posed
by such complex environments. Vehicle-to-everything system
together with AI can acquire the information from various
sources, can expand the driver’s perception, and can predict to
avoid potential accidents, thus enhancing the comfort, safety,
and efficiency [3].

In dynamic environments, V2I communication must remain
uninterrupted, as vehicles, pedestrians, and bicycles are con-
stantly in motion. To address this, we focus on predicting
V2I communication quality using cameras installed on RSUs.
There are also several previous researches on estimating
propagation loss without using images. To predict propagation
loss, machine learning is one of effective methods and various
information are used for input data. Reccurent Neural Network
(RNN) can analyze time series data of received power, and can
be applied for 2- 26GHz communications [4]. When not only
received power, but also environmental data such as distance
and whether LOS (Line Of Site) or not is used for machine
learning, prediction accuracy has improved [5]. Convolutional
Neural Networks (CNN) is also used for prediction because it
can recognize images. Images of building map and environ-
mental information for machine learning show some degree of
prediction accuracy [6]. However, this map images are taken
from sky, so it is difficult for applying to dynamic situation.

Previous research has explored mmWave blockage pre-
diction in small-scale areas [7]. This study utilizes stereo
camera images combined with CNN for prediction. However,
the experimental setup in this prior work assumes an open
environment, such as a large parking lot, devoid of obstacles.
In contrast, the practical application of this prediction tech-
nology is in urban intersections, where numerous buildings
create complex environments. As a result, propagation paths
involving reflections must also be considered to accurately
predict V2I communication quality in such scenarios.

Another prior study explores blockage prediction using
stereo vision through CARLA, an open-source urban driving
simulator [8]. In this research, driving simulator images are
utilized to predict signal obstruction. However, as CARLA
is not a dedicated communication simulation platform, it
cannot calculate specific received power values. Instead, it only
determines whether a signal is obstructed or not. In real-world
scenarios, the degree of obstruction depends on factors such as



the size and number of vehicles, making a binary distinction
between ”shielded” and ”non-shielded” insufficient for prac-
tical applications. The machine learning methods employed
in this study include 3D convolutional layers, LSTM layers,
and standard convolutional layers. Additionally, another study
focuses on real-time throughput measurement using depth
images in millimeter-wave communications [9]. This research
specifically addresses shielding caused by a person crossing
the signal path. The machine learning algorithm applied is
an extension of AROW (Adaptive Regularization of Weight
Vectors) tailored for regression tasks. While these approaches
offer insights, they are limited in scope and do not fully capture
the complexity of urban communication scenarios with diverse
and dynamic obstructions.

In this paper, in contrast to conventional method, mm-wave
blockage prediction is applied and evaluated in a virtual digital
twin. Specifically, we utilize Wireless InSite [10] for graphical
simulations of radio wave propagation using the ray-tracing
method. This method, based on geometric optics approxima-
tion, models the propagation paths of radio waves as if they
were light rays. Building on this, we propose a comprehensive
prediction method tailored for V2X communication, capable
of predicting received power within a fully simulated envi-
ronment. This approach provides detailed insights into signal
behavior, enabling more precise and reliable communication
performance evaluations.

II. SIMULATION ENVIRONMENT

A. Simulation Setup

A schematic diagram of the simulation environment is
shown in Fig. 1. Simulation parameter is shown in Table I.

Fig. 1: simulation environment

In our simulation setup, we assumed two RSUs: one posi-
tioned directly in front of the vehicle (1st RSU) and the other
diagonally in front (2nd RSU). Transmitters and receivers were
placed either 67 m or 57 m apart, facing each other. The
received power was measured as the vehicle moved at 0.5
m intervals. Assuming the vehicle entered the intersection at
a speed of 5 m/s (18 km/h), with 10 images captured per
second, the movement corresponded to 0.5 m increments per
frame. The images were taken such that the transmitter was

TABLE I: Simulation parameters

Parameter Transmitter Receiver
Frequency 60GHz 60GHz
Bandwidth 2.5GHz 2.5GHz
Power 20dBm
Noise Figure 3dB
Antenna Half-wave dipole Half-wave dipole
Height 2m 1.4m
Reflections 4
Transmissions 0
Diffractions 1

positioned at the bottom center of the frame and the receiver
at the middle center. For the simulation environment, large
intersections near Tokyo Station were imported from Plateau
[11], a website that provides open data on 3D urban models.
Camera angles from the perspectives of the 1st and 2nd RSUs
are illustrated in Figs. 2a and Figure 2b respectively.

(a) 1st camera angle. (b) 2nd camera angle.

Fig. 2: Camera angle.

The simulation includes four 3D vehicle models: car, jeep,
truck, and bus. Various scenarios were considered to evaluate
performance. First, each vehicle moves independently from
left to right. Second, a car and a jeep run either side-by-side
or in opposite lanes, simulating interactions between vehicles
of similar size. Finally, a bus and a car run either side-by-side
or in opposite lanes, representing interactions between vehicles
of different sizes. The experiments involving two vehicles
were repeated five times, each with varying vehicle spacing.
As a result, the simulation includes a total of 24 scenarios.
Each dataset consists of 37 images with corresponding labels,
resulting in a total of 888 data points.

B. Machine Learning

CNN (Convolutional Neural Network) is a kind of machine
learning methods and has been used widely in the field of
Image Recognition. It has two characteristic layers.

The first layer, known as the Convolutional Layer, operates
by applying small regions called filters to the image. These
filters slide across the image, processing one region at a time
and compressing each region into a single feature value. This
layer enables feature extraction based on regions of the image
rather than individual points, providing a more comprehensive
representation of spatial features.

The second layer, known as the Pooling Layer, uses a
technique called Max Pooling. In this process, a small region
(filter) is applied to the image, and the highest numerical value



within the region is selected as the feature value. This layer
also plays a crucial role in reducing the spatial resolution of the
feature map, simplifying the representation while preserving
important features.

Finally, the output from the previous layer is passed through
fully connected layers to generate the final predictions.

To create the machine learning dataset, input images are
resized to 300× 300 pixels, and the label data corresponds to
the received power at the receiver. The received power values
are normalized to facilitate efficient learning. For testing,
data from one scenario of each two-vehicle experiment is
excluded, resulting in four distinct scenarios used as test data.
Consequently, the dataset is divided into 148 test samples and
740 training samples. Machine learning models is constructed
based on previous studies [7].

Machine learning can be categorized into different types
based on how the data is processed during training. In batch
learning, the entire training dataset is processed at once. In
contrast, mini-batch learning divides the dataset into smaller,
pre-determined batches that are trained sequentially. Online
learning takes a different approach, training the model incre-
mentally by processing data one sample at a time and updating
the estimation results continuously. For dynamic environments
like intersections, online learning is particularly advantageous,
as it allows for real-time updates to the learning results,
adapting quickly to changing conditions.

TABLE II: Machine learning parameters

(a) PARAMETER

parameter value
training data 740
test data 148
epoch 100
batch size 1
optimizer SGD
learning rate 0.001
loss function MSE

(b) LAYER SEQUENCE

Layer
Convolutional 1
Max Pooling 1
Convolutional 2
Max Pooling 2
Flatten
Fully Connected
output

III. NUMERICAL ANALYSIS RESULTS

In this section, we present the results obtained under the
conditions described in the previous chapter. The next figures
illustrate these outcomes. First, we analyze the results from
the 1st RSU, focusing on the impact of communication atten-
uation caused by vehicles and examining the error between
simulated and predicted values. After that, we evaluate the
combined results from the 1st and 2nd RSUs, demonstrating
the effectiveness of using predictions to optimize the selection
of multiple RSUs.

A. Scenario of using a single RSU

The results of the car and jeep running side-by-side are
shown in Fig. 3. As illustrated in the image, there is a gap
between the two vehicles, allowing for a momentary Line
of Sight (LOS). The figure demonstrates that higher received
power can be predicted only when the receiver is positioned
between the two vehicles. Since the car and jeep are similar

in size, the propagation loss is believed to remain relatively
consistent.

The results of the car and jeep running in opposite lanes
are shown in Fig. 4. The original data indicate that received
power is particularly low when the two vehicles overlap.
However, since the vehicles are moving in opposite lanes, the
duration of low received power is shorter compared to when
they run side-by-side. Additionally, even during overlap, some
received power may be obtained through reflections, making it
challenging to accurately predict subtle increases or decreases
in received power.

The results of the bus and car running side-by-side are
shown in Fig. 5. As depicted in the image, the car is slightly
ahead of the bus. Naturally, the large body of the bus has a
greater shielding effect, resulting in lower received power later
in the scenario compared to the beginning. When only the car
is between the transmitter and receiver, the received power
prediction tends to be unstable. In contrast, the prediction
becomes more stable and accurate when the bus is in the
communication path. This stability is attributed to the bus’s
large body, which is easily recognized as an obstruction.
However, there is still room for improvement in the accuracy
of received power predictions.

The results of the bus and car running in opposite lanes
are shown in Fig. 6. Due to the large size of the bus, the
shielding effect of the car is minimal, even when the car
and bus pass directly in front of the receiver. The significant
fluctuations in the original data at the beginning may be
attributed to reflections, diffraction, or possibly a simulation
artifact. Nevertheless, the predictions effectively capture the
points where the received power begins to decrease and when
it returns to normal levels.

Fig. 3: Car and jeep running side-by-side (1st RSU).

Fig. 4: Car and jeep running in opposite lane (1st RSU).



Fig. 5: Bus and car running side-by-side (1st RSU).

Fig. 6: Bus and car running in opposite lane (1st RSU).

B. Scenarios of selection among different RSUs

This section presents the simulated and predicted values for
both RSUs simultaneously and the numerical results are shown
in Figs. 7- 14. To optimize communication, the RSU with the
higher received power should be utilized, as indicated by the
colored indicators above the figure i.e. orange for the 1st RSU
and yellow for the 2nd RSU. As shown in the figure, the 2nd
RSU generally has higher received power without blockage,
which is expected since it is closer to the receiver, as presented
in Section II-A. Notably, the RSU selection can be effectively
determined based on predicted received power. If RSUs are
chosen using the predicted values and the simulated values
align with the actual received power, whether large or small,
the system can be considered highly accurate and reliable.

For example, the results of the car and jeep running side-by-
side are shown in Fig. 8. By examining the predicted values for
the 1st RSU (orange) and the 2nd RSU (yellow) in the figure,
the color-coded bar above indicates which RSU is selected
based on the higher predicted value. In this case, the agreement
between the simulated and predicted received power values
confirms that the RSUs were accurately selected to optimize
communication efficiency.

It is important to understand the reasoning behind this RSU
selection. In this scenario, both vehicles are moving from left
to right, initially positioning the 2nd RSU and the receiver in
a Line of Sight (LOS) configuration. As the vehicles progress,
the diagonal left angle from the 2nd RSU becomes obstructed.
In this zone, the 1st RSU is utilized. When the vehicles
reach the center of the intersection and enter a blind spot
from the 1st RSU, the 2nd RSU is then selected to maintain
communication from the opposite direction. After position No.
26, there are no obstructions from either RSU, resulting in

an LOS environment. However, the 2nd RSU continues to be
selected due to its closer proximity to the receiver.

The results of the car and jeep running in opposite lanes
are shown in Fig. 10. The selection of RSUs during signal
obstruction follows the same approach as described in Fig. 8.
However, between positions No. 28 and No. 33 (highlighted
in red), the predicted values for the 1st RSU and 2nd RSU are
nearly identical, making it uncertain which RSU to select. As
observed in Fig. 10, when the predicted values of the 1st and
2nd RSUs are close, the difference in simulated values is only
around 3 dB. In such cases, it is more efficient to maintain the
current RSU selection rather than switching between RSUs,
as this minimizes unnecessary transitions while preserving
communication quality.

The results of the bus and car running side-by-side are
shown in Fig. 12. The red arrows highlight instances where the
predicted values, which guided RSU selection, deviated from
the actual simulation values. Specifically, between positions
No. 6 and No. 10, spanning approximately 2 meters, the 2nd
RSU was selected, even though the 1st RSU would have
provided higher received power. One potential cause for this
discrepancy is the limited accuracy of the predicted values. In
this scenario, a large bus crosses the street alongside a smaller
vehicle, and as indicated by the 1st RSU’s simulated values
(blue), the degree of shielding is influenced by the size of
the vehicles. The observed error may stem from a mismatch
between the simulated and predicted values―the simulated
values exhibit a stair-stepped pattern, while the predicted
values are smoother. This difference likely contributed to the
incorrect RSU selection in this range.

The results of the bus and car running in opposite lanes are
shown in Fig. 14. Unlike the scenarios in Figs. 8 and 10 ,
the large body of the bus immediately obstructs the 2nd RSU
from the start, leading to the consistent selection of the 1st
RSU. In contrast to Fig. 12, no errors were observed in this
scenario. This may be attributed to the relative simplicity of
the setup, where the bus and car pass each other in opposite
lanes, resulting in less complex shielding dynamics compared
to the scenario where the vehicles run side-by-side.

Fig. 7: Car and jeep running side-by-side (2nd RSU).

C. Discussion

As illustrated in Fig. 1, the distances between the receiver
and the 1st RSU and 2nd RSU are 67 m and 56 m, respectively.
Consequently, in a Line-of-Sight (LOS) environment, the 2nd
RSU, being closer to the receiver, typically achieves a higher



Fig. 8: Car and jeep running side-by-side (with RSU selection).

Fig. 9: Car and jeep running in opposite lane (2nd RSU).

Fig. 10: Car and jeep running in opposite lane (with RSU
selection).

Fig. 11: Bus and car running side-by-side (2nd RSU).

Fig. 12: Bus and car running side-by-side (with RSU selec-
tion).

Fig. 13: Bus and car running in opposite lane (2nd RSU).

received power. However, when the 2nd RSU is obstructed,
the 1st RSU, positioned directly in front of the receiver, often
maintains LOS connectivity. We believe that optimal V2X
communication can be achieved by leveraging these two RSUs
dynamically, ensuring consistent and reliable performance
regardless of shielding conditions.

Another factor contributing to the higher received power of
the 2nd RSU may be reflections from nearby buildings. When
the 1st RSU is positioned directly in front of the receiver,
there are no reflective walls at the intersection, resulting in
fewer reflection paths to the receiver. In contrast, the 2nd

Fig. 14: Bus and car running in opposite lane (with RSU
selection).



RSU, positioned diagonally to the left, benefits from additional
reflection paths due to the building located alongside the road
where the receiver is positioned. The reflection paths from
both the 1st and 2nd RSUs are illustrated in Figs. 15 and 16.
In the text, ”D” represents diffraction paths associated with
the 1st RSU, while ”R” indicates reflection paths associated
with the 2nd RSU.

Based on the discussion so far, we propose a system model
for RSU selection, as illustrated in Fig. 17. In this model,
cameras and antennas installed on the RSUs capture images
and measure the received power of vehicles at the intersection.
This data is then transmitted to a server for deep learning and
computational processing. Once the system predicts the future
received power, it dynamically controls and switches between
RSUs to optimize communication.

Fig. 15: Path from the 1st RSU.

Fig. 16: Path from the 2nd RSU.

Fig. 17: Our proposed RSU selection mechanism.

IV. CONCLUSION

This paper aims to predict V2I communication performance
in dynamic traffic environments using camera images. For
physical layer emulation, Wireless InSite was used to mimic

the propagational mechanisms and shielding effects of mm-
Wave V2I communications at large-scale intersection envi-
ronments. In our simulation environments, 3D city models
from Plateau was used, allowing vehicles to be positioned
flexibly, significantly expanding the scope of the simulations.
We modeled multiple vehicles and analyzed how received
power varied in scenarios where vehicles were running side-
by-side or passing each other. When the optimal RSU with
the highest predicted received power was selected based on
image-derived predictions, the error between the simulated
and predicted values was minimal. These results demonstrate
that the prediction-based RSU selection achieved sufficient
accuracy for effective communication management.

In the future, we aim to expand the number of scenarios and
perform simulations involving multiple RSUs. Enhancing the
quality of the training data will be a key priority. Specifically,
it will be important to identify the types of discrepancies
between the simulation and real-world environments and eval-
uate the extent to which these discrepancies influence machine
learning outcomes. Additionally, we plan to analyze how in-
creasing the number of RSUs impacts overall communication
quality and explore the potential improvements this approach
can provide.
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