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Abstract—The accurate detection of industrial defects is crit-
ical for ensuring product quality and minimizing operational
inefficiencies. However, deep learning models for defect detection
often require large, balanced datasets, which are challenging to
obtain in industrial settings due to the rarity and variability
of defects. In this study, we propose DefectDiffusion, a novel
generative diffusion model designed for robust data augmentation
in industrial defect detection tasks. By leveraging the progressive
noise reduction process inherent to diffusion models, DefectDif-
fusion synthesizes high-quality, diverse defect images that closely
mimic real-world conditions. Unlike traditional augmentation
techniques, our approach selectively augments defective regions
while preserving the structural integrity of defect-free areas, en-
suring realistic and meaningful data augmentation. Experimental
results demonstrate that integrating DefectDiffusion-generated
images significantly enhances the performance of state-of-the-art
defect detection models, improving both precision and recall.

Index Terms—Generative AI, Stable Diffusion, Few-Shot
Learning, Defect generation, Defect detection

I. INTRODUCTION

The rapid advancement of artificial intelligence (AI) in
recent years has driven transformative changes across various
sectors, with industrial applications benefiting significantly. AI
has not only improved the efficiency of existing workflows but
has also introduced novel opportunities in automation, quality
control, and predictive maintenance. Among the most widely
adopted AI approaches in industrial contexts is supervised
learning—a versatile framework that supports the develop-
ment of robust vision models to address complex industrial
challenges. Supervised learning has demonstrated exceptional
effectiveness in applications such as object detection [5], [11],
[24], where accurate identification of objects in images or
video streams is essential for tasks like quality inspection, sort-
ing, and assembly line optimization. Additionally, supervised
learning techniques have greatly advanced segmentation tasks
[15], [23], enabling the division of images into meaningful
regions, which is critical for defect detection, part recognition,
and spatial mapping.

The widespread adoption of these methodologies in indus-
trial settings is fueled by the growing availability of large-scale
annotated datasets, advancements in computational power, and
the development of sophisticated deep learning architectures.
Consequently, supervised learning models have been deployed
to enhance the precision, scalability, and efficiency of indus-
trial systems, representing a significant leap in automation

capabilities. However, these models are not without limita-
tions. They require extensive labeled datasets, are susceptible
to overfitting, and present challenges in achieving real-time
inference within dynamic industrial environments.

To address the challenge of limited data in machine learn-
ing and computer vision tasks, researchers have explored
a range of innovative strategies. For instance, DeVries and
Taylor (2017) proposed augmenting datasets by artificially
introducing defects or artifacts into pristine images. This
method aimed to replicate imperfections that are often rare
or difficult to capture in real-world scenarios. Similarly, Li
et al. (2021) introduced advanced techniques for generating
defective images, including cutting and pasting patches from
defect-free images to simulate synthetic defects or transferring
defect regions between images. However, while these methods
provided valuable insights, the generated images often lacked
realism and diversity, limiting their utility in training robust
models.

The advent of generative AI, particularly deep learning-
based generative models, has introduced transformative ad-
vancements in this domain. These models are capable of
producing highly realistic, diverse, and contextually accurate
images, thereby addressing the limitations of earlier meth-
ods. Recent progress in text-to-image generative models has
been especially noteworthy, showcasing the ability to generate
photorealistic images from textual descriptions. These models
excel in capturing intricate details and producing images with
varied features, perspectives, and attributes, thanks to large-
scale training on extensive datasets covering diverse visual
scenarios.

To further enhance image generation capabilities, re-
searchers have investigated techniques that incorporate key
features from reference images into diffusion models. This
approach aims to improve the precision and contextual rel-
evance of generated content, especially when working with
limited training data. Notable contributions in this area include
studies by Gal et al. (2022), Ruiz et al. (2023), Han et
al. (2023), Chen et al. (2023a), and Chen et al. (2023b).
For example, Chen et al. (2023a) introduced methods that
enable subject-specific control, ensuring that generated images
retain essential features of the reference while adapting to
diverse scenarios. These advancements highlight the potential
of generative models to overcome data limitations and produce
realistic, contextually accurate outputs for a wide range of



applications.
To further enhance image generation, researchers have

explored various techniques to integrate key elements from
reference images into diffusion models, thereby improving
content precision when working with a limited set of images
[1], [2], [4], [6], [21], [25], [26]. Chen et al. [1] pioneered
a complete parameter adaptation approach, which involves
modifying the entire diffusion model to better align with the
reference images. Han et al. [6] proposed a method that uses
SVG decomposition with a small set of trainable parameters to
prevent catastrophic forgetting in scenarios with few reference
images. This approach helps the model align more accurately
with reference images while reducing the risk of overfitting.
Additionally, Chen and colleagues [2] developed an image-
conditioned adapter that retains essential characteristics from
the reference images without requiring optimization of the
network parameters.

However, these approaches still require a substantial number
of images to effectively train the model for generating new
images [13], [19], [27], [29]. In industrial settings, for instance,
developing a large dataset of defect images is both challenging
and costly. To address this issue, some studies [3], [10],
[12], [16] have explored zero-shot and few-shot techniques
for defect generation, but these methods still fall short of
addressing the data insufficiency problem in real-world sce-
narios. Wang et al. (2020), Zhao, Cong, and Carin (2020), and
Robb et al. (2020) have investigated few-shot image generation
by leveraging pretrained models that can adapt from large
domains to smaller ones. However, these approaches primarily
focus on transferring entire images rather than emphasizing
critical defect regions. Addressing the unique distribution of
defects and defect-free areas individually could enhance defect
generation methods.

In line with this, our study introduces DefectDiffusion, a
novel few-shot defect image generation method that produces
new defect images using only a small number of existing de-
fect samples. DefectDiffusion operates in two primary stages:
training on defect-free images and generating defect images.

In the first stage, a Stable Diffusion model is trained to gen-
erate a diverse collection of high-quality, defect-free images.
This model serves as the backbone for generating intermediary
images that retain high visual fidelity and intricate detail. In
the second stage, defects are extracted from a limited set
of defect images using binary masks to isolate the defective
regions. These defects are then transformed—adjusting their
size, shape, and position—to introduce variability. Finally,
these transformed defects are seamlessly blended into the
defect-free images using an advanced blending technique,
resulting in realistic and visually coherent defect images.

This approach enhances defect analysis by expanding the
availability of diverse and realistic defect images with minimal
data. We evaluated DefectDiffusion on our Steel Surface
defect dataset, and the results highlighted its effectiveness.
The augmented dataset generated by DefectDiffusion achieved
an 11.9% improvement in Mean Average Precision (mAP)
for steel surface defect detection, demonstrating a significant

enhancement in detection performance enabled by our method-
ology.

To summarize, our contributions are as follows:
• We propose a novel model, DefectDiffusion, capable of

generating annotated defect images, which can be utilized
for robust data augmentation.

• We demonstrate the advantages of the proposed method
in industrial applications by conducting experiments on a
steel surface dataset. The results highlight the improved
performance in defect detection.

II. PRELIMINARY

A. Diffusion Models

Generative diffusion models (DDMs) [8], [9], [17], [18],
[22], [28] have emerged as powerful probabilistic frameworks
for synthesizing data by progressively reversing the effects
of Gaussian noise applied to an initial sample. These models
operate through two primary phases: a forward diffusion
process, where noise is incrementally added to an original data
sample x0, and a reverse diffusion process, which reconstructs
the data by iteratively denoising. The forward process follows
a Markov Chain of length T , transitioning the clean sample
into a near-isotropic Gaussian distribution as T increases. The
model is trained to invert this process and recover the original
data distribution.

Given a sample x0 from the data distribution q(x), the
forward diffusion process adds noise step-by-step, controlled
by a predefined variance schedule {βt ∈ (0, 1)}Tt=1. The
transition probability at each step is represented as:

q(xt | xt−1) = N (xt;
√
1− βtxt−1, βtI),

and the complete process is given by:

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1).

After sufficiently many steps, the distribution of xT converges
to a standard Gaussian.

In the reverse process, the model attempts to recover the
original data by sequentially removing the noise, following
the probability distribution:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt),

where the transition probabilities are parameterized as:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)).

For simplicity, the covariance Σθ(xt, t) is often modeled as a
diagonal matrix σ2

t I.
Rather than directly predicting the clean data, the model

typically learns to estimate the noise ϵt added during the
forward process. The original sample x0 is reconstructed by
subtracting the predicted noise from the noisy input at each
step. The training objective is defined as the minimization of



the residual error between the true noise and the predicted
noise:

Lt = Et,x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
,

where ᾱt represents a cumulative product of variance terms.
This objective ensures the model learns to denoise effectively
at each step, enabling robust sample generation.

B. Stable Diffusion

Latent Diffusion Models (LDMs) [20] are a popular variant
of diffusion models (DDMs) that perform operations in a
latent space rather than the pixel space, significantly reducing
training time and inference costs. In an LDM, an encoder
E(·) is used to compress an input image into a lower-
dimensional latent representation z, where the diffusion and
denoising processes take place. A decoder D(·) subsequently
reconstructs the image from this latent representation, yielding
x̃ = D(z).

One prominent example of an LDM is Stable Diffusion,
which utilizes cross-attention layers to incorporate various
conditioning inputs, such as text. The training process for
Stable Diffusion leverages two main regularization strategies:

• KL-regularization (KL-reg): Aligns the learned latent
representation with a standard normal distribution.

• VQ-regularization (VQ-reg): Integrates a vector quan-
tization layer within the decoder, similar to VQGAN but
with the quantization layer embedded in the decoder.

Stable Diffusion, trained on a large-scale dataset of natu-
ral images, has demonstrated remarkable performance across
diverse tasks. Its pre-trained weights are publicly available,
enabling its adoption as a foundational model for a wide array
of downstream applications.

III. METHOD

Given input defect free image xi ∈ RW×H×C , a few
number of defect images xd ∈ RW×H×C along with a binary
mask xm ∈ {0, 1}W×H where a value of 1 identifies the
defective regions. The main goal is to generate new defect
images ŷ ∈ RW×H×C . In this context, we refer to the input
xi as the defect free images, xd as the defective image, xg

is the intermediate generated image by Stable diffusion and
ŷ as the generated image. DefectDiffusion consists of two
key steps: (i) training Stable Diffusion on defect-free images,
and (ii) generating defect images. The overall process of
DefectDiffusion is illustrated in Figure 1 and can be defined
mathematically as below:

ŷ = (xm · xd) + (xg · (1− xm)) (1)

A. Training on Defect-free Images

In the initial phase of our methodology, we focus on training
a Stable Diffusion model as the foundational backbone for
DefectDiffusion. The primary goal in this stage is to harness
the exceptional generative capabilities of Stable Diffusion to
create a diverse array of high-quality defect-free images. These

images will later serve as critical inputs for the subsequent
tasks of defect generation and inpainting. Stable Diffusion has
established itself as a state-of-the-art framework for producing
photorealistic images with remarkable detail and consistency
across a wide range of applications. By embedding this
powerful model into DefectDiffusion, we aim to ensure that
the generated outputs not only achieve superior fidelity but
also replicate the nuanced textures and structural coherence
necessary for real-world scenarios.

Given a clean, defect-free input image xi ∈ RW×H×C ,
the Stable Diffusion model processes this input to synthe-
size a corresponding output image xg ∈ RW×H×C . This
output xg represents a pivotal intermediate result within the
DefectDiffusion pipeline, laying the groundwork for precise
defect modeling and robust image augmentation in subsequent
phases.

B. Generation of Defects

In the defect generation training phase, we utilize a diffusion
model to synthesize realistic defect patterns while preserving
the quality of the background. This process involves several
key steps designed to iteratively train the model using anno-
tated data, ensuring precise defect generation and maintaining
a realistic background. The methodology can be broken down
as follows:

1) Forward Diffusion Step: Initially, noise is systematically
added to the entire image, following the principles of the
forward diffusion process in a diffusion model. This step
is critical for introducing stochastic variations in the image,
which forms the basis for learning to reconstruct and generate
specific patterns in subsequent steps.

2) Annotation-Based Mask Creation: From the correspond-
ing annotations, binary masks are generated. These masks
distinguish the foreground (defect region) from the back-
ground. To introduce variation and increase robustness, several
augmented masks are created from the original binary mask:

• Foreground Preservation: The mask ensures that the
defect region remains intact.

• Size Variability: The masks are resized to create slightly
larger or smaller versions of the defect region, simulating
natural variations in defect size.

3) Foreground Isolation with Noise: A mask is randomly
selected from the pool of generated masks. This mask is
then multiplied with the noisy image, isolating the foreground
region (defect area) by setting the background pixels to zero.
This ensures that only the defect region, with its corresponding
noise, is visible to the model.

4) Model Training with Foreground Focus: The resulting
image, containing only the noisy foreground region, is fed
into the diffusion model. The model learns to reconstruct
and generate the specific defect patterns within the masked
foreground area. This step is crucial for ensuring the model’s
ability to focus on defect regions during the training process.

5) Background Preservation Using Inverse Mask: To main-
tain the integrity of the background, the generated image is
multiplied with the inverse of the mask. This operation ensures



Fig. 1. Overview of the proposed DefectDiffusion

that the background remains unaffected and precisely matches
the original image, preventing any loss of detail or introduction
of artifacts.

6) Integration of Foreground and Background: Finally, the
defect region generated by the model is integrated with the
preserved background to form the complete image. This com-
posite image is then used for further training and evaluation,
ensuring that both the defect and the background are accurately
represented.

This approach ensures that the diffusion model learns to
generate defects with high precision while maintaining the
original quality of the background. The use of augmented
masks and the integration of inverse masks enhance the
robustness of the model, allowing it to generalize well to
diverse scenarios. By carefully balancing defect generation
and background preservation, this methodology provides a
reliable framework for defect simulation and analysis, which
is particularly valuable in scenarios where annotated datasets
are limited.

IV. EXPERIMENT

To verify the effectiveness of DefectDiffusion, we conduct
experiment on our Steel Surface dataset to extend the dataset
and tested it for defect detection task.

A. Dataset

We conducted our experiments using a custom Steel Surface
dataset containing 400 samples of pristine, defect-free steel im-
ages. The dataset also includes two types of defects: wrinkles
and nozzles, with 20 samples representing wrinkles and 25
samples showcasing nozzle defects. All images were captured
using a high-resolution imaging setup to ensure clarity and
detail.

To prepare the dataset, defects were manually annotated,
and corresponding binary masks were generated to facilitate
precise defect localization. Both the images and masks were
resized to dimensions of 600x600 pixels to standardize input
dimensions. Initially, the Stable Diffusion model was trained

exclusively on the defect-free samples to establish a founda-
tional model capable of replicating the unique attributes of
defect-free steel surfaces. Following this baseline training, we
synthesized 3,000 defect-containing images, comprising 1,500
samples for each defect type. These synthetic images were
partitioned into training (80%), testing (10%), and validation
(10%) subsets. A summary of the dataset’s composition, in-
cluding its usage across the experimental pipeline, is presented
in Table I.

B. Implementation Details

Our network implementation and experiments were con-
ducted using Python 3.8.10 and PyTorch 1.13.1 on a
high-performance computing setup comprising four NVIDIA
GeForce RTX 3090 GPUs, each with 24GB of dedicated mem-
ory. For optimization, we employed the AdamW optimizer
[14] with a learning rate of 1× 10−5, maintaining the default
beta values of 0.9 and 0.999. The input image resolution was
standardized to 255 × 255, and the training batch size was
set to 16 by default to ensure effective utilization of system
resources and stable model convergence.

TABLE I
OVERVIEW OF THE STEEL SURFACE DATASET USED IN THIS EXPERIMENT

Defect category Train Test Validation
Wrinkles 1,200 150 150
Nozzles 1,200 150 150

C. Result Analysis

The primary goal of this study is to produce high-quality
synthetic images tailored for industrial applications. Consid-
ering the high cost and effort associated with manual data
annotation, it is essential that the generated images include
precise annotations of defect locations. As demonstrated in
Figures ?? and 2, our approach effectively generates realistic
and visually convincing images. The visual characteristics
of the generated images align closely with the geometries



Fig. 2. Examples of real defect images and synthetic images generated by DefectDiffusion for defects in a steel surface dataset.

provided in the input guides. Moreover, the defects visible
in these synthetic images accurately correspond to the defect
patterns indicated in the accompanying masks.

TABLE II
AVERAGE RESULTS FOR DEFECT DETECTION ON STEEL SURFACES,

SPECIFICALLY FOR WRINKLE AND NOZZLE DEFECTS.

Used data mAP Precision Recall
Real only 68.54 78.12 82.71

Synthetic only 92.32 90.25 95.7
Real + Synthetic 85.45 83.89 82.35

To assess the authenticity of the generated data, we employ
the Frechet Inception Distance (FID) [7], which compares the
distribution of synthetic images to the Steel surface dataset.
This evaluation yields an FID score of 99.57, indicating the
realism of the generated images. Further, we explore the
practical applicability of these annotated synthetic images
in industrial settings by leveraging a well-established object
detection model, YoLo-NAS. The model was trained under
four distinct scenarios: i) training exclusively on real data;
ii) training on real data with basic augmentation techniques;
iii) training solely on synthetic data; and iv) pre-training on
synthetic data followed by fine-tuning on real data.

The evaluation on a separate test dataset reveals that incor-
porating synthetic data into the training pipeline consistently
enhances defect detection across all metrics. The quantitative
results, presented in Table II, demonstrate that combining
real and synthetic data leads to a significant improvement
in detection performance compared to using either real or

synthetic data alone. Notably, the mean average precision
(mAP) increased by approximately 10% when both real and
synthetic data were utilized for training, underscoring the value
of synthetic images in boosting model performance.

The qualitative results are illustrated in Figures 2. Figure
2 presents a comparison between real and synthetic images
for the wrinkle defect category. In this figure, the top row
displays real images, while the bottom row shows synthetic
images generated for wrinkles. Upon comparison, it is evident
that the synthetic images closely resemble the real ones.
Although there are some discrepancies, such as deeper black
regions in the background of the synthetic images, the wrinkles
themselves are quite similar in appearance to those in the
real images. The generated wrinkles vary in size and shape,
reflecting a diverse range of defect characteristics that are
present in the real dataset.

V. CONCLUSION

In this paper, we have presented DefectDiffusion, an in-
novative technique aimed at augmenting steel surface defect
datasets to enhance the performance of defect analysis. Our
method utilizes an image-to-image diffusion model, specifi-
cally Stable Diffusion, to generate highly realistic defect-free
images. These images form the basis for a blending technique
that seamlessly incorporates defects, resulting in an enriched
dataset of defect images. The application of DefectDiffusion to
our steel surface dataset has yielded a substantial improvement
in performance, with defect analysis accuracy increasing by
approximately 20%.



Future work will focus on expanding the scope of Defect-
Diffusion by applying it to diverse datasets and evaluating its
effectiveness across multiple domains, thereby broadening its
applicability and impact.
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