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Abstract—The ability to accurately predict future road condi-
tions is essential for the advancement of autonomous driving
systems. This study introduces a BiLSTM-based VAE-GAN
framework that leverages both temporal and spatial information
to generate high-quality future road images. The proposed
architecture combines the reconstruction capabilities of Varia-
tional Auto-Encoders (VAEs) with the adversarial training of
Generative Adversarial Networks (GANs), while incorporating
Bidirectional Long Short-Term Memory (BiLSTM) to effectively
capture temporal dependencies in sequential driving data. To
train the model, diverse datasets were collected from the CARLA
simulation environment, encompassing various road conditions
and vehicle states. The training process minimizes reconstruction
loss, KL divergence, and adversarial loss, enabling the generation
of visually consistent and semantically accurate future road
images. Quantitative evaluations using PSNR and MSE metrics
demonstrate the model’s ability to outperform conventional VAE-
based approaches, achieving high structural similarity and low
reconstruction errors. The results highlight the potential of
the proposed framework to enhance decision-making and lane-
keeping performance in autonomous vehicles. By predicting
future road states with high fidelity, the BiLSTM-based VAE-
GAN framework lays the groundwork for integrating generative
models into real-world autonomous driving applications, con-
tributing to safer and more reliable driving systems.

Index Terms—Deep learning, Autonomous driving, Generative
adversarial networks

I. INTRODUCTION

The ability to anticipate and predict future road conditions
is a crucial component in the development of autonomous
driving systems. Generating accurate and high-quality future
road images based on current environmental observations and
vehicle control parameters is essential for reliable decision-
making, lane-keeping, and collision avoidance [1]. Variational
Auto-Encoders (VAEs) have been widely employed for such
generative tasks due to their capability to encode complex
data distributions into a meaningful latent space [2]. However,
conventional VAE-based models often struggle to capture the
temporal dependencies inherent in sequential driving scenar-
ios, leading to a lack of detail and consistency in generated
images.

To address these limitations, this study introduces a Bidirec-
tional Long Short-Term Memory (BiLSTM)-based VAE-GAN
framework that combines the reconstruction capabilities of
Variational Auto-Encoders (VAEs) with the adversarial train-
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ing approach of Generative Adversarial Networks (GANs).
The incorporation of BiLSTM into the VAE-GAN structure
allows the model to effectively capture temporal dependen-
cies and spatial patterns in sequential road data. Inspired by
previous works leveraging VAE-GANs for image generation
tasks [3] and extending LSTM-based generative models [4],
this study builds upon these advancements to address the
unique challenges of sequential data in autonomous driving
scenarios. BiLSTMs are particularly suited for this task as they
process information in both forward and backward directions,
enabling a more comprehensive understanding of temporal
context compared to unidirectional LSTM networks [5]. This
bidirectional approach ensures that the model learns not only
future dependencies but also the influence of past events on
current and future road conditions.

Using a simulation environment provided by CARLA [6],
we generated diverse datasets under various road conditions
and vehicle states. These datasets encompass a wide range of
scenarios, including different steering angles, vehicle speeds,
and road geometries, which are essential for training a robust
model. By integrating temporal and spatial information into the
latent space, the proposed BiLSTM-based VAE-GAN effec-
tively predicts future road trajectories with enhanced structural
and semantic fidelity.

The proposed BiLSTM-based VAE-GAN model addresses
the quality and consistency issues of traditional VAE-generated
images while providing a robust tool for predicting steering an-
gles and improving lane-keeping performance in autonomous
vehicles. This research not only highlights the advantages
of incorporating BiLSTM for sequential data modeling but
also lays the groundwork for integrating advanced generative
models into practical autonomous driving applications.

II. METHODOLOGY

In this section, we describe the setup of the CARLA sim-
ulation environment for experiments, the network structure of
the BiILSTM-based VAE-GAN model, and its training process.
The CARLA environment is used to acquire realistic data, and
the BILSTM-based VAE-GAN structure is employed to train
the model to generate future road images that can be utilized
in autonomous driving systems.
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Fig. 1. The BiLSTM-based VAE-GAN generator is designed to take road
images and vehicle control values as inputs and generate future road images.
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Fig. 2. The architecture of the proposed BiLSTM-based VAE-GAN model.
The encoder compresses the input image O; into a latent space, while the
decoder generates a future road image fake Oy, . The discriminator evaluates
the quality of the generated image by comparing it to the real future image
real O¢n,. The overall training optimizes reconstruction loss (R Loss), KL
divergence (K L Loss), and discriminator loss to improve the realism of the
generated images.

A. Network Architecture

The entire network comprises a generator, consisting of an
encoder and decoder based on the VAE architecture, and a
discriminator for distinguishing between real and generated
images. The generator architecture, as depicted in Fig. 1,
includes an encoder that compresses the input into a latent
representation and a decoder that reconstructs the future road
image from the latent space. The discriminator, shown in
Fig. 2, is trained to differentiate between real images and those
generated by the model, thereby improving the quality and
realism of the generated outputs.

o Encoder: Compresses input data, including images (128
x 128), steering angle, velocity, and time, into a latent
space. A BiLSTM is employed to effectively learn spa-
tiotemporal features.

o Decoder: Performs an inverse transformation from the
latent space to generate future road images. ConvTrans-
pose2D layers are utilized to reconstruct high-resolution

images.

o Discriminator: As part of the GAN structure, it distin-
guishes between generated and real images, improving
the quality of generated images by aligning their distri-
butions.

B. Training Configuration

The training process aimed to simultaneously minimize
the losses of the VAE and GAN. The total loss function of
the BiLSTM-based VAE-GAN model is a weighted sum of
three components: reconstruction loss (Ryp.s), KL divergence
(K Ly oss), and discriminator loss (Dpess). These components
are combined as:

L= aRLoss + /BKLLOSS + ,‘YDLOSS (1)

where a, 3, and ~ are weighting factors for each component.

For this study, the weighting factors were set as:

e av=H xW x100, where H = W = 128, corresponding

to the image resolution.

e 3 =1, ensuring stable latent space regularization.

e 7 = 100, emphasizing the importance of adversarial

training for improving image quality.

The models were trained for 500 epochs with a batch size
of 6, and the Adam optimizer was used with a learning rate of
5 x 1075, These configurations ensured a fair and controlled
setup for comparing the proposed BiLSTM-based VAE-GAN
with the conventional VAE model.

1) Reconstruction Loss (Rp,s): This loss minimizes the
difference between the input and the reconstructed data, ensur-
ing the generated future road images are accurate and realistic.
The reconstruction loss is computed as:

N
1 i i
Rios = ~ ; ||real Ot(+)n — fake O)E+)n||2 2)
2) KL Divergence (K Lp,s): This term regularizes the
latent space by minimizing the divergence between the latent
variable distribution and a standard Gaussian distribution:
d

1
KLiows = —5 Y (1 +1logof — i = o7) 3)
j=1

where 11; and o; are the mean and standard deviation of the
latent variables, respectively.

3) Discriminator Loss (Dp,): As part of the GAN struc-
ture, this loss improves the quality of the generated images by
distinguishing between real and fake images:

Dyoss = —Ellog D(real Oyyp,)] — Ellog(1 — D(fake Oyy,))]
“)

where D(-) denotes the discriminator’s output.

C. Experiment Setup

Data was collected using the CARLA simulator in various
road environments for training purposes. The dataset consists
of the current road image, steering angle, speed, time, and
future road image captured during driving. A total of 31K
data samples were used for training.



TABLE I
COMPARISON OF PSNR AND MSE PERFORMANCE BETWEEN VAE AND
BILSTM-BASED VAE-GAN

Model PSNR MSE
VAE 32.96 | 0.00060
BiLSTM-based VAE-GAN | 33.71 | 0.00049

III. EXPERIMENTAL RESULTS

This section presents the evaluation of the proposed
BiLSTM-based VAE-GAN model through quantitative metrics
and a comparative analysis with a conventional VAE model.
By analyzing the generated future road images, we assess the
effectiveness of the model in terms of reconstruction accuracy
and pixel-wise similarity.

A. Evaluation Metrics

To evaluate the performance of the proposed BiLSTM-based
VAE-GAN model, we compared the generated future road
images with their corresponding ground truth images using
Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error
(MSE) as evaluation metrics. These metrics were chosen to
quantitatively assess both the perceptual similarity and pixel-
wise accuracy between the generated and original images.

B. Quantitative Evaluation

The PSNR scores and MSE values, as summarized in Ta-
ble I, demonstrate the effectiveness of the proposed BiLSTM-
based VAE-GAN model. The VAE-GAN achieved an average
PSNR of 33.71 and an MSE of 0.00049, outperforming the
conventional VAE model, which achieved a PSNR of 32.96
and an MSE of 0.00060. These results highlight the ability
of the VAE-GAN to generate future road images with higher
fidelity and reduced pixel-wise reconstruction error compared
to the VAE.

The improvement in PSNR indicates that the VAE-GAN ef-
fectively reduces noise and distortion in the generated images,
resulting in a closer resemblance to the ground truth images.
The lower MSE further confirms the model’s capability to
preserve fine-grained details and structural consistency in the
predicted images.

The experimental results validate that the proposed
BiLSTM-based VAE-GAN model outperforms the traditional
VAE-based approach in both PSNR and MSE metrics. The
incorporation of adversarial training using a discriminator
enhances the quality of the generated images, making the
VAE-GAN a robust solution for autonomous driving tasks.
These findings suggest that the proposed model is well-suited
for future road image prediction, providing critical input for
reliable decision-making in autonomous systems.

IV. CONCLUSION

In this study, we proposed a BiLSTM-based VAE-GAN
framework for generating high-quality future road images
based on current road conditions and vehicle control inputs. By

incorporating adversarial training, the proposed model effec-
tively addresses the limitations of conventional VAE models,
particularly the lack of detail in generated images.

Furthermore, the ability of the model to generate diverse
future scenarios by varying control inputs highlights its po-
tential for real-world applications, particularly in autonomous
driving systems. By predicting future road states with high
fidelity, the model can contribute to reliable lane-keeping and
collision-avoidance systems, enhancing overall driving safety.

Future work will focus on further optimizing the model
to handle more complex road conditions and integrating the
system with reinforcement learning frameworks for end-to-end
autonomous driving solutions.
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