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Abstract—This study evaluates deep learning approaches for
pitch scoring in piano practice and performance through two
experiments. The first experiment compares Gated Recurrent
Units (GRU) and Transformer architectures using datasets that
include diverse musical elements such as pitch, rhythm, rest, and
tempo. The results demonstrate that Transformers significantly
outperform GRUs in terms of accuracy and robustness across
all conditions. The second experiment investigates modifications
to the Transformer model, specifically increasing the number
of attention heads, to assess its impact on transcribing musical
sequences of varying complexity. Overall, these experiments high-
light the strengths and limitations of Transformer architectures,
emphasizing their potential to advance music transcription tools
for education and professional applications.

Index Terms—Pitch Detection, Piano Transcription, Deep
Learning, Music Education.

I. INTRODUCTION

Accurate pitch assessment is a cornerstone of musical
education, particularly in learning and mastering the piano.
For students, the ability to receive precise, real-time feedback
during practice is critical for identifying errors, improving
technique, and building confidence. Traditionally, pitch evalu-
ation has relied on manual observation by instructors or self-
assessment by students [1]. While effective to some extent,
these approaches are inherently limited by human fatigue,
subjective interpretation, and the lack of consistent real-time
feedback. As the demand for more efficient, objective, and
scalable solutions grows, advancements in artificial intelli-
gence (AI) and deep learning present transformative oppor-
tunities for automating this process.

Deep learning has revolutionized various domains, including
image recognition, speech processing, and natural language
understanding. Its application to music transcription and pitch
scoring is an emerging area with immense potential. By

leveraging sequence-to-sequence modeling techniques, deep
learning can address the complexities of musical data, such
as polyphonic textures, temporal variations, and intricate de-
pendencies. Among the many architectures, Gated Recurrent
Units (GRU) and Transformers have emerged as prominent
candidates for tasks involving sequential data.

GRUs, a type of recurrent neural network (RNN), are well-
suited for capturing temporal dependencies due to their ability
to mitigate the vanishing gradient problem. They have been
widely applied in sequence modeling tasks, including pitch de-
tection. However, GRUs often struggle with longer sequences
and complex dependencies, which are intrinsic to music. On
the other hand, Transformer architectures, which utilize self-
attention mechanisms, are highly effective at capturing long-
range dependencies and handling diverse input structures [2].
These features make Transformers particularly advantageous
for music transcription tasks, where understanding intricate
temporal and harmonic relationships is essential.

This study investigates the capabilities of GRU and Trans-
former models for pitch scoring in piano practice through
two experiments. The first experiment conducts a comparative
analysis of GRU and Transformer architectures using a dataset
that encompasses diverse musical elements, including pitch,
rhythm, rest, and tempo. The dataset is designed to reflect
real-world variations in note sequence length, structure, and
complexity. The results of this experiment establish a baseline
for the performance of these models, highlighting the advan-
tages of Transformers in terms of accuracy and robustness.

The second experiment focuses on enhancing the Trans-
former architecture by modifying the multi-head attention
mechanism. Specifically, it examines the impact of increasing
the number of attention heads on the model’s ability to
transcribe musical notes and sequences of varying complex-



ities. This experiment aims to uncover whether architectural
modifications can further improve the Transformer’s perfor-
mance, particularly in handling challenging scenarios with
more intricate data structures.

By conducting these two experiments, this paper aims to
provide a comprehensive evaluation of deep learning models
for automated music transcription. The results contribute to
the understanding of the strengths and limitations of GRU
and Transformer architectures, offering insights into their
potential applications in educational and professional settings.
Moreover, this research underscores the importance of model
optimization and architectural tuning for advancing music
transcription technologies, paving the way for innovations
that enhance learning experiences and support professional
musicians.

II. RELATED WORKS

Recent advancements in artificial intelligence and deep
learning have significantly advanced the field of music tran-
scription and pitch detection. These technologies have facili-
tated the development of automated systems that analyze mu-
sical sequences, recognize pitch, and transcribe performances
with high accuracy. This section reviews key contributions and
existing research in this domain, emphasizing their relevance
to pitch scoring and transcription for piano practice and
performance.

The Transformer architecture, introduced by Vaswani et
al. [3], has become a foundational model in sequence-to-
sequence tasks. Its self-attention mechanism enables it to
effectively capture long-range dependencies, a critical feature
for processing complex musical sequences. Transformers have
shown superior performance across various domains, including
natural language processing and audio signal analysis, making
them a promising candidate for music transcription applica-
tions. On the other hand, GRUs, proposed by Cho et al. [4],
address the vanishing gradient problem in traditional RNNs.
GRUs are efficient in learning sequential dependencies and
have been successfully applied in numerous tasks requiring
temporal data analysis, including pitch detection.

Music transcription often involves capturing pitch infor-
mation in polyphonic settings. Wang et al. [5] proposed a
harmonic structure-based neural network that uses convolu-
tional layers to capture local frequency patterns and harmonic
features for robust pitch detection. Their research demon-
strated significant improvements in detecting active pitches,
especially in piano music, where overlapping frequencies pose
a challenge. Similarly, Hawthorne et al. [6] explored the
use of sequence-to-sequence models for piano transcription,
integrating onset and frame detection to enhance accuracy.
Their models, trained on datasets such as MAESTRO and
MAPS, established a benchmark for music transcription tasks.

Meanwhile, multitask learning frameworks, such as the
MT3 model introduced by Gardner et al. [7], have advanced
multitrack music transcription. By leveraging the Transformer
architecture, MT3 processes raw audio spectrograms and tran-
scribes multiple instruments simultaneously, showcasing the

scalability of Transformer-based systems in handling complex
musical data.

The application of deep learning to music transcription has
extended beyond academic research into practical use cases.
For example, models integrating convolutional and recurrent
architectures have been used for real-time pitch tracking, of-
fering immediate feedback for musicians. Hawthorne et al. [8]
further refined the onset and frame detection framework to pro-
duce symbolic representations of piano performances, enabling
accurate transcription and evaluation of complex pieces. These
contributions underscore the importance of combining robust
architectures with effective data representations to achieve
state-of-the-art results in music transcription.

III. EXPERIMENTS

This study evaluates the performance of GRU and Trans-
former models for pitch scoring in piano practice through two
complementary experiments. The first experiment establishes
a comparative baseline for the GRU and Transformer architec-
tures, while the second experiment investigates the impact of
modifying the Transformer architecture by varying the number
of attention heads.

A. Experiment 1: Comparative Evaluation of GRU and Trans-
former Models

1) Objective: The first experiment aims to compare the
performance of GRU and Transformer architectures in pro-
cessing musical sequences. This evaluation focuses on how
well each model handles diverse musical elements, including
pitch, rhythm, rest, and tempo, across varying sequence lengths
and structures.

2) Dataset: The dataset for this experiment was designed
to reflect real-world variations in music. It consists of se-
quences ranging from 3 to 10 notes, incorporating both
uniform and non-uniform rest lengths, varying tempos, and
complex rhythms. Figure 1(a) illustrates an example of a
sequence with four half notes, without any rests, highlighting
the model’s ability to handle continuous notes seamlessly.
Figure 1(b) shows a sequence of four half notes with equal
rests between each note, demonstrating the model’s capability
to maintain uniform spacing. Finally, Figure 1(c) depicts a
sequence of four notes with diverse rhythms, where rests are
not consistently placed and differ in length, showcasing the
model’s proficiency in managing irregular rhythmic patterns
and non-uniform rest distributions. The dataset was divided
into training (80%), validation (10%), and test (10%) sets,
ensuring a balanced representation across all variables.

3) Methodology: Both GRU and Transformer models were
trained on identical datasets. MIDI files were converted to
WAV format and processed into mel spectrograms using Short-
Time Fourier Transform (STFT) with the following param-
eters: 1024 FFT components, a hop size of 512, 1024 mel
bands, and a 16,000 Hz sample rate. Label preprocessing in-
cluded one-hot encoding and the addition of Start of Sequence
(SOS) and End of Sequence (EOS) tokens to ensure proper
sequence alignment.



(a) Four half notes without rests.

(b) Four half notes with equal rests between each note.

(c) Four notes with varying rhythms and different rests.

Fig. 1: Examples of note sequences demonstrating different
rest patterns and rhythms.

The GRU model was configured with two hidden layers
of 512 units each, while the Transformer model utilized
three encoder and decoder layers, single-head attention, and
a feedforward network with 512 hidden units. Both models
were trained using the Adam optimizer, and their performance
was evaluated using exact score matching, which considers a
sequence correct only if all predicted notes match the ground
truth.

B. Experiment 2: Impact of Attention Heads in Transformer
Architecture

1) Objective: The second experiment investigates how in-
creasing the number of attention heads in the Transformer
architecture affects its ability to transcribe musical sequences.
This experiment focuses on both simpler and more complex
scenarios to determine whether architectural modifications
enhance performance.

2) Dataset: The same dataset from Experiment 1 was
used, allowing direct comparisons between the experiments.
It encompasses diverse musical elements, including uniform
and non-uniform rests, varying tempos, and rhythms, with note
sequences ranging from 3 to 10 notes.

3) Methodology: The Transformer model was modified to
use 4, 8, and 16 attention heads while keeping all other hyper-
parameters constant. The preprocessing pipeline remained the
same as in Experiment 1, ensuring consistency in data handling
and evaluation criteria. Performance was assessed using exact
score matching, emphasizing transcription accuracy.

C. Evaluation Metrics

Both experiments utilized exact score matching as the
primary evaluation metric. This rigorous metric evaluates a
model’s ability to transcribe musical sequences by requiring
all notes in a sequence to match the ground truth for a correct

score. This ensures a stringent and consistent assessment
across both experiments.

IV. RESULTS AND DISCUSSION

The experiments conducted aimed to evaluate the perfor-
mance of Transformer and GRU-based sequence-to-sequence
models for musical note transcription, focusing on their ro-
bustness and accuracy across diverse musical scenarios. Addi-
tionally, a second experiment studied the impact of modifying
the multi-head attention mechanism in Transformer models.
Below, the results of both experiments are presented, including
all 10 tables, and their implications are discussed.

A. Experiment 1: Comparative Performance of GRU and
Transformer Models

1) Results: The first experiment clearly demonstrate the
superior performance of the Transformer model compared to
the GRU-based sequence-to-sequence model across a range
of transcription scenarios. For sequences involving three con-
secutive notes under simpler conditions, such as consistent
tempo and rhythm, the Transformer achieved an exact score
of up to 0.995, as shown in Table II. In contrast, Table I
reveals that while the GRU model performed exceptionally
well in structured conditions, achieving a perfect exact score of
1.00 for sequences with equal rests, its accuracy significantly
declined in scenarios with greater complexity, such as varying
tempos and rhythms, with scores dropping as low as 0.35 in
cases without rests.

When analyzing sequences of 3 to 10 notes, the performance
gap between the two models becomes even more pronounced.
As shown in Table III, the GRU model’s performance deteri-
orates sharply in scenarios involving complex variations, with
exact scores plummeting to as low as 0.005 under conditions
of different tempos and rhythms, especially when dealing with
unequal rests not placed between every note. Conversely, Table
IV highlights the Transformer model’s ability to maintain
a high degree of accuracy, achieving scores of up to 0.85
in structured scenarios and consistently outperforming the
GRU model even in the most challenging conditions, where
its lowest score of 0.555 far exceeded the GRU model’s
performance.

Overall, these results highlight a consistent trend: while
the GRU model shows acceptable performance in controlled
and simple settings, its accuracy diminishes substantially as
the complexity of the musical patterns increases. On the
other hand, the Transformer model demonstrates remarkable
robustness, retaining high accuracy even under diverse and
intricate conditions.

2) Discussion: The findings emphasize the advantages of
the Transformer architecture, particularly its ability to handle
complex musical transcription scenarios. The self-attention
mechanism inherent to the Transformer plays a critical role in
capturing long-range dependencies and temporal relationships,
which are essential for accurately transcribing sequences with
variable rhythms, tempos, and rests. This capability is reflected



TABLE I: Exact scores of the GRU-based sequence-to-sequence model for 3 consecutive notes.

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.995 0.905 0.495 0.35
Equal Rest Between Notes 1.00 0.965 0.735 0.47
Unequal Rest Between Notes 0.845 0.65 0.37 0.29
Equal Rest Not Between Every Note 0.945 0.67 0.365 0.33
Unequal Rest Not Between Every Note 0.8 0.655 0.38 0.285

TABLE II: Exact scores of the Transformer model for 3 consecutive notes.

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.985 0.985 0.885 0.645
Equal Rest Between Notes 0.995 0.96 0.975 0.94
Unequal Rest Between Notes 0.94 0.94 0.94 0.84
Equal Rest Not Between Every Note 0.94 0.96 0.935 0.83
Unequal Rest Not Between Every Note 0.95 0.91 0.855 0.845

TABLE III: Exact scores of the GRU-based sequence-to-sequence model for 3-10 notes.

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.385 0.07 0.00 0.005
Equal Rest Between Notes 0.22 0.03 0.025 0.005
Unequal Rest Between Notes 0.05 0.015 0.005 0.005
Equal Rest Not Between Every Note 0.04 0.00 0.00 0.005
Unequal Rest Not Between Every Note 0.02 0.015 0.01 0.015

TABLE IV: Exact scores of the Transformer model for 3-10 notes.

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.85 0.7 0.395 0.075
Equal Rest Between Notes 0.17 0.665 0.57 0.27
Unequal Rest Between Notes 0.665 0.4 0.37 0.26
Equal Rest Not Between Every Note 0.685 0.535 0.335 0.265
Unequal Rest Not Between Every Note 0.555 0.35 0.175 0.19

in the model’s consistent performance across all experimental
conditions, as seen in Tables II and IV.

In contrast, the GRU-based sequence-to-sequence model,
despite performing well in structured scenarios such as se-
quences with equal rests and consistent rhythms, struggles sig-
nificantly with more complex patterns. The substantial decline
in its accuracy, as evidenced in Tables I and III, indicates that
the GRU model’s reliance on sequential processing limits its
ability to generalize to diverse and sparse input conditions.
This limitation becomes particularly apparent as the number
of notes in the sequence increases or when rests and rhythms
vary significantly.

These results have important implications for the selection
of models in musical transcription tasks. The superior per-
formance of the Transformer across varying conditions un-
derscores its suitability for real-world transcription scenarios,
where variations in tempo, rhythm, and rests are inevitable.
Furthermore, the robustness of the Transformer highlights
its potential for broader applications in music analysis and
processing.

Looking ahead, future research could explore the inte-
gration of GRU and Transformer architectures to leverage
their respective strengths. Hybrid models might address the
GRU’s limitations in capturing long-range dependencies while

preserving its strengths in sequential processing. Addition-
ally, further investigation into optimizing hyperparameters for
specific datasets and transcription tasks could provide deeper
insights into improving model performance.

In conclusion, the experiments confirm that the Transformer
model offers significant advantages over the GRU-based
model, particularly in handling complex musical structures.
Its consistent performance and adaptability across diverse
conditions make it a promising choice for deep learning-based
piano transcription applications.

B. Experiment 2: Impact of Multi-Head Attention in Trans-
former Models

1) Results: The second experiment examined the impact of
varying the number of attention heads in the Transformer ar-
chitecture, specifically 4, 8, and 16 heads, on the transcription
performance. Results for three consecutive notes are shown in
Tables V, VI, and VII, while Tables VIII, IX, and X present
the findings for sequences ranging from 3 to 10 notes. The
results reveal that while all configurations performed well
under simpler conditions—such as sequences with consistent
tempo and rhythm—the introduction of greater complexity,
such as variations in tempo and rhythm, highlighted notable
differences in model performance.



For sequences with three consecutive notes, the model with
4 heads consistently achieved the highest scores across most
scenarios, particularly under complex conditions involving
different tempos and rhythms, as shown in Table V. The
performance advantage was less pronounced for simpler cases,
where all configurations demonstrated comparable accuracy.
Tables VI and VII show that increasing the number of heads
to 8 or 16 did not yield consistent improvements and, in some
cases, resulted in diminished performance.

For sequences ranging from 3 to 10 notes, the trend became
even more apparent. Tables VIII, IX, and X demonstrate that
the 4-head configuration consistently outperformed both the
8-head and 16-head configurations across all experimental
conditions. Notably, in the most challenging scenarios, such
as sequences with unequal rests not between every note and
varying tempos and rhythms, the 4-head model exhibited a
clear performance advantage. This suggests that increasing the
number of attention heads does not necessarily translate to
better performance in complex transcription tasks, especially
when handling intricate patterns and longer sequences.

2) Discussion: The findings highlight the nuanced role of
attention heads in Transformer-based transcription models.
While adding more attention heads increases the model’s rep-
resentational capacity, this also introduces additional computa-
tional overhead and potential overfitting, particularly when ap-
plied to datasets with significant variability in tempo, rhythm,
and rests. The superior performance of the 4-head configu-
ration suggests that it achieves an optimal balance between
computational efficiency and model complexity, enabling it to
effectively capture the temporal and sequential dependencies
in the data without becoming overwhelmed by extraneous
patterns or noise.

In simpler transcription scenarios, such as those involving
consistent tempos and rhythms, the differences in performance
among the 4-head, 8-head, and 16-head configurations were
minimal. This indicates that the additional capacity provided
by more attention heads is underutilized in such cases. How-
ever, as the complexity of the sequences increased, the 4-head
model demonstrated greater robustness, likely due to its ability
to focus on critical dependencies without being hindered by
excessive parameterization.

C. Overall Implications

The experiments collectively underscore the importance of
carefully tuning the Transformer model’s hyperparameters to
match the complexity of the transcription task. While the self-
attention mechanism inherently equips the Transformer with
the capacity to handle intricate temporal relationships, the
number of attention heads plays a pivotal role in determining
the model’s effectiveness and efficiency. The results suggest
that for musical transcription tasks involving sequences with
varying tempos, rhythms, and rests, a smaller number of
attention heads, such as 4, provides the best trade-off between
accuracy and computational demands.

D. Limitations and Future Work

This study focused on single-octave datasets with controlled
variations in tempo, rhythm, and rests. While this provided a
controlled environment for evaluating the effects of attention
head configurations, it limits the generalizability of the find-
ings to real-world transcription scenarios involving polyphonic
music, multiple octaves, and diverse musical styles. Future
research should explore the applicability of these results to
broader and more complex datasets. Additionally, the inte-
gration of hybrid architectures that combine the strengths of
GRU and Transformer models could further enhance transcrip-
tion accuracy and efficiency. Exploring dynamic adjustment
mechanisms for attention head configurations based on the
complexity of the input data may also yield promising results.

V. CONCLUSION

This study evaluated GRU and Transformer-based models
for musical note transcription, highlighting the Transformer’s
superior ability to handle complex temporal dependencies and
diverse musical scenarios. While both models performed well
in simpler conditions, the Transformer consistently outper-
formed the GRU in complex datasets. Additionally, increasing
the Transformer’s attention heads did not consistently improve
performance, with the 4-head configuration offering the best
balance of efficiency and accuracy. These findings underscore
the Transformer’s suitability for scalable and adaptable music
transcription tools, particularly in educational and professional
contexts. Future research should explore broader datasets,
polyphonic music, and hybrid architectures to further enhance
transcription accuracy and efficiency.
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TABLE V: Exact scores for 3 consecutive notes (4 heads).

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.975 1.00 0.99 0.95
Equal Rest Between Notes 0.95 1.00 0.98 0.995
Unequal Rest Between Notes 0.99 0.975 0.94 0.865
Equal Rest Not Between Every Note 0.995 0.98 0.93 0.935
Unequal Rest Not Between Every Note 0.985 0.96 0.96 0.86

TABLE VI: Exact scores for 3 consecutive notes (8 heads).

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.99 0.965 1.00 0.95
Equal Rest Between Notes 0.95 0.995 0.98 0.99
Unequal Rest Between Notes 0.995 0.995 0.99 0.95
Equal Rest Not Between Every Note 0.995 0.99 0.97 0.935
Unequal Rest Not Between Every Note 1.00 0.99 0.855 0.9

TABLE VII: Exact scores for 3 consecutive notes (16 heads).

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.995 0.99 0.91 0.96
Equal Rest Between Notes 1.00 0.97 1.00 0.995
Unequal Rest Between Notes 0.99 0.97 0.925 0.95
Equal Rest Not Between Every Note 1.00 1.00 0.91 0.91
Unequal Rest Not Between Every Note 0.965 0.98 0.96 0.94

TABLE VIII: Exact scores for 3-10 notes (4 heads).

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.76 0.675 0.28 0.17
Equal Rest Between Notes 0.16 0.725 0.41 0.235
Unequal Rest Between Notes 0.62 0.475 0.235 0.255
Equal Rest Not Between Every Note 0.64 0.465 0.275 0.135
Unequal Rest Not Between Every Note 0.58 0.52 0.26 0.215

TABLE IX: Exact scores for 3-10 notes (8 heads).

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.75 0.565 0.13 0.155
Equal Rest Between Notes 0.125 0.68 0.445 0.385
Unequal Rest Between Notes 0.485 0.355 0.34 0.205
Equal Rest Not Between Every Note 0.65 0.39 0.2 0.155
Unequal Rest Not Between Every Note 0.52 0.395 0.28 0.275

TABLE X: Exact scores for 3-10 notes (16 heads).

Same Tempo, Different Tempo, Same Tempo, Different Tempo,
Same Rhythm Same Rhythm Different Rhythm Different Rhythm

No Rest 0.68 0.19 0.165 0.125
Equal Rest Between Notes 0.175 0.56 0.34 0.1
Unequal Rest Between Notes 0.39 0.135 0.125 0.13
Equal Rest Not Between Every Note 0.56 0.43 0.205 0.195
Unequal Rest Not Between Every Note 0.4 0.125 0.205 0.175


