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Abstract—In complex urban environments, autonomous ve-
hicle parking is challenged by irregularly parked cars, static
obstacles, and narrow spaces. Traditional parking methods are
often limited to well-structured parking lots and fail to adapt
to unstructured scenarios like alleyways with obstacles and
randomly positioned vehicles. This paper addresses this limitation
by applying goal-conditioned reinforcement learning to enable
autonomous vehicles to park in congested environments based on
specified target positions and orientations. A custom simulation
environment is developed using Pygame to simulate parking
scenarios across four progressive levels of difficulty, with obstacles
to test adaptability. Three RL algorithms, SAC, HER, and
an improved HER variant, are implemented to compare the
performance in the simulation environment. Experimental results
demonstrate that the proposed approach significantly improves
parking success rates and trajectory efficiency in complex sce-
narios, contributing to robust, adaptable parking solutions for
autonomous vehicles in real-world applications.

Index Terms—Autonomous Parking, Reinforcement Learning,
Goal-conditioned Reinforcement Learning

I. INTRODUCTION

With the rapid progression of urbanization, the shortage
of parking spaces and irregular parking environments have
become major challenges in modern society. Addressing these
issues is becoming increasingly crucial, particularly with the
commercialization of autonomous vehicles. Efficient and safe
parking is one of the main tasks in vehicle management.

In recent years, reinforcement learning (RL) has emerged as
a powerful tool to address complex decision making problems,
such as video games [1], [2], sensor networks [3], [4], and
robotics control [5]-[7]. Among these diverse applications,
RL has proven particularly effective in autonomous driving
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and parking systems, where it enables vehicles to learn how
to achieve given objectives in various scenarios [8], [9]. The
flexibility and adaptability of RL are particularly advantageous
in learning optimal parking positions and paths. However, most
existing research has been conducted in relatively simplified
environments, typically based on parking lots with well-
defined vertical and horizontal lanes [10]-[12]. In such envi-
ronments, the presence of clearly marked parking lines signif-
icantly reduces the degrees of freedom in vehicle positioning,
simplifying the problem and lowering learning complexity.
While such assumptions are valid for many structured parking
environments, they fail to address the challenges posed by
real-world unstructured parking scenarios.

Parking scenarios in real-world environments can be highly
complex. In narrow and irregular alleys, vehicles are of-
ten parked in disordered manners, and fixed obstacles such
as utility poles, trash bins, or buildings frequently obstruct
parking paths. In such environments, autonomous vehicles
may find it difficult to park efficiently using parking systems
with conventional structured RL approaches. To address these
challenges, a goal-oriented learning strategy through Goal-
conditioned RL (GCRL) [13] offers a promising solution.
GCRL enables the vehicle to learn optimal parking trajectories
through RL, allowing it to park accurately at specific target
positions and orientations, even in complex environments.

This paper addresses the problem of autonomous parking in
complex and irregular environments based on a given target
position and orientation. A simulation environment is devel-
oped, which differs from conventional parking lot setups cat-
egorized into vertical and horizontal spaces. The environment
includes irregularly parked vehicles and various obstacles,
providing a more challenging scenario for autonomous parking
systems. The main contributions of this paper are as follows.

1) A custom 2D simulation environments are developed

using Pygame [14], designed to address complex parking



scenarios with irregularly parked vehicles and various
obstacles. The simulation environment is structured into
four progressively challenging levels to enable incre-
mental learning for the agent.

2) The study applies the GCRL framework to address
parking problems by defining goals as the target position
and orientation. This approach enables efficient learning
and generalization across varying parking scenarios.

3) The performance of three RL algorithms, such as Soft
Actor-Critic (SAC) [15], Hindsight Experience Replay
(HER) [16], and an enhanced version of HER [17], are
analyzed to assess the effectiveness of GCRL in solving
parking problems.

4) The simulation environment and proposed framework
are compatible with OpenAl Gym [18], allowing seam-
less integration with existing reinforcement learning
libraries and methods. This ensures broader applicability
and usability of the proposed approach.

The remainder of this paper is structured as follows. Section

2 describes the concepts of RL, GCRL, SAC, HER, and
a variant of HER. Section 3 details our proposed method,
including the GCRL framework and simulation environment.
Section 4 presents the experimental results and performance
comparisons. Section 5 concludes this paper.

II. BACKGROUND

In this section, the concepts of RL, GCRL, SAC, HER, and
a variant of HER are presented.

A. Reinforcement Learning

Reinforcement Learning (RL) is a framework in which an
agent learns to make decisions by interacting with an environ-
ment to maximize cumulative rewards. At each timestep ¢, the
agent observes a state s; € S and selects an action a; € A
according to a policy 7 : S — A. The environment responds to
this action by transitioning to a new state s;;; based on a state
transition probability p(s;y1|st,a:) and provides a reward
ry = r(s¢, ar). The object of the agent is to learn a policy
m that maximizes the expected sum of future rewards, known
as the return. The learning process is guided by experiences
et = (St,a¢,7¢,8:41), stored in a replay buffer, enabling
the agent to leverage past experiences to improve sample
efficiency during training.

B. Goal-conditioned Reinforcement Learning

Goal-conditioned Reinforcement Learning (GCRL) extends
the RL framework by incorporating goals that the agent seeks
to achieve within a task, using a goal-conditioned policy that
takes both the state and goal as inputs [13]. At the start of
each episode, the environment provides an initial state sg € .S
and a fixed goal g € G. The state includes an observation
o and an achieved goal (AG) ag, with AG often representing
the state of an object in object-centered environments. At each
timestep ¢, the agent selects an action a; € A based on the
policy m : S x G — A, using both the current state s; and
goal g. The environment responds to this action by providing

a reward r; = (s, g,a;) and transitioning to a new state
St+1, determined by the transition probability p(s:i1|st,at).
This interaction continues until reaching a terminal state, with
experiences e; represented as a S-tuple (sq,g,as, s, St+1),
representing the goal-oriented exploration and learning.

C. Soft Actor-Critic

Soft Actor-Critic (SAC) is an off-policy RL algorithm de-
signed to improve both stability and exploration in continuous
action spaces [15]. SAC optimizes a stochastic policy by max-
imizing a combination of expected reward and entropy, where
the entropy term encourages exploration by favoring policies
with higher randomness. This balance between exploration and
exploitation is particularly beneficial in complex environments
where deterministic strategies may lead to suboptimal local
solutions. SAC uses two critic networks to estimate the Q-
value for stability and a policy network that outputs a prob-
ability distribution over actions. The actor aims to maximize
the soft Q-value, which combines the expected reward and an
entropy bonus, enhancing both sample efficiency and learning
robustness.

D. Hindsight Experience Replay

Hindsight Experience Replay (HER) addresses the chal-
lenge of sparse rewards in GCRL by enhancing sample ef-
ficiency through reinterpretation of unsuccessful episodes as
successful ones, enabling the agent to learn from failures [16].
HER creates a hindsight experience by substituting the original
goal g with a hindsight goal ¢g”, which is an achieved goal
(AG) from the same episode. By recalculating the reward
based on g", i.e., 7" = r(s¢,g", a;), the original experience
et = (8¢, 9,a¢,7,S¢+1) is transformed into a new hindsight
experience e = (s;,g", a;,7, s;41). This approach allows
the agent to learn from outcomes it could achieve, rather than
only from the specified goal, significantly improving learning
efficiency in sparse reward environments.

E. Failed goal Aware Hindsight Experience Replay

Authors of [17] proposed a novel variant of HER known as
Failed Goal Aware Hindsight Experience Replay (FAHER).
This approach integrates a clustering-based sampling strategy
into HER to enhance the efficiency of experience sampling
in robotic tasks. Traditional HER methods typically rely on
uniform sampling from a replay buffer, which can result
in inefficient training. FAHER addresses this by clustering
episodes based on the similarity of achieved goals, with a focus
on failed goals, defined as the original goal of an unsuccessful
episode. This targeted sampling mechanism improves the
likelihood of selecting informative episodes, thus enhancing
the learning process.

III. PROPOSED METHOD

A. Problem Definition and Goal

The parking problem addressed in this study focuses on
enabling an autonomous vehicle to park in complex, unstruc-
tured environments, such as narrow alleys with vehicles parked
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Fig. 1. Illustrations of Autonomous Parking environments.

irregularly due to obstacles like poles and trash bins. Unlike
conventional parking setups where parking spaces are well
divided, these environments present significant challenges due
to unpredictable layouts and obstacles that demand adaptable
and precise control.

The goal is defined as reaching a specified parking position
with a precise orientation angle. This involves navigating
through obstructed surroundings, avoiding collisions, and ac-
curately positioning the vehicle at the target position. To
tackle this, the problem is framed using a GCRL approach,
where the actions of the agent are conditioned on achieving
a dynamically specified goal, i.e., the designated parking spot
with specific coordinates and orientation. This approach allows
for flexible adaptation to varying goals, enhancing the ability
of the agent to generalize across different parking scenarios in
irregular environments.

B. Simulation Environment Design

To address the challenges of parking in unstructured and
complex environments, a custom simulation environment is
developed using Pygame. This environment is designed to
be compatible with traditional OpenAl Gym environments to
leverage existing codebases and ease the integration of RL
algorithms. The environment follows the Gym API structure
by defining standard functions such as reset, step, seed, and
compute_reward, along with an action_space class. These
components ensure a seamless interface with commonly used
RL libraries and algorithms, supporting smooth transitions
between simulation environments.

The Pygame environment is illustrated in Fig 1. The vehicle
to be parked is represented by a blue rectangle, with a green

dot on top indicating the forward direction of the vehicle.
Surrounding red lines depict the LiDAR beams. The target
goal area, where the vehicle aims to park, is shown as a green
rectangle, with a green dot signifying the desired parking ori-
entation. Dark blue rectangles represent other parked vehicles,
while brown lines and squares denote building structures. The
trajectory of the vehicle is depicted by a yellow line, showing
the path taken by the vehicle as it navigates toward the goal
area. This trajectory provides visual insight into the navigation
decisions of the agent. The simulation displays the simulation
time, along with the current speed and steering angle of the
vehicle, as on-screen text.

The default values for the entire simulation are as follows:

e Map size: 30m by 30m

o Vehivle size: 4m by 2m; Wheelbase: 2.5m

e Goal area size: Sm by 2.5m

o LiDAR sensor: 36-point virtual LiDAR with 10m range
e Maximum speed: Sm/s; Minimum speed: -3m/s

o Maximum acceleration: 1m/s?

e Maximum steering angle: +40°

o Maximum steering speed: 10°/s

These values can be adjusted according to user preference for
specific simulation needs.

The motion of a vehicle is implemented based on the
kinematic bicycle model, which simplifies the dynamics by
assuming no slip between the tires and the ground. The model
equations are given as follows:

i =wcos(d), y =wvsin(d), § = %tan(é), v=a, (1)
where = and y represent the position of the vehicle, 0 is
the heading angle, v is the velocity, § is the steering angle,
L is the wheelbase, and a is the acceleration. This model
enables efficient simulation of vehicle trajectories in response
to control inputs.

The simulation is structured across four progressively chal-
lenging levels, each increasing the environmental complexity
to gradually develop the skills of the agent in navigation,
obstacle avoidance, and precise control required for parking
tasks. Each level introduces unique configurations and obsta-
cles, pushing the agent to adapt its strategy and learn complex
behaviors.

Fig 2 illustrates sample initial states for four levels. Each
level is defined as follows:

o AutonomousParking-v0: A position and orientation of
the target parking space are randomly selected within a
20m x 20m 2D area situated inside a larger 30m x 30m
2D space, which is surrounded by walls. A vehicle to
be parked, represented as a blue rectangle, begins at a
random position and orientation within the 30m x 30m
space. The objective is to navigate and park the vehicle
accurately within the designated goal rectangle.

o AutonomousParking-vl: A position and orientation of
the target parking space are randomly selected within
a 20m x 20m 2D area situated inside a larger 30m X



30m 2D space, which is surrounded by walls. Four dis-
orderly parked vehicles, represented as black rectangles,
are randomly placed within the environment, each with
a random orientation, ensuring that they do not overlap
with the goal area. A vehicle to be parked begins at a
random position and orientation within the 30m x 30m
space, ensuring that it does not overlap with any of the
parked vehicles. The objective is to navigate and park the
vehicle accurately within the designated goal rectangle.

o AutonomousParking-v2: A position and orientation of

the target parking space are randomly selected within a
20m x 20m 2D area situated inside a larger 30m x 30m
2D space, which is surrounded by walls. Each corner of
the outer space has a 75% probability of containing a
building, represented as a brown square with a randomly
determined size. A vehicle to be parked begins at a
random position and orientation within the 30m x 30m
space, ensuring that it does not overlap with any of
the buildings. The objective is to navigate and park the
vehicle accurately within the designated goal rectangle.

« AutonomousParking-v3: A position and orientation of

the target parking space are randomly selected within a
20m x 20m 2D area situated inside a larger 30m x 30m
2D space, which is surrounded by walls. Each corner of
the outer space has a 75% probability of containing a
building, represented as a brown square with a randomly
determined size. Additionally, four disorderly parked
vehicles are randomly placed within the environment,
each with a random orientation, ensuring that they do
not overlap with the goal and the buildings. A vehicle
to be parked begins at a random position and orientation
within the 30m x 30m space, ensuring that it does not
overlap with any of the parked vehicles or buildings. The
objective is to navigate and park the vehicle accurately
within the designated goal rectangle.

This incremental-level design provides a structured train-
ing approach where the agent can build foundational skills
in simpler environments before advancing to complex, real-
world-like scenarios. By exposing the agent to progressively
challenging tasks, this multi-level design promotes skill gener-
alization, allowing the agent to tackle increasingly congested
environments with dynamic obstacles and irregularly parked
vehicles. Through these levels, the agent learns to navi-
gate various parking conditions, eventually acquiring robust,
adaptable strategies essential for parking in realistic, irregular
environments.

C. Training Procedure

In the Autonomous Parking environment, the GCRL frame-

work is described as follows:

« States: The state consists of the observation o and the AG
ag. The observation is an array of 41 floats, which include
information about the vehicle as well as LiDAR data. The
information about the vehicle encompasses its position,
orientation, speed, and steering angle. The LiDAR data
is obtained from a virtual 36-point LiDAR system. The
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Fig. 2. Tllustrations of sample initial states for AutonomousParking-v0, v1,
v2, and v3.

AG is an array of 3 floats, indicating the position and
orientation of the vehicle.

e Goals: The goal is the position and orientation of the
designated parking area. The goal is sampled in a 3D
space, represented by z, y, and 6. The achievement of
the goal, the success of the episode, is defined by a
function checking whether the vehicle is located within
the designated parking area with the right orientation.

o Rewards: A binary and sparse reward is used. The reward
is 0 if the vehicle is in the designated parking area with
the right orientation; otherwise, the reward is -1.

o Actions: The action is in the 2-dimensional action space,
with each action value ranging between -1 and 1. These
two values represent the target speed and steering an-
gle of the vehicle, respectively. Each action is scaled
to the maximum allowable speed and steering angle.
The current speed and steering angle of the vehicle
are updated incrementally, respecting predefined limits
on acceleration and steering rate, ensuring smooth and
controlled adjustments in response to each action input.

To evaluate the effectiveness of using the GCRL approach
to address the autonomous parking task in complex and un-
structured environments, three RL algorithms are implemented
and compared.

¢ Soft Actor-Critic (SAC): A model-free and off-policy
algorithm that optimizes a stochastic policy for continu-



ous action spaces, balancing exploration and exploitation.
SAC is used as a baseline algorithm due to its robustness
in handling complex control tasks by maximizing both
expected reward and policy entropy, which encourages
exploratory behavior necessary for adapting to diverse
parking scenarios.

o SAC with Hindsight Experience Replay (SAC+HER):
SAC is combined with HER to address sparse reward
challenges inherent in autonomous parking tasks. HER
enhances learning by replaying unsuccessful experiences
as if the agent was aiming to reach a different, achievable
goal. This additional feedback is particularly useful in
environments where direct successes are rare, providing
the agent with more opportunities to learn successful
strategies.

o SAC with Failed goal Aware HER (SAC+FAHER):
To further improve learning efficiency, an enhanced HER
variant, termed FAHER, is used with SAC. FAHER
implements cluster-based sampling, grouping experiences
by achieved goals and sampling from clusters to em-
phasize harder-to-reach goals. This approach helps the
agent learn more effectively in challenging scenarios by
focusing on experiences that push the ability of the agent
to navigate obstacles and achieve precise parking goals.

These algorithms are integrated within the GCRL framework,
allowing for a comprehensive evaluation of the effectiveness
of each algorithm in achieving accurate parking in complex
and varying environments.

The hyperparameters used in experiments are adopted from
[17]. All hyperparameters are described in detail in [16] and
[17]. The hyperparameters are as follows:

e Actor and critic networks: 3 layers with 256 units each
and ReLU non-linearities

o ADAM optimizer [19] with 10~! of learning rate for both
actor and critic

o Action L2 norm coefficient:1.0

o Polyak-averaging coefficient: 0.95

o Number of epochs: 200

o Number of cycles per epoch: 50

o Number of batches per cycle: 40

o Number of workers: 1

o Number of rollouts per worker: 4

¢ Observation clipping: [-200,200]

« Probability of random actions: 0.3

o Scale of additive Gaussian noise: 0.2

o Buffer size: 106 transitions

o Batch size: 256

« Probability of HER experience replay: 0.8

o Number of clusters: 16

« Failed goal buffer size: 150

IV. EXPERIMENTAL RESULTS

The performance of three RL algorithms is evaluated in
terms of success rate over the course of training. Figures
illustrate the progression of success rates across training
epochs, while tables provide a summary of the final success
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Fig. 3. Success rates obtained while training SAC, HER, and FAHER.

rates achieved after training. The success rate at each epoch
of training is calculated based on performance across 20
test episodes, with training spanning a total of 200 epochs.
To enhance the robustness and reliability of the reported
outcomes, the entire training and evaluation process is repeated
using five distinct random seeds, and the results are averaged
accordingly.

In the graphs, a solid line represents the average success
rate across the five repetitions at each epoch, with the shaded
area indicating the range between the minimum and maximum
success rates. To smooth the epoch-wise results, a moving
average of the previous 20 success rates is calculated and
depicted in the figures, providing a clearer trend over time.

Figure 3 compares the performance of SAC, SAC+HER,
and SAC+FAHER across different levels of the Autonomous-
Parking environment. In the graphs, a solid line represents
the average success rate across the five repetitions at each
epoch, with the shaded area indicating the range between the
minimum and maximum success rates. To smooth the epoch-
wise results, a moving average of the previous 20 success rates
is calculated and depicted in the figures.

In all levels (vO to v3), the SAC baseline consistently
shows a success rate of 0, demonstrating its ineffectiveness
in the AutonomousParking environment without the GCRL
approach. Conversely, SAC+FAHER consistently achieves a
higher success rate more quickly than SAC+HER, especially
in the earlier levels.

In the vO level, SAC+FAHER outperforms SAC+HER in
achieving a higher success rate at a faster pace. Approxi-
mately after 50 epochs, SAC+FAHER reaches a success rate
exceeding 0.8, whereas SAC+HER shows a slower ascent to a
similar success rate. In this phase, SAC+FAHER demonstrates
quicker convergence and a higher final success rate compared
to SAC+HER.

In the vl level, SAC+FAHER reaches a higher success



rate more rapidly than SAC+HER. After about 100 epochs,
SAC+FAHER achieves a success rate above 0.7, while
SAC+HER improves at a slower rate. During the early to mid-
training phases of vl, SAC+FAHER exhibits superior perfor-
mance compared to SAC+HER. However, the performance gap
narrows in the final success rate.

Similarly, in the v2 level, SAC+FAHER continues to rise
in success rate more quickly than SAC+HER. By around
60 epochs, SAC+FAHER achieves a success rate of 0.8,
whereas SAC+HER shows a slower increase thereafter, even-
tually reaching a comparable level. Throughout this phase,
SAC+FAHER consistently outperforms SAC+HER in terms
of training speed and the final success rate.

In the final level (v3), SAC+FAHER exhibits a rapid in-
crease in success rate compared to SAC+HER. After approx-
imately 150 epochs, the increase in success rate stagnates
for both algorithms, with maximum success rates plateauing
around 0.55. This level appears to present a more challeng-
ing environment for both algorithms, indicating that while
SAC+FAHER shows faster learning initially, the final perfor-
mance does not exhibit a significant difference.

Overall, across all levels, SAC+FAHER tends to reach a
higher success rate more quickly than SAC+HER. However,
as the levels progress, the performance gap between the
two algorithms diminishes. Particularly in the v3 level, the
increased difficulty of the environment restricts performance
improvements for both algorithms.

V. CONCLUSION

This study proposes a goal-conditioned reinforcement learn-
ing (GCRL) approach to address the problem of autonomous
parking in unstructured and complex environments, such as al-
leyways with irregularly parked vehicles and various obstacles.
To support this, a custom simulation environment is developed
in Pygame, featuring four progressively challenging levels that
simulate realistic parking scenarios.

This study compares the performance of SAC, SAC+HER,
and SAC+FAHER to assess the parking success rates of each
algorithm. SAC, without the GCRL approach, consistently
shows a success rate of 0 across all stages, indicating its
ineffectiveness in complex, unstructured environments. In con-
trast, both SAC+HER and SAC+FAHER demonstrate signifi-
cantly higher success rates, with SAC+FAHER showing faster
convergence and better overall performance across all stages.
This emphasizes the importance of incorporating HER-based
strategies to enhance goal-reaching capabilities in challenging
environments.

Future research could extend this approach by developing
a 3D simulation environment using a physics engine to sim-
ulate more realistic dynamics and by incorporating dynamic
obstacles to further challenge the agent. Additionally, real-
world testing will be essential to validate the transferability of
learned policies to physical vehicles. This research contributes
to the advancement of adaptable and reliable autonomous park-
ing systems capable of operating in complex urban scenarios,

bridging the gap between simulated training and practical
application.
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