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Abstract— Smart farms are gaining significant attention as
a solution to the sustainability crisis in rural areas. Challenges
such as stagnant income, exports, and growth rates, driven by
the aging population in the agricultural and livestock industries,
a shortage of young successors to farming, decreasing
production areas, and declining investments, are compounded
by the increasing instability in crop production and losses
caused by ongoing climate change. This study focuses on
developing an artificial intelligence-based horticultural paprika
crop growth prediction system tailored to environmental
conditions such as temperature, humidity, and wind direction.
Data were collected from facility horticultural farms using
weather, environmental, and specialized sensors, with the
measurements stored in a database. Preprocessing was
performed on the stored data, and since the dataset consisted of
time-series data, time periodicity was incorporated using
trigonometric functions. The dataset was split into training,
validation, and test sets, and data scaling was applied to
normalize the feature ranges for compatibility with AI models.
Various models, including Random Forest, Support Vector
Machine (SVM), Boosting algorithms, and time series models,
were trained to predict crop growth based on external
environmental factors (temperature, humidity, wind direction,
wind speed, and sunlight) and the actual versus predicted
values. The model with the highest accuracy was selected for
further analysis. The results of this research demonstrate the
potential to increase crop productivity and yields by creating
optimal growth conditions. Additionally, the study contributes
to cost reduction and environmental sustainability by
optimizing the use of pesticides and fertilizers. Beyond
addressing environmental factors, the system leverages
historical data to predict the likelihood of disease outbreaks and
pest infestations. This approach not only improves farm yields
but also addresses workforce challenges in the agricultural and
livestock industries, offering solutions to the aging population
and the shortage of young successors in farming.

Keywords—  Paprika Environmental Forecast, smart
greenhouse, RandomForest, linear regression, Grid Search,
Bayesian optimization, support vector, Hyperparameter tuning,
precision agriculture

1. INTRODUCTION

Smart farms are emerging as a promising solution to
address the sustainability challenges faced by rural areas.
These challenges include stagnant income, limited export and
growth rates due to an aging population in the agricultural and
livestock industries, a shortage of young successors to
farming, decreasing production areas, and declining
investments [1]. Smart farms integrate facility horticulture
with advanced technologies such as IoT, big data, Al,
automation systems, and robotics to remotely or automatically
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manage the growing environment for crops. Presently, the
adoption of Al in smart farms highlights the need for an
enhanced integrated environmental control system capable of
upgrading operational efficiency [2].

Crops are highly influenced by environmental factors
during their growth, necessitating precise environmental
control to optimize yield. Among various factors, temperature
and humidity are crucial for crop development. Temperature
regulates key processes such as germination, growth duration,
differentiation, and flowering. Deviations from the optimal
growth temperature can inhibit growth and, in severe cases,
lead to crop failure [3].

Similarly, humidity plays a vital role in plant physiology.
Inappropriate humidity levels can cause disorders such as fruit
drop, leaf wilting, and stomatal closure, while also increasing
the likelihood of pests and diseases. Improper control of these
environmental factors can significantly deteriorate the growth
environment, reduce production, and exacerbate pest-related
issues [4].

In facility-based horticulture, devices are available to
control internal temperature and humidity. Since these
parameters vary based on actions such as opening or closing
switches, predicting changes in temperature and humidity can
serve as an effective strategy for precise environmental
control [5].

This study collected environmental variables essential for
crop growth in facility horticulture and employed time series
analysis to predict growth environments. The performance of
the random forest model was evaluated using OOB (Out-Of-
Bag) scores, and hyperparameter tuning was conducted
through grid search and Bayesian optimization to enhance
model performance. The RMSE value was calculated as part
of the optimization process. In addition to random forest, the
model was also assessed using support vector machines
(SVM) and Gradient Boosting.

Furthermore, an Al-based field crop growth information
prediction system utilizing the random forest model was
implemented on actual farms to provide one-month data
forecasts. Applying these research findings to open-field
farms could help address constantly changing external factors,
thereby optimizing crop management and yield planning. This
approach is anticipated to enable more efficient operations,
including resource management, market demand forecasting,
and price management.



II. RELATED RESEARCH

A. Introduction of RandomForest

Random Forest is a machine learning algorithm built on an
ensemble of multiple decision trees. Each tree in the model is
independently trained on a random subset of the data, and the
algorithm combines the predictions of these individual trees to
produce a final decision .

The trees are constructed using bootstrap sampling, a
process in which samples are randomly selected from the
entire dataset with replacement. This method increases the
diversity of the model by reducing the correlation between
trees. Furthermore, instead of using all features during the
splitting process, each tree considers only a randomly selected
subset of features to determine the splits. This approach allows
Random Forest to capture different aspects of the data,
enhancing the model's generalization capabilities.

An additional strength of Random Forest is its ability to
assess the importance of each feature, enabling the
identification of variables that significantly influence
predictions. One of its primary advantages is its resilience to
overfitting, as the ensemble approach mitigates the risk of
individual trees overfitting to specific data samples or noise

[6].
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Figure 1. Random Forest Decision Tree

B. Introduction of Hyperparameter tuning

Hyperparameter tuning is a critical process in machine
learning that involves optimizing model parameters, such as
the learning rate or the number of hidden layers in a neural
network, prior to training. These hyperparameters
significantly influence the model's operation and
performance, making their optimization essential .

Effective hyperparameter optimization directly impacts
model efficiency by mitigating the risks of overfitting (when
the model is overly complex) and underfitting (when the
model is too simple). Various methods can be employed for
this process, including grid search, Bayesian optimization, and
gradient-based  optimization. These techniques use
probabilistic models or random searches to explore
combinations of hyperparameters, predicting the most
effective configurations. Bayesian optimization, in particular,
is well-suited for continuous hyperparameters, while gradient-
based methods often rely on gradient descent for optimization.
Evolutionary algorithms, inspired by natural processes like
mutation and crossover, also play a role in identifying optimal

hyperparameter sets by balancing model complexity and
generalization capabilities.

The effectiveness of hyperparameter tuning is typically
assessed through cross-validation, a method where the model
is trained and validated on different subsets of the data.
Performance metrics tailored to the problem at hand, such as
classification or regression, are used to evaluate the model.
Commonly used metrics include accuracy, precision, recall,
F1 score, and mean squared error.

These metrics provide insight into the model's ability to
generalize and perform effectively across unseen data[7].
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Figure 2. Hyperparameter Tuning Fundamentals

C. Introduction of Grid Search

Grid search is a commonly used technique in machine
learning for hyperparameter tuning. Its goal is to
systematically  explore  multiple = combinations  of
hyperparameter options to identify the best configuration for
a specific model and dataset. This involves constructing a grid
of all possible hyperparameter combinations [8].

The model is trained for each combination within this grid,
enabling a thorough and precise search through a predefined
subset of the hyperparameter space. This method is highly
beneficial as it helps improve model performance by
identifying the optimal hyperparameters, which are those that
yield the best results. Model performance is typically
evaluated using metrics such as accuracy, precision, recall, or
other measures suited to the specific application.
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Figure 3. Grid Search Fundamentals

D. Introduction of Bayesian optimization

Bayesian optimization is an advanced method for
optimizing objective functions that are costly to evaluate,
making it particularly effective for hyperparameter tuning in
machine learning models. It is highly efficient at identifying
optimal hyperparameters, especially when evaluating the
function involves significant computational resources, such as
training complex models on large datasets. The fundamental



principle of Bayesian optimization is to use a probabilistic
model to approximate the objective function and guide the
search for optimal parameters within the hyperparameter
space .

Unlike traditional methods like grid search or random
search, which do not adapt their strategies based on prior
evaluations, Bayesian optimization leverages past results to
make informed decisions about where to evaluate next. It
approximates the objective function, which is often unknown
and expensive to compute, using a stochastic model, typically
a Gaussian Process (GP). The GP not only estimates the
objective function's values but also provides a measure of
uncertainty, offering both a mean estimate and variance for
each point in the parameter space. This dual capability makes
the Gaussian Process particularly well-suited for Bayesian
optimization .

The Bayesian optimization process consists of two key
components: a surrogate probability model, which
approximates the objective function, and an acquisition
function, which determines the next point in the parameter
space to evaluate[9].

Iuput images

— |
Train Model |

e

convolution layers Fully Connected layers |

Hyper parameters

Ba esian 0 umtzali
Sample
suggested

|
| Hyper-parametars
t| Using acquisition
Update purameters 1 function o
i | fopeatac

Gaussian Process Model

Update Gaussian
process Model

Figure 4 Basic Principles of Bayesian Optimization

E. Introduction of Support Vector Machine

Support Vector Machines (SVMs) are a sophisticated class
of supervised learning algorithms, primarily designed for
classification tasks but also applicable to regression. They are
widely recognized for their ability to handle complex datasets
and model intricate decision boundaries effectively. The core
principle of SVMs is to identify the optimal hyperplane that
best separates data classes within the feature space .

In a two-dimensional space, this hyperplane appears as a
straight line, but in higher-dimensional spaces (corresponding
to the number of features in the data), it becomes a
multidimensional surface. The placement of this hyperplane is
crucial, as it is determined by the closest data points from each
class, known as support vectors. These support vectors are
critical in defining the orientation and position of the
hyperplane.

SVMs aim to maximize the margin between the
hyperplane and the support vectors, where the margin is the
distance between the hyperplane and the nearest points from
each class. A larger margin typically reduces the
generalization error of the model, improving its performance
on unseen data .

SVMs are effective for both linear and nonlinear data.
When the data is linearly separable, simpler linear SVMs are
often used, while more advanced techniques, such as kernel
methods, are employed for nonlinear cases to map data into
higher-dimensional spaces where linear separation becomes
possible[10].
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Figure 5 Basic Principles of Support Vector Machine

III. MAIN SUBJECT

A. Process of collecting and preprocessing crop growth
environment data

This section outlines the data collection methodology, the
characteristics of the collected data, and the data
preprocessing steps utilized in this study. Figure 6 presents a
photograph illustrating paprika environmental data obtained
from actual facility horticulture settings.

Figure 6. Collecting Environmental Data

Paprika data were collected at 5-minute intervals from
January 2024 to May 31, 2024. Table 1 summarizes the
characteristics of the collected data.

TABLE L SENSORS USED AND DATA ITEMS COLLECTED
Environmental data information
Data Datatype Unit
date Data collection date datetime Day
(yyyy-mm-dd)
Temperature Translqtlon qf temperature float64 °c
in 5-minute increments
Humidity Trar}slatlon of humidity in float64 %
5 minutes
Wind Translation of wind
. L . float64
direction direction every 5 minutes




Environmental data information

Data Datatype Unit
Wind speed Translgtlon (.)f wind speed float64 m/s
in 5-minute increments
Sunlight Zmount of sunlightper float64 W/m?
ay
Total Translation of )
Sunlight accumulated sunlight float64 Wim

Graph the data to check missing or outlier data.
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Figure 7. Paprika Data Graph

Looking at the graph, there appear to be no missing values.
To confirm this more accurately, we used a code-based
method to check for missing values. As a result, it was verified
that no missing values were present, as shown in Figure 8.
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Figure 8. Check missing values
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Since time series data is heavily influenced by time, we
analyzed temperature variations based on the time of day, the
daily temperature changes across each day of the week, and
the monthly temperature fluctuations.
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Figure 9. Temperature changes in paprika over time
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Figure 10. Temperature changes in paprika over the course of a week
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Figure 11. Monthly temperature changes in paprika

B. Preprocessing of crop growth environment datal

The temperature change data over time exhibits daily,
weekly, and monthly periodicity, emphasizing the importance
of time in predictions. However, since the time resets to 00:00
after every 24 hours, adjustments must be made to account for
this periodicity before the data can be utilized effectively.

In this study, sinusoidal functions (sin and cos) were
employed to transform the time into a continuous yearly
format. Time was converted into seconds to incorporate daily
or yearly cycles, with one day expressed as seconds and scaled
to day(365.2425)xday to account for leap years within a 365-
day year.

After completing basic data preprocessing, the dataset
must be divided. It is split into training, validation, and test
sets with a ratio of 8:1:1.

After creating a dataset, it is necessary to scale the data.
This is because many machine learning and deep learning
algorithms assume that all features are centered around 0 and
have similar distributions.

C. Results Analysis

This chapter focuses on the process of comparing actual
values with predicted values using preprocessed data and
machine learning algorithms. The study involved evaluating
the performance of random forest, support vector machine,
boosting algorithms, and time series analysis to compare
actual and predicted values.
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Figure 12. Graph of comparison between actual and predicted values of
paprika data using random forest

In the graph above, blue represents the actual values, and
red represents the predicted values. However, due to the large
amount of data, it is difficult to visually assess how well the
actual and predicted values align. Therefore, the prediction
accuracy was evaluated using the OOB score. Figure 14
displays the prediction accuracy for each graph.
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Figure 13. Random Forest Model Paprika Environmental Data OOB Score

The following figure presents the Best RMSE and Test
RMSE values obtained through grid search, a hyperparameter
tuning technique. Best RMSE refers to the lowest RMSE
value achieved during the cross-validation process within the
grid search. Test RMSE is calculated by evaluating the final
model on a separate test set. RMSE (Root Mean Square Error)
is a metric that measures the average error magnitude between
predicted and actual values. A lower RMSE indicates a
smaller average difference between the predicted and actual
values.

print(f'Best rnse: {np.sart(-orid_search_rf.best_score_): 5f}')
printif'Test rmse {n_rmselgrid_search_rf, test_¥_inp, test_y): Bf}')

Best rmser 0.05668
Test rnser 0.09316

Figure 14. Paprika Environmental Data rmse with Grid Search

Additionally, optimal hyperparameter values were
determined using Bayesian optimization, a hyperparameter
tuning technique. Figure 15 illustrates the random forest
model trained with these optimized values and depicts the
differences between the actual and predicted values as
evaluated using this model

OrderedDict {[{ 'bootstrap’, Trued,
‘max_depth’, 26},
max_features’, 5,
min_samples_leaf ', 1),
min_samples_split', 23,
{‘r_estimatars', 150010

—

from sklearn,metrics import mean_squared_erraor
import numpy as np

model = RandomForestRegressor (++best _params_bayes)
model fitix_train, w_train}

y_pred = model predict (x_test)

rmee = np,2qri{mean_squared_error(y_test, v_pred))
print{"Test RMSE:", rmsed

Test RMSE: 0,7151626556510402

Figure 15. Paprika environmental data rmse with Bayesian optimization

Figure 16 presents the analysis of actual and predicted
values using a support vector machine, another machine
learning algorithm. Based on the RMSE results, it is evident
that the predicted values obtained through hyperparameter
tuning of the Random Forest model demonstrate higher
accuracy compared to those of the support vector machine.

(array([10,84251807, 8,18150074, 7,73773995, ..., 12,88238664,
1461594436, 11,17594174]),
6,719053736726161)

Figure 16. Paprika environmental data rmse via support vector machine

Figure 17 illustrates the analysis of RMSE between actual
and predicted values using the Gradient Boosting model.
While the Gradient Boosting model achieves a better RMSE
value compared to the support vector machine, the accuracy
of the predicted values obtained through hyperparameter
tuning of the Random Forest model is higher.

(array{[17,9530031 , &,32824057, 14,55009855, ..,

1827597492, 21,90982513]),
2,8125357511339932)

11,83496511,

Figure 17 Paprika environmental data rmse with gradian boosting model

In this study, performance evaluation was conducted using
OOB scores obtained with the Random Forest model, along
with hyperparameter tuning techniques (grid search and
Bayesian optimization), support vector machines, and
Gradient Boosting.

Performance evaluation was conducted using the OOB
(Out-Of-Bag) score, which is calculated from data not
included in the bootstrap sample of each tree. The OOB score
provides an estimate of model performance without requiring
a separate validation set, making it particularly useful when
data is limited. It serves as an alternative to cross-validation;
while cross-validation splits the dataset into multiple training
and test sets, the OOB score leverages bootstrap samples and
their leftover data, offering a more efficient approach.

The OOB scores of the models derived from the
previously conducted random forest analysis were 0.9924,
demonstrating exceptionally high prediction accuracy for
paprika.

RMSE (Root Mean Square Error) is a standard metric used
in regression problems to measure the difference between
predicted and actual values.

1. Grid Search: Grid search is a hyperparameter tuning
method that systematically evaluates a predefined set of



hyperparameter values. By defining a grid of possible
hyperparameter combinations, it uses cross-validation to
assess model performance for each combination. This
exhaustive search ensures highly accurate prediction
performance by testing all possible configurations. In model
performance evaluation, grid search achieved the best RMSE
value of 0.05668, highlighting its effectiveness.

2. Bayesian Optimization: Bayesian optimization is a
stochastic model-based optimization technique that is more
efficient than grid search, particularly in high-dimensional
spaces. It builds a probabilistic model of the function based on
the validation set's hyperparameter values and applies criteria
such as expected improvement to select new hyperparameter
values for evaluation. In the model performance evaluation,
Bayesian optimization achieved the second-best RMSE value
of 0.71816.

These results demonstrate the effectiveness of both
methods, with grid search excelling in achieving optimal
performance and Bayesian optimization offering a more
efficient alternative for complex spaces.

TABLE II. COMPARED TO HYPERPARAMETER TUNING RMSE VALUES
Classification Paprika
Grid Search 0.05668
Bayesian optimization 0.71816

For the machine learning algorithms, Support Vector
Machine and Gradient Boosting, performance was evaluated
using RMSE values. The Support Vector Machine achieved
an RMSE value of 6.71905, while the Gradient Boosting
model produced an RMSE value of 2.81253. Although the
RMSE values for both Support Vector Machine and Gradient
Boosting are reasonable, the hyperparameter-tuned Random
Forest model demonstrated superior performance with a
significantly lower RMSE value. This indicates that the model
with hyperparameter tuning delivers the best overall
performance.

TABLE IIL COMPARE MACHINE LEARNING ALGORITHM RMSE VALUES
Classification Paprika
Support Vector Machine 6.71905
Gradient Boosting 2.81253

IV. CONCLUSION

This study focused on developing an artificial intelligence-
based horticultural paprika crop growth prediction. Crop
growth environment data were collected, and their
characteristics were analyzed. Outliers and missing data were
identified after visualizing the entire dataset using graphs.
Considering the time-series nature of the data, variations were
examined across hours, days of the week, and months. The
dataset was divided by crop and further split into training,
validation, and test sets in an 8:1:1 ratio. Since machine
learning and deep learning algorithms often assume similar
variances centered around zero, the crop environmental data
were scaled before applying the algorithms. The Random

Forest model was employed to visualize and compare actual
and predicted values for each crop. To improve prediction
accuracy, hyperparameter tuning techniques such as grid
search and Bayesian optimization were utilized, and RMSE
values were calculated. Additionally, RMSE values were
obtained using Support Vector Machine and Gradient
Boosting algorithms for comparison. In conclusion, the
Random Forest model achieved an accuracy of over 90%,
demonstrating its ability to provide accurate predictions for
real-world farming scenarios. This suggests that systems
based on this model can effectively support farmers by
offering reliable predictions grounded in real data, thereby
optimizing crop growth environments. This research
underscores the potential to enhance yields and improve
resource utilization, such as water, fertilizers, and pesticides.
Future research should extend beyond environmental factors
to include predictions of disease outbreaks and pest
infestations using historical data. Such advancements could
not only improve yields but also address challenges in the
agricultural and livestock industries, including the aging
workforce and the shortage of young successors in farming.
This would contribute to increasing agricultural productivity
and sustainability.
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