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Abstract— Smart farms are gaining significant attention as 

a solution to the sustainability crisis in rural areas. Challenges 

such as stagnant income, exports, and growth rates, driven by 

the aging population in the agricultural and livestock industries, 

a shortage of young successors to farming, decreasing 

production areas, and declining investments, are compounded 

by the increasing instability in crop production and losses 

caused by ongoing climate change. This study focuses on 

developing an artificial intelligence-based horticultural paprika 

crop growth prediction system tailored to environmental 

conditions such as temperature, humidity, and wind direction. 

Data were collected from facility horticultural farms using 

weather, environmental, and specialized sensors, with the 

measurements stored in a database. Preprocessing was 

performed on the stored data, and since the dataset consisted of 

time-series data, time periodicity was incorporated using 

trigonometric functions. The dataset was split into training, 

validation, and test sets, and data scaling was applied to 

normalize the feature ranges for compatibility with AI models. 

Various models, including Random Forest, Support Vector 

Machine (SVM), Boosting algorithms, and time series models, 

were trained to predict crop growth based on external 

environmental factors (temperature, humidity, wind direction, 

wind speed, and sunlight) and the actual versus predicted 

values. The model with the highest accuracy was selected for 

further analysis. The results of this research demonstrate the 

potential to increase crop productivity and yields by creating 

optimal growth conditions. Additionally, the study contributes 

to cost reduction and environmental sustainability by 

optimizing the use of pesticides and fertilizers. Beyond 

addressing environmental factors, the system leverages 

historical data to predict the likelihood of disease outbreaks and 

pest infestations. This approach not only improves farm yields 

but also addresses workforce challenges in the agricultural and 

livestock industries, offering solutions to the aging population 

and the shortage of young successors in farming. 
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I. INTRODUCTION 

Smart farms are emerging as a promising solution to 
address the sustainability challenges faced by rural areas. 
These challenges include stagnant income, limited export and 
growth rates due to an aging population in the agricultural and 
livestock industries, a shortage of young successors to 
farming, decreasing production areas, and declining 
investments [1]. Smart farms integrate facility horticulture 
with advanced technologies such as IoT, big data, AI, 
automation systems, and robotics to remotely or automatically 

manage the growing environment for crops. Presently, the 
adoption of AI in smart farms highlights the need for an 
enhanced integrated environmental control system capable of 
upgrading operational efficiency [2]. 

Crops are highly influenced by environmental factors 
during their growth, necessitating precise environmental 
control to optimize yield. Among various factors, temperature 
and humidity are crucial for crop development. Temperature 
regulates key processes such as germination, growth duration, 
differentiation, and flowering. Deviations from the optimal 
growth temperature can inhibit growth and, in severe cases, 
lead to crop failure [3].  

Similarly, humidity plays a vital role in plant physiology. 
Inappropriate humidity levels can cause disorders such as fruit 
drop, leaf wilting, and stomatal closure, while also increasing 
the likelihood of pests and diseases. Improper control of these 
environmental factors can significantly deteriorate the growth 
environment, reduce production, and exacerbate pest-related 
issues [4]. 

In facility-based horticulture, devices are available to 
control internal temperature and humidity. Since these 
parameters vary based on actions such as opening or closing 
switches, predicting changes in temperature and humidity can 
serve as an effective strategy for precise environmental 
control [5]. 

This study collected environmental variables essential for 
crop growth in facility horticulture and employed time series 
analysis to predict growth environments. The performance of 
the random forest model was evaluated using OOB (Out-Of-
Bag) scores, and hyperparameter tuning was conducted 
through grid search and Bayesian optimization to enhance 
model performance. The RMSE value was calculated as part 
of the optimization process. In addition to random forest, the 
model was also assessed using support vector machines 
(SVM) and Gradient Boosting. 

Furthermore, an AI-based field crop growth information 
prediction system utilizing the random forest model was 
implemented on actual farms to provide one-month data 
forecasts. Applying these research findings to open-field 
farms could help address constantly changing external factors, 
thereby optimizing crop management and yield planning. This 
approach is anticipated to enable more efficient operations, 
including resource management, market demand forecasting, 
and price management. 



II. RELATED RESEARCH 

A. Introduction of RandomForest 

Random Forest is a machine learning algorithm built on an 
ensemble of multiple decision trees. Each tree in the model is 
independently trained on a random subset of the data, and the 
algorithm combines the predictions of these individual trees to 
produce a final decision . 

The trees are constructed using bootstrap sampling, a 
process in which samples are randomly selected from the 
entire dataset with replacement. This method increases the 
diversity of the model by reducing the correlation between 
trees. Furthermore, instead of using all features during the 
splitting process, each tree considers only a randomly selected 
subset of features to determine the splits. This approach allows 
Random Forest to capture different aspects of the data, 
enhancing the model's generalization capabilities. 

An additional strength of Random Forest is its ability to 
assess the importance of each feature, enabling the 
identification of variables that significantly influence 
predictions. One of its primary advantages is its resilience to 
overfitting, as the ensemble approach mitigates the risk of 
individual trees overfitting to specific data samples or noise 
[6]. 

 

Figure 1. Random Forest Decision Tree 

B. Introduction of Hyperparameter tuning 

Hyperparameter tuning is a critical process in machine 
learning that involves optimizing model parameters, such as 
the learning rate or the number of hidden layers in a neural 
network, prior to training. These hyperparameters 
significantly influence the model's operation and 
performance, making their optimization essential . 

Effective hyperparameter optimization directly impacts 
model efficiency by mitigating the risks of overfitting (when 
the model is overly complex) and underfitting (when the 
model is too simple). Various methods can be employed for 
this process, including grid search, Bayesian optimization, and 
gradient-based optimization. These techniques use 
probabilistic models or random searches to explore 
combinations of hyperparameters, predicting the most 
effective configurations. Bayesian optimization, in particular, 
is well-suited for continuous hyperparameters, while gradient-
based methods often rely on gradient descent for optimization. 
Evolutionary algorithms, inspired by natural processes like 
mutation and crossover, also play a role in identifying optimal 

hyperparameter sets by balancing model complexity and 
generalization capabilities. 

The effectiveness of hyperparameter tuning is typically 
assessed through cross-validation, a method where the model 
is trained and validated on different subsets of the data. 
Performance metrics tailored to the problem at hand, such as 
classification or regression, are used to evaluate the model. 
Commonly used metrics include accuracy, precision, recall, 
F1 score, and mean squared error.  

These metrics provide insight into the model's ability to 
generalize and perform effectively across unseen data[7].

 

Figure 2. Hyperparameter Tuning Fundamentals 

C. Introduction of Grid Search 

Grid search is a commonly used technique in machine 
learning for hyperparameter tuning. Its goal is to 
systematically explore multiple combinations of 
hyperparameter options to identify the best configuration for 
a specific model and dataset. This involves constructing a grid 
of all possible hyperparameter combinations [8]. 

The model is trained for each combination within this grid, 
enabling a thorough and precise search through a predefined 
subset of the hyperparameter space. This method is highly 
beneficial as it helps improve model performance by 
identifying the optimal hyperparameters, which are those that 
yield the best results. Model performance is typically 
evaluated using metrics such as accuracy, precision, recall, or 
other measures suited to the specific application.  

 

Figure 3. Grid Search Fundamentals 

D. Introduction of Bayesian optimization 

Bayesian optimization is an advanced method for 
optimizing objective functions that are costly to evaluate, 
making it particularly effective for hyperparameter tuning in 
machine learning models. It is highly efficient at identifying 
optimal hyperparameters, especially when evaluating the 
function involves significant computational resources, such as 
training complex models on large datasets. The fundamental 



principle of Bayesian optimization is to use a probabilistic 
model to approximate the objective function and guide the 
search for optimal parameters within the hyperparameter 
space . 

Unlike traditional methods like grid search or random 
search, which do not adapt their strategies based on prior 
evaluations, Bayesian optimization leverages past results to 
make informed decisions about where to evaluate next. It 
approximates the objective function, which is often unknown 
and expensive to compute, using a stochastic model, typically 
a Gaussian Process (GP). The GP not only estimates the 
objective function's values but also provides a measure of 
uncertainty, offering both a mean estimate and variance for 
each point in the parameter space. This dual capability makes 
the Gaussian Process particularly well-suited for Bayesian 
optimization . 

The Bayesian optimization process consists of two key 
components: a surrogate probability model, which 
approximates the objective function, and an acquisition 
function, which determines the next point in the parameter 
space to evaluate[9].  

 

Figure 4 Basic Principles of Bayesian Optimization 

E. Introduction of Support Vector Machine 

Support Vector Machines (SVMs) are a sophisticated class 
of supervised learning algorithms, primarily designed for 
classification tasks but also applicable to regression. They are 
widely recognized for their ability to handle complex datasets 
and model intricate decision boundaries effectively. The core 
principle of SVMs is to identify the optimal hyperplane that 
best separates data classes within the feature space . 

In a two-dimensional space, this hyperplane appears as a 
straight line, but in higher-dimensional spaces (corresponding 
to the number of features in the data), it becomes a 
multidimensional surface. The placement of this hyperplane is 
crucial, as it is determined by the closest data points from each 
class, known as support vectors. These support vectors are 
critical in defining the orientation and position of the 
hyperplane. 

SVMs aim to maximize the margin between the 
hyperplane and the support vectors, where the margin is the 
distance between the hyperplane and the nearest points from 
each class. A larger margin typically reduces the 
generalization error of the model, improving its performance 
on unseen data . 

SVMs are effective for both linear and nonlinear data. 
When the data is linearly separable, simpler linear SVMs are 
often used, while more advanced techniques, such as kernel 
methods, are employed for nonlinear cases to map data into 
higher-dimensional spaces where linear separation becomes 
possible[10]. 

 

Figure 5 Basic Principles of Support Vector Machine 

III. MAIN SUBJECT 

A. Process of collecting and preprocessing crop growth 

environment data 

This section outlines the data collection methodology, the 
characteristics of the collected data, and the data 
preprocessing steps utilized in this study. Figure 6 presents a 
photograph illustrating paprika environmental data obtained 
from actual facility horticulture settings. 

 

Figure 6. Collecting Environmental Data 

Paprika data were collected at 5-minute intervals from 
January 2024 to May 31, 2024. Table 1 summarizes the 
characteristics of the collected data. 

TABLE I.  SENSORS USED AND DATA ITEMS COLLECTED 

 
Environmental data information 

Data Datatype Unit 

date Data collection date 
datetime 

(yyyy-mm-dd) 
Day 

Temperature 
Translation of temperature 
in 5-minute increments 

float64 ˚C 

Humidity 
Translation of humidity in 
5 minutes 

float64 % 

Wind 
direction 

Translation of  wind 
direction every 5 minutes 

float64 ˚ 



 
Environmental data information 

Data Datatype Unit 

Wind speed 
Translation of wind speed 

in 5-minute increments 
float64 m/s 

Sunlight 
amount of sunlight per 

day 
float64 W/m² 

Total_ 

Sunlight 

Translation of 

accumulated sunlight 
float64 W/m² 

 

Graph the data to check missing or outlier data. 

Figure 7. Paprika Data Graph 

Looking at the graph, there appear to be no missing values. 
To confirm this more accurately, we used a code-based 
method to check for missing values. As a result, it was verified 
that no missing values were present, as shown in Figure 8. 

Figure 8. Check missing values 

Since time series data is heavily influenced by time, we 
analyzed temperature variations based on the time of day, the 
daily temperature changes across each day of the week, and 
the monthly temperature fluctuations. 

Figure 9. Temperature changes in paprika over time 

 

Figure 10. Temperature changes in paprika over the course of a week 

 

Figure 11. Monthly temperature changes in paprika 

B. Preprocessing of crop growth environment datal 

The temperature change data over time exhibits daily, 
weekly, and monthly periodicity, emphasizing the importance 
of time in predictions. However, since the time resets to 00:00 
after every 24 hours, adjustments must be made to account for 
this periodicity before the data can be utilized effectively.  

In this study, sinusoidal functions (sin and cos) were 
employed to transform the time into a continuous yearly 
format. Time was converted into seconds to incorporate daily 
or yearly cycles, with one day expressed as seconds and scaled 
to day(365.2425)×day to account for leap years within a 365-
day year. 

After completing basic data preprocessing, the dataset 
must be divided. It is split into training, validation, and test 
sets with a ratio of 8:1:1. 

After creating a dataset, it is necessary to scale the data. 
This is because many machine learning and deep learning 
algorithms assume that all features are centered around 0 and 
have similar distributions. 

C. Results Analysis 

This chapter focuses on the process of comparing actual 
values with predicted values using preprocessed data and 
machine learning algorithms. The study involved evaluating 
the performance of random forest, support vector machine, 
boosting algorithms, and time series analysis to compare 
actual and predicted values. 



Figure 12. Graph of comparison between actual and predicted values of 
paprika data using random forest 

In the graph above, blue represents the actual values, and 
red represents the predicted values. However, due to the large 
amount of data, it is difficult to visually assess how well the 
actual and predicted values align. Therefore, the prediction 
accuracy was evaluated using the OOB score. Figure 14 
displays the prediction accuracy for each graph. 

 

Figure 13. Random Forest Model Paprika Environmental Data OOB Score 

The following figure presents the Best RMSE and Test 
RMSE values obtained through grid search, a hyperparameter 
tuning technique. Best RMSE refers to the lowest RMSE 
value achieved during the cross-validation process within the 
grid search. Test RMSE is calculated by evaluating the final 
model on a separate test set. RMSE (Root Mean Square Error) 
is a metric that measures the average error magnitude between 
predicted and actual values. A lower RMSE indicates a 
smaller average difference between the predicted and actual 
values. 

Figure 14. Paprika Environmental Data rmse with Grid Search 

Additionally, optimal hyperparameter values were 
determined using Bayesian optimization, a hyperparameter 
tuning technique. Figure 15 illustrates the random forest 
model trained with these optimized values and depicts the 
differences between the actual and predicted values as 
evaluated using this model 

Figure 15. Paprika environmental data rmse with Bayesian optimization 

Figure 16 presents the analysis of actual and predicted 
values using a support vector machine, another machine 
learning algorithm. Based on the RMSE results, it is evident 
that the predicted values obtained through hyperparameter 
tuning of the Random Forest model demonstrate higher 
accuracy compared to those of the support vector machine. 

 

Figure 16. Paprika environmental data rmse via support vector machine 

Figure 17 illustrates the analysis of RMSE between actual 
and predicted values using the Gradient Boosting model. 
While the Gradient Boosting model achieves a better RMSE 
value compared to the support vector machine, the accuracy 
of the predicted values obtained through hyperparameter 
tuning of the Random Forest model is higher. 

 

Figure 17 Paprika environmental data rmse with gradian boosting model 

In this study, performance evaluation was conducted using 
OOB scores obtained with the Random Forest model, along 
with hyperparameter tuning techniques (grid search and 
Bayesian optimization), support vector machines, and 
Gradient Boosting. 

Performance evaluation was conducted using the OOB 
(Out-Of-Bag) score, which is calculated from data not 
included in the bootstrap sample of each tree. The OOB score 
provides an estimate of model performance without requiring 
a separate validation set, making it particularly useful when 
data is limited. It serves as an alternative to cross-validation; 
while cross-validation splits the dataset into multiple training 
and test sets, the OOB score leverages bootstrap samples and 
their leftover data, offering a more efficient approach. 

The OOB scores of the models derived from the 
previously conducted random forest analysis were 0.9924, 
demonstrating exceptionally high prediction accuracy for 
paprika. 

RMSE (Root Mean Square Error) is a standard metric used 
in regression problems to measure the difference between 
predicted and actual values. 

1. Grid Search: Grid search is a hyperparameter tuning 
method that systematically evaluates a predefined set of 



hyperparameter values. By defining a grid of possible 
hyperparameter combinations, it uses cross-validation to 
assess model performance for each combination. This 
exhaustive search ensures highly accurate prediction 
performance by testing all possible configurations. In model 
performance evaluation, grid search achieved the best RMSE 
value of 0.05668, highlighting its effectiveness. 

2. Bayesian Optimization: Bayesian optimization is a 
stochastic model-based optimization technique that is more 
efficient than grid search, particularly in high-dimensional 
spaces. It builds a probabilistic model of the function based on 
the validation set's hyperparameter values and applies criteria 
such as expected improvement to select new hyperparameter 
values for evaluation. In the model performance evaluation, 
Bayesian optimization achieved the second-best RMSE value 
of 0.71816. 

These results demonstrate the effectiveness of both 
methods, with grid search excelling in achieving optimal 
performance and Bayesian optimization offering a more 
efficient alternative for complex spaces. 

TABLE II.  COMPARED TO HYPERPARAMETER TUNING RMSE VALUES 

Classification Paprika 

Grid Search 0.05668 

Bayesian optimization 0.71816 

For the machine learning algorithms, Support Vector 
Machine and Gradient Boosting, performance was evaluated 
using RMSE values. The Support Vector Machine achieved 
an RMSE value of 6.71905, while the Gradient Boosting 
model produced an RMSE value of 2.81253. Although the 
RMSE values for both Support Vector Machine and Gradient 
Boosting are reasonable, the hyperparameter-tuned Random 
Forest model demonstrated superior performance with a 
significantly lower RMSE value. This indicates that the model 
with hyperparameter tuning delivers the best overall 
performance. 

TABLE III.  COMPARE MACHINE LEARNING ALGORITHM RMSE VALUES 

Classification Paprika 

Support Vector Machine 6.71905 

Gradient Boosting 2.81253 

IV. CONCLUSION 

This study focused on developing an artificial intelligence-
based horticultural paprika crop growth prediction. Crop 
growth environment data were collected, and their 
characteristics were analyzed. Outliers and missing data were 
identified after visualizing the entire dataset using graphs. 
Considering the time-series nature of the data, variations were 
examined across hours, days of the week, and months. The 
dataset was divided by crop and further split into training, 
validation, and test sets in an 8:1:1 ratio. Since machine 
learning and deep learning algorithms often assume similar 
variances centered around zero, the crop environmental data 
were scaled before applying the algorithms. The Random 

Forest model was employed to visualize and compare actual 
and predicted values for each crop. To improve prediction 
accuracy, hyperparameter tuning techniques such as grid 
search and Bayesian optimization were utilized, and RMSE 
values were calculated. Additionally, RMSE values were 
obtained using Support Vector Machine and Gradient 
Boosting algorithms for comparison. In conclusion, the 
Random Forest model achieved an accuracy of over 90%, 
demonstrating its ability to provide accurate predictions for 
real-world farming scenarios. This suggests that systems 
based on this model can effectively support farmers by 
offering reliable predictions grounded in real data, thereby 
optimizing crop growth environments. This research 
underscores the potential to enhance yields and improve 
resource utilization, such as water, fertilizers, and pesticides. 
Future research should extend beyond environmental factors 
to include predictions of disease outbreaks and pest 
infestations using historical data. Such advancements could 
not only improve yields but also address challenges in the 
agricultural and livestock industries, including the aging 
workforce and the shortage of young successors in farming. 
This would contribute to increasing agricultural productivity 
and sustainability. 
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