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Abstract—Accurate three-dimensional tooth segmentation 
from cone-beam computed tomography (CBCT) is critical for 
advanced dental diagnosis and treatment planning. This study 
presents a deep-learning approach for segmenting individual 
teeth from manually cropped teeth regions of interest (ROIs) in 
preprocessed CBCT images. The proposed method integrates 
dilated attention and squeeze-and-excitation attention 
mechanisms into the skip connections of a V-Net architecture, 
enabling precise segmentation of complex dental structures, 
including tooth roots and boundaries. These attention 
mechanisms enhance feature representation and localization, 
improving accuracy and robustness. Experimental evaluations 
show that the method achieves high segmentation performance 
of dice score 90.01%, surpassing state-of-the-art methods and 
demonstrating its effectiveness for clinical dental applications. 

Keywords— CBCT, Squeeze and Excitation attention, Dilated 
convolution, 3D segmentation, Tooth Centroid, Tooth Skeleton.  

I. INTRODUCTION  

Three-dimensional (3D) tooth segmentation plays a 
pivotal role in modern dentistry, enabling precise planning and 
improved outcomes in orthodontics, dental surgeries, and 
diagnostics [1]. Unlike traditional 2D imaging, which 
provides limited perspectives, 3D segmentation allows for the 
detailed analysis of individual teeth and their surrounding 
structures. This capability is essential for tasks such as implant 
placement, orthodontic appliance design, and detecting dental 
conditions like bone loss or root fractures. By providing a 
comprehensive view of dental anatomy, 3D segmentation [2] 
helps clinicians tailor treatments, minimize risks, and enhance 
overall care quality as shown in Figure 1. 

With the rapid advancements in deep learning, 
segmentation techniques have proven to be highly effective 
and reliable in medical imaging applications, including dental 
image analysis. As a result, several studies have explored their 
application for individual tooth segmentation [3-5]. For 
instance, Cui et al. [6] introduced ToothNet, a pioneering 
framework for tooth segmentation in CBCT images. Their 
approach begins by extracting tooth edges from the input 
CBCT image and then combines the edge map with the 
original image using a region proposal network to produce 
segmentation results. 

Similarly, Lee et al. [7] and Gerhardt et al. [8] proposed a 
two-stage segmentation strategy. In their methods, the initial 
stage involves localizing individual teeth within the CBCT 
image using object detection and related techniques. 
Additionally, Cui et al. [9] developed a fully automatic AI 
system for simultaneous tooth and alveolar bone segmentation 
from CBCT images. The method effectively addresses both 
soft and hard tissue challenges, making it suitable for complex  

  

 

Figure 1: An example output of our teeth segmentation architecture. The 
upper left is the ground tooth CBCT, bottom left is the predicted 
segmentation in 2D, top and bottom right are the 3D segmentation of the 
corresponding image. 

dental anatomies. However, its three-stage architecture is 
highly complex, relying on ROI generation, and occasionally 
produces inconsistent tooth classifications. More recently, Lv, 
W., et al. [10] presented a skeleton-guided V-Net for tooth 
extraction, which is designed to extract the tooth skeleton. 
However, it was trained on a very small dataset and does not 
account for metal artifacts, limiting its ability to generalize 
effectively across different cases.   

Previous methods for 3D tooth segmentation often face 
limitations due to being trained on small datasets, which 
reduces their generalizability and robustness. Additionally, 
these approaches struggle with challenging scenarios such as 
the presence of metal artifacts in CBCT images and cases with 
closed bite positions, resulting in reduced segmentation 
accuracy. Furthermore, these methods typically fail to reliably 
delineate complex dental structures, particularly in areas with 
intricate root morphologies or low contrast between teeth and 
surrounding tissues.   

To address these shortcomings, we propose a novel 
learning-based framework for automatic 3D tooth instance 
segmentation from CBCT images. Our approach incorporates 
domain-specific adaptations, such as centroid and skeleton-
guided segmentation, to enhance precision even in 
challenging conditions like metal artifacts and closed bite 
positions. By leveraging shape and data priors, the proposed 
method effectively isolates teeth from surrounding tissues and 
distinguishes individual teeth with improved accuracy and 
reliability.   

This study specifically focuses on overcoming these 
challenges by delivering a robust solution for CBCT-based 3D 
tooth segmentation, making it more suitable for complex 
clinical scenarios in modern dentistry. 

  



 

Figure 2: Proposed architecture of our teeth segmentation Network. The left block consists of centroid and skeleton extraction networks. In the skip connection 
Dilated attention and then Squeeze and Excitation attention (D+SE) is used. The right block does the identification and segmentation of each individual tooth. 
The result is a 2D output as well as 3D.

II. PROPOSED METHODOLOGY 

Figure 2 illustrates the detailed architecture of our proposed 
method, tailored for high-precision 3D tooth segmentation 
from CBCT data. The approach consists of two primary 
stages.  

A. Centroid and Skeleton Extraction Stage: 

The first stage processes the CBCT to extract crucial 
structural information. This involves the localization of 
individual tooth centroids and the generation of a detailed 
tooth skeleton. The extraction block is built on a V-Net [11] 
backbone augmented with Dilated attention and Squeeze-and-
Excitation attention(D+SE) blocks [12,13], integrated into the 
skip connections. These attention mechanisms enhance the 
network's ability to focus on both global and local anatomical 
features, improving feature representation for accurate 
centroid and skeleton detection. 

1) Centroid Extraction: 
This segment of the network predicts the centroid of each 

tooth by calculating the distance and direction (offset) from 
very point in the image to the closest tooth center. The result 
is a map called the centroid offset map, where each point 
points toward the center of a tooth. This helps locate teeth 
accurately, which is important for tasks like aligning teeth in 
orthodontics. 

2) Skeleton Extraction: 
At the same time, another segment of the network focuses 

on the shape and structure of the teeth. It creates a binary map 
that separates teeth from the background and an offset map 
that shows the distance and direction to the closest point on 
the tooth skeleton. Using this information, the network 
generates a detailed skeleton map that highlights the structure 
of the teeth. This map is further refined to keep only the most 
important parts, giving a clean and accurate representation of 
the tooth skeleton. 

B. Single Tooth Segmentation Stage:  

Once the centroids and skeletons are found, the second 
stage uses these information to segment each tooth 
individually. The single tooth segmentation stage uses two-
channel inputs comprising patches cropped from the centroid 

map and skeleton map. Each input patch, sized 96×96×96, 
encapsulates the anatomical and spatial context of the tooth. 
These inputs are processed by a V-Net architecture, 
specifically designed to segment individual teeth with high 
precision. The network outputs instance segmentation results 
for each tooth, significantly improving the accuracy of tooth 
location and providing a detailed analysis of their structural 
topology. This stage process ensures precise and reliable 
segmentation of each tooth, even in challenging cases with 
closely packed or overlapping teeth.   

We chose not to use D+SE attention at this stage because 
we found that it is primarily effective in the initial stages of 
feature extraction, where it captures spatial and channel 
relationships comprehensively and efficiently. Applying it at 
the final stage, however, resulted in overfitting. This issue 
arises because the deeper architecture of D+SE tends to 
excessively refine features at later stages, leading to reduced 
generalizability and a negative impact on the model's overall 
performance. 

C. Detailed Structure of the Dilated Attention and Squeeze-
and-Excitation Attention  

The Dilated Attention and Squeeze-and-Excitation 
(D+SE) Block presented in Figure 3, combines dilated 
convolution-based attention and spatial attention mechanisms, 
designed to enhance the network’s focus on both spatial and 
contextual features. This block processes 3D volumetric input 
map X∈RC×H×W×D with tensor dimensions represented as 
(𝐶,𝐻,𝑊,𝐷) where 𝐶 represents the number of channels, and 
(H,W,D) are the spatial dimensions of the input volume. 

1) Dilated Attention Mechanism 
The dilated attention mechanism employs dilated 
convolutions to expand the receptive field while maintaining 
computational efficiency, enabling the capture of both local 
and global spatial dependencies. In this block, the input map 
X, with dimensions (C, H, W, D), is passed through a series of 
3D dilated convolutions with different dilation rates (1,3,5,7 
and 9). These convolutions use a kernel size of 3 and various 
padding values to preserve the spatial dimensions (H, W, D). 
The outputs from all convolutions are summed elementwise,  



 

Figure 3: The block diagram of D+SE attention mechanism used in the skip connection of the V-Net architecture. The dilated attention mechanism is shown 
at the left side, while the Squeeze and Excitation attention mechanism is shown at the right side.

producing a refined map after dilated attention Xd of size (C, 
H, W, D) same as the input map. 
 

2) Squeeze-and-Excitation (SE) Mechanism 
The squeeze-and-excitation (SE) attention block 

recalibrates channel-wise and spatial-wise features to 
highlight the most relevant channels. Two types of SE 
mechanisms are employed within this block: channel attention 
and spatial attention.  

The channel attention operates by first applying an 
adaptive group average pooling (GAP) operation on the input 
map Xd, with dimension (C,H,W,D), reducing the spatial 
dimensions to a map of size (C,1,1,1). This is followed by a 
1x1 3D convolution, which acts similarly to fully connected 
layers, reducing the dimensionality by a factor of r (in our case 
r=16) and then restoring it back to the original number of 
channels C. A sigmoid activation function is applied to 
generate channel-wise attention weights, which are then 
multiplied elementwise with the original input map, 
recalibrating the features. The output retains the original 
dimensions (C,H,W,D), now with enhanced channel-wise 
attention.  

Simultaneously, the spatial mechanism focuses on 
recalibrating spatial  features. A 3D convolution with a kernel 
size of 1 is applied to the input map, producing a single 
channel map. After  passing through a sigmoid activation 
function , spatial attention weights are generated, which are 
then multiplied element-wise with the input map to highlight 
important spatial regions. The outputs from both the channel 
and spatial attention mechanisms are concatenated, resulting 
in a feature map of size (2C,H,W,D). After concatenation, a 
1x1 3D convolution is applied to reduce the resulting 
dimensions back to (C,H,W,D). This final output Xr is the 
refined output of the input feature map.  

D. Loss function 

During the training stage, we employ a combined loss 
function consisting of Binary Cross-Entropy (BCE) Loss and 
Dice Loss to guide the segmentation process. This approach 
balances pixel-wise classification and the overlap between the 
predicted and ground truth segmentation masks. Given 𝑋 as 
the input volume batch, 𝐺 as the ground truth labels, 𝑃 as the 
predicted output probabilities after applying the SoftMax 
function, the BCE loss (𝐿஻஼ா) is presented as (1).  

𝐿஻஼ா(𝑃, 𝐺) =  −
1

𝐶
෍ ෍ 𝐺௜௝

஼

௝ୀଵ

ே

௜ୀଵ

𝑙𝑜𝑔൫𝑃௜,௝൯                          (1) 

 
while the Dice loss (𝐿ௗ) is presented as equation (2):  
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Here, C is the number of classes, N is the total number of 
voxels, 𝐺௜௝  represents the ground truth probability for the ith 
voxel belonging to class j, and 𝑃௜,௝  denotes the predicted 
probability for the ith voxel assigned to class j. In the centroid 
and skeleton component, the combined loss (𝐿௖&௦) is shown 
as equation (3): 

𝐿௖&௦ = ⅄௖ ቀ 𝐿஻஼ா ௖
(𝑃, 𝐺)   +  𝐿ௗ೎
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where ⅄௖ and ⅄௦ represent the contributions of centroid loss 
and skeleton loss, respectively, both of which are set to 0.5 in 
our experiments. In the second stage, which involves single 
tooth segmentation, the same BCE and Dice losses are used to 
evaluate the discrepancy between the predicted segmentation 
and the ground truth. The combined loss function for the 
single tooth segmentation component ( 𝐿௦௧)  is shown as 
equation (4): 
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1
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III. RESULTS 

A. Implementation Details: 

The framework was implemented using the PyTorch 
library [12], with the Adam optimizer employed to minimize 
the loss functions and optimize the network parameters 
through backpropagation. A learning rate of 0.001 and a mini-
batch size of 1 were used across all components of the 
architecture, with a total of 100 epochs. At the end of each 
epoch, the loss on the validation dataset was computed to 
monitor network convergence. If the model's performance on 
the validation dataset showed no improvement over 5 
consecutive epochs, training was considered converged and  
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was stopped. All models were trained on an NVIDIA GeForce 
RTX 3090 GPU. 

B. Data preprocessing: 

The public dataset of 100 CBCT images obtained via official 
request from [9], has an axial resolution of 400×400 pixels and 
a depth of 224 to 368 slices. To ensure consistency, the images 
were resampled to an isotropic resolution of 0.4×0.4×0.4 mm³, 
removing anisotropy and maintaining uniform spatial 
resolution. Resampling was done using scaling factors 
calculated from the original voxel spacing, with trilinear 
interpolation for labels and nearest-neighbor interpolation for 
images. 

Next, the intensity of the CBCT images is normalized to the 
range [0, 1]. To generate training data, 35 random patches of 
size 128×128×128 are cropped around the alveolar bone in 
each CBCT image. To improve the model's generalization and 
robustness to variations, we implemented a set of data 
augmentation techniques tailored specifically for 3D images. 

C. Metrics for Evaluation: 

We chose Dice score, IoU, precision, and recall evaluating 
accuracy, overlap, and the balance between predictions, 
which are essential for 3D segmentation. Their equations and 
descriptions are in Table 1. 

D. Qualitative Comparison 

Figure 4 presents a qualitative comparison of tooth 
identification and segmentation results using a standard 
CBCT case. The first column illustrates the 2D view of the 
dental arch, while the subsequent columns display 
reconstructed 3D tooth models from two perspectives, right 
and left views. The ground truth segmentation is shown in the 
first row, followed by results from three competing methods: 
the skeleton-guided method [10], ToothNet [6], and 
Automatic AI [9]. Our proposed method is depicted in the 
final row. 

The red rectangles highlight segmentation inaccuracies 
observed in the alternative methods, particularly in 
delineating individual teeth and handling overlapping 
regions. While the skeleton-guided approach struggles with 
over-segmentation and lacks precision in boundary 
delineation, ToothNet and Automatic AI exhibit issues such 
as missed tooth parts and inaccurate separation of adjacent 
teeth. None of these methods segmented wisdom teeth.  

Figure 4: Qualitative comparison of tooth identification and segmentation 
using a standard CBCT case. The leftmost column displays the 2D view, 
while the following columns present the reconstructed 3D tooth models from 
two distinct angles left and right. Red rectangles are used to emphasize 
segmentation errors in the results. 
 
Table 2: Quantitative comparison.  

Methods Dice % IoU % Precision % Recall % 

ToothNet [6] 83.94 73.18 80.70 88.78 

Automatic AI [9] 85.10 74.44 90.21 80.90 

Skeleton guided [10] 79.91 68.02 77.54 85.23 

Ours 90.35 82.61 91.43 89.78 

Bold represent highest score in each column. 

 

In contrast, our method achieves superior segmentation 
results, accurately isolating individual teeth and maintaining 
the integrity of their 3D structures. All the teeth are 
successfully identified and segmented. The detailed tooth 
boundaries and minimal segmentation errors demonstrate the 
robustness of our approach, even in challenging cases 
involving complex dental anatomies. This qualitative 
analysis emphasizes the effectiveness of our model compared 
to state-of-the-art techniques. 

E. Quantitative Comparison 

Table 2 provides a quantitative comparison of our method 
with the state-of-the-art methods. As shown in the table, our 
method outperforms all competing approaches, 
demonstrating superior accuracy in all metrics. This indicates 
its effectiveness in addressing the challenges of tooth 
segmentation, such as distinguishing individual teeth and 
accurately capturing tooth boundaries. The results clearly 
highlight the robustness and reliability of our model 
compared to existing methods. 

Metrics Formulas 
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IV. CONCLUSION AND FUTURE WORK 

In this study, we proposed a deep-learning framework for 
3D tooth instance segmentation from CBCT images, which 
effectively addresses the challenges posed by complex dental 
anatomies, including variable tooth sizes, intricate root 
structures, and metal artifact. Our approach integrates a 
combination of both dilated attention and squeeze-and-
excitation attention mechanism within the skip connections of 
a V-Net architecture, significantly improving segmentation 
accuracy. Quantitative and qualitative evaluations 
demonstrated that our method outperforms state-of-the-art 
approaches, achieving superior results in segmenting 
individual teeth and tooth roots. These findings highlight the 
potential of our model for advancing digital dentistry and 
improving clinical workflows. 

For future work, we aim to enhance the generalizability of 
our model by training it on a larger and more diverse dataset, 
including cases with severe pathologies and artifacts. 
Additionally, we plan to explore the integration of semi-
supervised or unsupervised learning techniques to leverage 
unlabeled CBCT datasets.  
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