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Abstract—Accurate three-dimensional tooth segmentation
from cone-beam computed tomography (CBCT) is critical for
advanced dental diagnosis and treatment planning. This study
presents a deep-learning approach for segmenting individual
teeth from manually cropped teeth regions of interest (ROIs) in
preprocessed CBCT images. The proposed method integrates
dilated attention and squeeze-and-excitation attention
mechanisms into the skip connections of a V-Net architecture,
enabling precise segmentation of complex dental structures,
including tooth roots and boundaries. These attention
mechanisms enhance feature representation and localization,
improving accuracy and robustness. Experimental evaluations
show that the method achieves high segmentation performance
of dice score 90.01%, surpassing state-of-the-art methods and
demonstrating its effectiveness for clinical dental applications.
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I. INTRODUCTION

Three-dimensional (3D) tooth segmentation plays a
pivotal role in modern dentistry, enabling precise planning and
improved outcomes in orthodontics, dental surgeries, and
diagnostics [1]. Unlike traditional 2D imaging, which
provides limited perspectives, 3D segmentation allows for the
detailed analysis of individual teeth and their surrounding
structures. This capability is essential for tasks such as implant
placement, orthodontic appliance design, and detecting dental
conditions like bone loss or root fractures. By providing a
comprehensive view of dental anatomy, 3D segmentation [2]
helps clinicians tailor treatments, minimize risks, and enhance
overall care quality as shown in Figure 1.

With the rapid advancements in deep learning,
segmentation techniques have proven to be highly effective
and reliable in medical imaging applications, including dental
image analysis. As a result, several studies have explored their
application for individual tooth segmentation [3-5]. For
instance, Cui et al. [6] introduced ToothNet, a pioneering
framework for tooth segmentation in CBCT images. Their
approach begins by extracting tooth edges from the input
CBCT image and then combines the edge map with the
original image using a region proposal network to produce
segmentation results.

Similarly, Lee et al. [7] and Gerhardt et al. [8] proposed a
two-stage segmentation strategy. In their methods, the initial
stage involves localizing individual teeth within the CBCT
image using object detection and related techniques.
Additionally, Cui et al. [9] developed a fully automatic Al
system for simultaneous tooth and alveolar bone segmentation
from CBCT images. The method effectively addresses both
soft and hard tissue challenges, making it suitable for complex
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Figure 1: An example output of our teeth segmentation architecture. The
upper left is the ground tooth CBCT, bottom lefi is the predicted
segmentation in 2D, top and bottom right are the 3D segmentation of the
corresponding image.

dental anatomies. However, its three-stage architecture is
highly complex, relying on ROI generation, and occasionally
produces inconsistent tooth classifications. More recently, Lv,
W., et al. [10] presented a skeleton-guided V-Net for tooth
extraction, which is designed to extract the tooth skeleton.
However, it was trained on a very small dataset and does not
account for metal artifacts, limiting its ability to generalize
effectively across different cases.

Previous methods for 3D tooth segmentation often face
limitations due to being trained on small datasets, which
reduces their generalizability and robustness. Additionally,
these approaches struggle with challenging scenarios such as
the presence of metal artifacts in CBCT images and cases with
closed bite positions, resulting in reduced segmentation
accuracy. Furthermore, these methods typically fail to reliably
delineate complex dental structures, particularly in areas with
intricate root morphologies or low contrast between teeth and
surrounding tissues.

To address these shortcomings, we propose a novel
learning-based framework for automatic 3D tooth instance
segmentation from CBCT images. Our approach incorporates
domain-specific adaptations, such as centroid and skeleton-
guided segmentation, to enhance precision even in
challenging conditions like metal artifacts and closed bite
positions. By leveraging shape and data priors, the proposed
method effectively isolates teeth from surrounding tissues and
distinguishes individual teeth with improved accuracy and
reliability.

This study specifically focuses on overcoming these
challenges by delivering a robust solution for CBCT-based 3D
tooth segmentation, making it more suitable for complex
clinical scenarios in modern dentistry.
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Figure 2: Proposed architecture of our teeth segmentation Network. The left block consists of centroid and skeleton extraction networks. In the skip connection
Dilated attention and then Squeeze and Excitation attention (D+SE) is used. The right block does the identification and segmentation of each individual tooth.

The result is a 2D output as well as 3D.

II. PROPOSED METHODOLOGY

Figure 2 illustrates the detailed architecture of our proposed
method, tailored for high-precision 3D tooth segmentation
from CBCT data. The approach consists of two primary
stages.

A. Centroid and Skeleton Extraction Stage:

The first stage processes the CBCT to extract crucial
structural information. This involves the localization of
individual tooth centroids and the generation of a detailed
tooth skeleton. The extraction block is built on a V-Net [11]
backbone augmented with Dilated attention and Squeeze-and-
Excitation attention(D+SE) blocks [12,13], integrated into the
skip connections. These attention mechanisms enhance the
network's ability to focus on both global and local anatomical
features, improving feature representation for accurate
centroid and skeleton detection.

1) Centroid Extraction:

This segment of the network predicts the centroid of each
tooth by calculating the distance and direction (offset) from
very point in the image to the closest tooth center. The result
is a map called the centroid offset map, where each point
points toward the center of a tooth. This helps locate teeth
accurately, which is important for tasks like aligning teeth in
orthodontics.

2) Skeleton Extraction:

At the same time, another segment of the network focuses
on the shape and structure of the teeth. It creates a binary map
that separates teeth from the background and an offset map
that shows the distance and direction to the closest point on
the tooth skeleton. Using this information, the network
generates a detailed skeleton map that highlights the structure
of the teeth. This map is further refined to keep only the most
important parts, giving a clean and accurate representation of
the tooth skeleton.

B. Single Tooth Segmentation Stage:

Once the centroids and skeletons are found, the second
stage uses these information to segment each tooth
individually. The single tooth segmentation stage uses two-
channel inputs comprising patches cropped from the centroid

map and skeleton map. Each input patch, sized 96x96x96,
encapsulates the anatomical and spatial context of the tooth.
These inputs are processed by a V-Net architecture,
specifically designed to segment individual teeth with high
precision. The network outputs instance segmentation results
for each tooth, significantly improving the accuracy of tooth
location and providing a detailed analysis of their structural
topology. This stage process ensures precise and reliable
segmentation of each tooth, even in challenging cases with
closely packed or overlapping teeth.

We chose not to use D+SE attention at this stage because
we found that it is primarily effective in the initial stages of
feature extraction, where it captures spatial and channel
relationships comprehensively and efficiently. Applying it at
the final stage, however, resulted in overfitting. This issue
arises because the deeper architecture of D-+SE tends to
excessively refine features at later stages, leading to reduced
generalizability and a negative impact on the model's overall
performance.

C. Detailed Structure of the Dilated Attention and Squeeze-
and-Excitation Attention

The Dilated Attention and Squeeze-and-Excitation
(D+SE) Block presented in Figure 3, combines dilated
convolution-based attention and spatial attention mechanisms,
designed to enhance the network’s focus on both spatial and
contextual features. This block processes 3D volumetric input
map XERCHxWXD with tensor dimensions represented as
(C,HW,D) where C represents the number of channels, and
(H,W,D) are the spatial dimensions of the input volume.

1) Dilated Attention Mechanism

The dilated attention mechanism employs dilated
convolutions to expand the receptive field while maintaining
computational efficiency, enabling the capture of both local
and global spatial dependencies. In this block, the input map
X, with dimensions (C, H, W, D), is passed through a series of
3D dilated convolutions with different dilation rates (1,3,5,7
and 9). These convolutions use a kernel size of 3 and various
padding values to preserve the spatial dimensions (H, W, D).
The outputs from all convolutions are summed elementwise,
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Figure 3: The block diagram of D+SE attention mechanism used in the skip connection of the V-Net architecture. The dilated attention mechanism is shown
at the left side, while the Squeeze and Excitation attention mechanism is shown at the right side.

producing a refined map after dilated attention X4 of size (C,
H, W, D) same as the input map.

2) Squeeze-and-Excitation (SE) Mechanism

The squeeze-and-excitation (SE) attention block
recalibrates channel-wise and spatial-wise features to
highlight the most relevant channels. Two types of SE
mechanisms are employed within this block: channel attention
and spatial attention.

The channel attention operates by first applying an
adaptive group average pooling (GAP) operation on the input
map X4, with dimension (C,H,W,D), reducing the spatial
dimensions to a map of size (C,1,1,1). This is followed by a
1x1 3D convolution, which acts similarly to fully connected
layers, reducing the dimensionality by a factor of r (in our case
r=16) and then restoring it back to the original number of
channels C. A sigmoid activation function is applied to
generate channel-wise attention weights, which are then
multiplied elementwise with the original input map,
recalibrating the features. The output retains the original
dimensions (C,H,W,D), now with enhanced channel-wise
attention.

Simultaneously, the spatial mechanism focuses on
recalibrating spatial features. A 3D convolution with a kernel
size of 1 is applied to the input map, producing a single
channel map. After passing through a sigmoid activation
function , spatial attention weights are generated, which are
then multiplied element-wise with the input map to highlight
important spatial regions. The outputs from both the channel
and spatial attention mechanisms are concatenated, resulting
in a feature map of size (2C,H,W,D). After concatenation, a
1x1 3D convolution is applied to reduce the resulting
dimensions back to (C,H,W,D). This final output X is the
refined output of the input feature map.

D. Loss function

During the training stage, we employ a combined loss
function consisting of Binary Cross-Entropy (BCE) Loss and
Dice Loss to guide the segmentation process. This approach
balances pixel-wise classification and the overlap between the
predicted and ground truth segmentation masks. Given X as
the input volume batch, G as the ground truth labels, P as the
predicted output probabilities after applying the SoftMax
function, the BCE loss (Lgcg) is presented as (1).
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Here, C is the number of classes, N is the total number of
voxels, G;; represents the ground truth probability for the ith
voxel belonging to class j, and P;; denotes the predicted
probability for the ith voxel assigned to class j. In the centroid
and skeleton component, the combined loss (Lg) is shown
as equation (3):

Less = Ac (Loce (P.G) + La,(P,6))
+As ( Lpcpy(P,G) + Lg (P, G)) 3)

where A, and A represent the contributions of centroid loss
and skeleton loss, respectively, both of which are set to 0.5 in
our experiments. In the second stage, which involves single
tooth segmentation, the same BCE and Dice losses are used to
evaluate the discrepancy between the predicted segmentation
and the ground truth. The combined loss function for the
single tooth segmentation component ( Lg) is shown as
equation (4):
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II. RESULTS

A. Implementation Details:

The framework was implemented using the PyTorch
library [12], with the Adam optimizer employed to minimize
the loss functions and optimize the network parameters
through backpropagation. A learning rate of 0.001 and a mini-
batch size of 1 were used across all components of the
architecture, with a total of 100 epochs. At the end of each
epoch, the loss on the validation dataset was computed to
monitor network convergence. If the model's performance on
the validation dataset showed no improvement over 5
consecutive epochs, training was considered converged and



Table 1: Evaluation metrics

Formulas
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was stopped. All models were trained on an NVIDIA GeForce
RTX 3090 GPU.

B. Data preprocessing:

The public dataset of 100 CBCT images obtained via official
request from [9], has an axial resolution 0of 400x400 pixels and
adepth 0f 224 to 368 slices. To ensure consistency, the images
were resampled to an isotropic resolution of 0.4x0.4x0.4 mm?,
removing anisotropy and maintaining uniform spatial
resolution. Resampling was done using scaling factors
calculated from the original voxel spacing, with trilinear
interpolation for labels and nearest-neighbor interpolation for
images.

Next, the intensity of the CBCT images is normalized to the
range [0, 1]. To generate training data, 35 random patches of
size 128x128x128 are cropped around the alveolar bone in
each CBCT image. To improve the model's generalization and
robustness to variations, we implemented a set of data
augmentation techniques tailored specifically for 3D images.

C. Metrics for Evaluation:

We chose Dice score, IoU, precision, and recall evaluating
accuracy, overlap, and the balance between predictions,
which are essential for 3D segmentation. Their equations and
descriptions are in Table 1.

D. Qualitative Comparison

Figure 4 presents a qualitative comparison of tooth
identification and segmentation results using a standard
CBCT case. The first column illustrates the 2D view of the
dental arch, while the subsequent columns display
reconstructed 3D tooth models from two perspectives, right
and left views. The ground truth segmentation is shown in the
first row, followed by results from three competing methods:
the skeleton-guided method [10], ToothNet [6], and
Automatic Al [9]. Our proposed method is depicted in the
final row.

The red rectangles highlight segmentation inaccuracies
observed in the alternative methods, particularly in
delineating individual teeth and handling overlapping
regions. While the skeleton-guided approach struggles with
over-segmentation and lacks precision in boundary
delineation, ToothNet and Automatic Al exhibit issues such
as missed tooth parts and inaccurate separation of adjacent
teeth. None of these methods segmented wisdom teeth.

Ground Truth

Skeleton-guided

ToothNet

Automatic Al

Ours

2D view

Right View Left View

Figure 4: Qualitative comparison of tooth identification and segmentation
using a standard CBCT case. The leftmost column displays the 2D view,
while the following columns present the reconstructed 3D tooth models from
two distinct angles left and right. Red rectangles are used to emphasize
segmentation errors in the results.

Table 2: Quantitative comparison.

Methods Dice % IoU %  Precision % Recall %
ToothNet [6] 83.94 73.18 80.70 88.78
Automatic Al [9] 85.10 74.44 90.21 80.90
Skeleton guided [10]  79.91 68.02 77.54 85.23
Ours 90.35 82.61 91.43 89.78

Bold represent highest score in each column.

In contrast, our method achieves superior segmentation
results, accurately isolating individual teeth and maintaining
the integrity of their 3D structures. All the teeth are
successfully identified and segmented. The detailed tooth
boundaries and minimal segmentation errors demonstrate the
robustness of our approach, even in challenging cases
involving complex dental anatomies. This qualitative
analysis emphasizes the effectiveness of our model compared
to state-of-the-art techniques.

E. Quantitative Comparison

Table 2 provides a quantitative comparison of our method
with the state-of-the-art methods. As shown in the table, our
method  outperforms  all  competing  approaches,
demonstrating superior accuracy in all metrics. This indicates
its effectiveness in addressing the challenges of tooth
segmentation, such as distinguishing individual teeth and
accurately capturing tooth boundaries. The results clearly
highlight the robustness and reliability of our model
compared to existing methods.



IV. CONCLUSION AND FUTURE WORK

In this study, we proposed a deep-learning framework for
3D tooth instance segmentation from CBCT images, which
effectively addresses the challenges posed by complex dental
anatomies, including variable tooth sizes, intricate root
structures, and metal artifact. Our approach integrates a
combination of both dilated attention and squeeze-and-
excitation attention mechanism within the skip connections of
a V-Net architecture, significantly improving segmentation
accuracy. Quantitative and qualitative  evaluations
demonstrated that our method outperforms state-of-the-art
approaches, achieving superior results in segmenting
individual teeth and tooth roots. These findings highlight the
potential of our model for advancing digital dentistry and
improving clinical workflows.

For future work, we aim to enhance the generalizability of
our model by training it on a larger and more diverse dataset,
including cases with severe pathologies and artifacts.
Additionally, we plan to explore the integration of semi-
supervised or unsupervised learning techniques to leverage
unlabeled CBCT datasets.
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