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Abstract—Although being linguistic assemblers and decom-
posers, large language models (LLMs) have found their use in
analysis and generation of code, art, and design of electronic
circuitry, industrial parts, and network design. However, the
probabilistic nature of generative LL.Ms makes network design
and implementation scenarios prone to errors. The complexity
levels of design may exacerbate the number of inaccuracies in-
cluded in an LLM’s response. Therefore, it is necessary to identify
the features that make prompts generate effective and error-free
responses as users. To reduce the error rate of the responses,
we test prompt specificity in text and schematic descriptions.
As various degrees of specificity, we compare highly intuitive
to highly specific prompting. The responses are expressed as
network schematics and router configuration commands that are
evaluated with our proposed scoring policy. Our tests include
networks with three levels of complexity and multiple levels of
specificity in text and graphic prompts. The results show the
trade-offs on the text and graphic modes and the degrees of
specificity.

I. INTRODUCTION

Natural Language Processing (NLP) has made significant
progress in recent years, going from simple yet effective text
analysis and optimization tools to Large Language Models
(LLMs), which boast the capabilities to solve complex prob-
lems using a vast and dynamic array of knowledge [1]. Such
models, which have largely been associated with general-
purpose tasks such as drafting personal and professional
letters, or summarizing passages from books, have recently
grown increasingly capable of problem solving and design.
Their remarkable success in such tasks, have generated a
large demand for applying them to a variety of industrial
applications [2]. In these domains, LLMs are being sought
for the design of electronic circuits, mechanical design, art,
and implementation of communications infrastructure [3].

Network design and implementation is an application in
which LLMs can be used as an accelerating tool to automate
the design, management, and configuration tasks [4].

While LLMs are quite effective at generating expeditious
data according to an end-user’s rules, they also pose subtle but
definite risks when applied to network design, optimization,
and modification. The speedy responsiveness of LLMs is
significantly counterbalanced by the inclusion of errors and
ambiguities in their responses, rendering LLMs promising but
also ineffective in real practice. From a high-level design user,
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one can identify that LLMs typically perform two operations:
First, they strive to identify the user’s objective(s) in their
prompt to clearly identify the problem. Second, LLMs aim
at generating an applicable solution to the presented problem
to fulfill those objectives; albeit at some extent. It must be
noted that successfully performing both of these tasks is quite
challenging, as defining the problem in some cases is typically
just as challenging as addressing it, even for people. It is
important to recognize that while we, as users, may not have
control over how an LLM solves a problem, we might have
control over facilitating the LLM identify the objective of our
request.

In this paper, we aim to answer the following question:
What is the input prompt feature that plays a crucial role in
the correctness of a generated response for network implemen-
tation? Answering this question would help us to use LLMs
more effectively. To address it, we tested three approaches to
LLM prompts for network design and router configuration.
Therefore, we introduce a scoring policy to evaluate the LLM
response’s correctness and performed extensive experimenta-
tion with various prompts and evaluated the LLM responses.
We tested a direct approach where the input prompts are
categorized by the level of specificity and complexity in the
network parameters.

Our designed scoring policy is based on identifying inaccu-
racies, where incomplete, incorrect, and duplicate information
accrues for negative points. The prompts are tested with three
levels of network complexity [S] and up to ten levels of
specificity. Furthermore, we tested two types of prompting:
text and, our proposed approach, schematic. We hypothesize
that schematic prompting is more effective for network design,
as LLMs easily identify the conditions of a network and
the objective of the prompt. Response assurance requires
analyzing the performance of LLMs in typical networking
scenarios and dives into identifying where responses fall short,
and showcases their intrinsic randomness that potentially both
helps and hampers the model’s performance. Our results high-
light the delicate balance between handling information and
the lack of training in reliable design by LLMs. These results
also showcase that specific language and network schemat-
ics have the potential to increase the overall correctness of
generated LLM responses and further evaluate the strengths
and weaknesses of various general-purpose LLMs on network
design and implementation.

The remainder of the paper is organized as follows. Section
IT discusses related work on using LLM for network design



and implementation. Section III discusses the variations of
different input prompts proposed and tested in this paper,
and also a comparison of responses obtained by various
LLMs. Section IV presents our evaluation results. Section V
concludes the paper.

II. RELATED WORK

Network implementation is often complex, where even
slight intricacies in methodology can make a significant impact
on the overall system [6]. The application of verification
technologies to the networking domain has proven quite chal-
lenging, with a majority of state-of-the-art approaches relying
on rule-based verification methodologies or direct human
intervention [7]. Rule-based verification is tedious, often times
requiring a vast set of rules to cater to the wide-variety of re-
sponses that a model can provide. Human-intervention, which
is typically referred to the definitive solution to most LLM
verification problems, greatly undermines the model’s overall
automation capabilities. Text, which is currently the preferred
medium of expression used by LLM, is often times subjective,
making verification ambiguous. For these reasons, recent work
has proposed innovative approaches to tackle the problem
of content verification by converting text-based responses to
alternative representations to effectively evaluate them. Besta
et al. [8] proposed the use of word-embeddings to quantify a
text-based response into a vector for analysis and comparison
with alternative vectors. The approach determines the overall
stability of a response by exercising multiple iterations. Simi-
larly, Sun et al. [9] proposed a graph-based approach in which
a response is encoded graphically to visualize a response and
analyze its effectiveness. Visualizing the responses of LLMs in
alternative mediums reduces the ambiguity that spawns from
text, and helps to establish specificity.

Although response verification is an extremely integral part
of an autonomous network implementation system, it also fails
to prevent the generation of invalid, incorrect, or incomplete
responses. Accurate response generation for networking sce-
narios is difficult, in part due to the lack of LLMs dedicated
to networking and also to the inherent randomness of LLMs,
which in some cases leads to hallucinations (i.e., with apparent
disassociation with the request or merely incomplete) [10].
For this reason, zero-touch network and service management
(ZSM) systems typically need additional support from addi-
tional techniques, such as prompt engineering and domain-
specific training [11]. NetLLM is one such approach that
provides network-specific knowledge to an existing general-
purpose LLM to make it adaptable to a wide variety of network
scenarios [12]. This style of approach greatly enhances the
effectiveness of an existing model, without the need for the
creation of an entirely new one. Ifland et al. [13] similarly
designed an entirely new LLM for networking purposes built
on top of OpenAl’s general purpose ChatGPT.

While these approaches are quite powerful, there has been
limited research on prompt-engineering techniques that lever-
age network implementation and immediate use of existing
public LLMs. Here, we address this gap by analyzing various
prompts for network design and implementation elaborated

with various levels of complexity and specificity. Moreover, we
also propose an optimizing approach to increase the response
success rate based on using network schematics.

III. PROMPT-ENGINEERING METHODOLOGIES

Prompt engineering adds the ability to bolster the content-
generation aspect of an LLM by reducing ambiguity and
increasing clarity, so that the model can effectively understand
the intentions or expectations of the end-user. We theorize that
for any input prompt, there are many variations of it because of
the intrinsic diversity in natural language, but with some being
more effective than others for LLMs. Therefore, maximizing
the accuracy of a response with prompt engineering requires
two factors: First, the means to convert the initial prompt
into an ideal one; which is a prompt that obtains the LLM’s
response with 100% accuracy, and the second is a methodol-
ogy to consistently and effectively evaluate the accuracy of
the received response. Therefore, it is essential to identify
the leading factors that generate the correct responses when
developing an input prompt, as well as to verify the received
responses and validate their performance.

A. Prompt-Conversion

From a high-level perspective, an ideal input prompt, which
is intended for network implementation purposes, contains
three distinct characteristics: a clear description of the network
elements, a strong set of deliverables, and a list of commands
that need to be provisioned in each element. It must be
noted, that this combination would reduce the LLM’s by-
design reliability on the data it has been trained on, and
instead would cause it to utilize data provided by the end-
user. Although this is quite ideal in theory, providing the actual
values is akin to providing the solution to the network-design
or implementation problem, as a majority of the labor involved
with the design is performed by the end-user, leaving the LLM
simply regurgitating existing information in a format expressed
by the deliverables. Additionally, asking the user to design
an ideal prompt further diminishes the automation capabilities
of the LLM and adds overhead to the overall efficiency of
the model. Therefore, we believe that expecting the user to
come up with such a prompt is not practical for zero-touch
network implementation purposes, rendering the user to focus
on alternative methodologies.

As an ideal-prompt is not practically feasible, we propose an
alternative version of it. In a definition more tailored towards
network implementation, the optimal prompt is one that would
clearly define the necessary network elements, contain a
correct and complete set of deliverables, such as configuration
scripts, network description, or network schematics. While a
partial solution is not always feasible in practical scenarios,
we argue that introducing a partial solution, regardless of
how minor it may be, has the potential to steer the model
in the right direction to accurately meet the expectations of
the end-user. In lieu of a partial solution, a set of explicit
requirements proves sufficient as long as the model can clearly
understand the expectations. There exist quite a few pitfalls in
natural language which prove harmful to the clarity of LLMs



prompts. They are described in Table I. If an optimal prompt
is considered to have a rating of 100% specificity and clarity, a
shortcoming in a response would accrue for negatively points
in the score, consequently reducing the correctness of the
response. The minimum score is zero.

TABLE I: Prompt-Design Pitfalls.

Pitfall | Penalty (%)
Unclear definitions 50

Word count < 50 25

No explicit IP / Subnet Addressing | 25
Grammatical errors 15
Redundant phrases 5

In addition to the existing prompt-engineering methodology,
recent public LLMs also permit the usage of alternative inputs
such as images, either with or without a combination of
text. We propose the usage of these image-based prompts for
network configuration, where a source image could consist of
the schematic of an existing or expected network topology.
Along with a verbose text-based prompt, we theorize that the
schematic input would serve as a data language that can reduce
the ambiguity of an LLM for most network configuration
scenarios.

While typical responses from an LLM mostly consist of
natural language that is presented in readable format, it is
essential to consider that the models are more than capable of
providing responses that surpass the text-domain. A primary
example of this capability is code generation, which has
become a game changer in software development [14]. LLMs
contain the ability to generate cohesive code from a wide
variety of programming languages, and this skill is useful for
the design of a response verification methodology [15]. When
utilizing LLMs for network modification purposes, end-users
must be concerned with the correctness of the configuration
(low-level) commands that are generated, along with confi-
dence on the overall high-level network capture for verification
of network accuracy. For this reason, we propose to divide
the verification methodology into two parts: the configuration
commands of network equipment, such as routers, and the
corresponding description of the network, along with a high-
level image of a network topology, which can be visually
analyzed.

In the low-level, the commands that are generated by the
LLM are essential to end-users, further emphasizing the im-
portance of a proper verification methodology to evaluate their
effectiveness. Regardless of an input prompt’s brevity, (public)
LLMs are typically quite verbose in their responses, resulting
in large amounts of information that must be processed. The
generated response almost always contains a description of
the network, or a summary of the configuration commands,
followed by the commands themselves. As the description
is quite arbitrary and often carries unnecessary information,
we believe that identifying the configuration commands is the
principal task in LLM response verification. When evaluating
an individual command, we primarily consider the syntax,
purpose, and impact of that command with respect to the

problem statement. We then define a set of errors and distinct
penalties, as shown in Table II, to ensure that each response is
evaluated and errors are accounted for consistent penalties. The
proposed methodology provides a numeric-based benchmark
to evaluate a response generated by LLM.

TABLE 1II: Proposed Description-Evaluation Methodology.

Error ‘ Penalty (%)
Invalid syntax 90
Invalid topology 75
Wrong number of network elements | 60
Incorrect IP addressing 50
Incomplete or missing commands 40
Unnecessary commands 30

B. Schematic Prompting and Responding

As image-generation is not an explicit feature of text-based
LLMs, and it is unknown whether LLMs are trained with
image-based data, we propose the use of Scalable Vector
Graphics (SVQG) files, which are text-descriptive image (text)
files. SVGs are primarily generated using a form of Extensible
Markup Language (XML), and therefore can be constructed
through the usage of code, which LLMs are quite capable of
generating. We propose that any set of commands that are
generated by the LLM can be modeled into an SVG-image
to visualize the network topology. As such, we define a set
of evaluation metrics in Table III for each SVG image that
is generated to evaluate the accuracy of the network topology
from a high-level perspective.

TABLE III: Proposed Image-Evaluation Methodology.

Error ‘ Penalty (%)
Invalid syntax 100

Not a network 90

Invalid topology 75

Links not drawn between nodes | 50

IP addresses not included 50

Labels are not drawn 45
Incorrect IP address (@) 20/ 1P @
Incorrect drawn link 10 / Link

By integrating both prompt-engineering and response-
assurance methodologies, we theorize that an LLM can be
optimized such that it consistently provides highly accurate
responses for a wide range of problem statements. In the
next section, we evaluate the proposed approaches to achieve
accurate LLM responses with a set of prompts to determine
the accuracy of each model’s performance.

1V. EVALUATION

In our experiments we primarily evaluated OpenAl’s state-
of-the-art ChatGPT-40 model with various network topologies
consisting of a varying number of network elements, and
generated Cisco router commands to configure the network
from scratch, along with SVG code depicting a network



topology to visualize the network design in an alternative
representation. We used a wide variety of input prompts, in
terms of provided values and number of networks, to cover
network scenarios with different levels of complexity and
specificity.

A. Experiment 1: An ideal prompt

It may be expected that an ideal prompt also causes the
model to regurgitate information that it already knows, reduc-
ing the generation time that it has to intrinsically perform.
It can be intuited that such a prompt would not typically
be the preferred input an end-user would want to provide.
However, it is important to understand how an LLM behaves
in this ideal scenario to evaluate and establish an upper
limit, such that a model can be bench-marked with alternative
prompts. For this reason, we test an ideal prompt for a network
scenario, and provide all information such as the number of
network elements, IP addresses and required deliverables and
in-turn ask the LLM to provide the Cisco router commands
to configure the network routers, along with an SVG file to
visualize the topology. We repeat this experiment 100 times
and evaluate the accuracy of the provided description and
SVG schematic, and document the overall performance of the
model.

Figure 1 depicts the results obtained in each iteration in this
experiment. The results primarily showcase a high description
and SVG accuracy, with the description primarily hovering
around 100% and the SVG image hovering around 90%.
Although such outcomes would indeed be ideal, it must be
noted that they lack congruency to each other, primarily due
to the inherent randomness that stems from the LLM, which
results in a semi-unique answer generated for each iteration.
Such responses pose an additional challenge for a proper
evaluation methodology, as the results of the current iteration
could potentially be drastically different from that of the next
one. The primary outliers in this experiment stem from the
model either not generating all of the necessary commands or
generating SVG images of invalid topologies, which typically
points to a difficulty, not in understanding the prompt but
rather evaluating it. Therefore, it can be inferred that while
prompt-engineering methodologies can help alleviate the issue
of intent recognition, they unfortunately cannot help with
content generation due to the randomness that’s inherent in
the LLM. In the next few experiments, we evaluate multiple
networking scenarios to further understand the impact of a
typical input-prompt on the received response.

B. Experiment 2: Varied text-prompts based on scoring

In this experiment, we test three network configuration
scenarios with five levels of input specificity to analyze the
correctness of the LLM’s response in each scenario. We begin
with a prompt that contains none of the pitfalls described in
Table I and slowly induce errors and re-calculate the score of
the received commands and SVG across multiple runs. After
twenty-five of such runs, we calculate the average accuracy of
each scenario, and its input prompt grade to identify trends in
the behavior of GPT-40. This experiment aims to demonstrate

both the variations that could potentially exist in an input
prompt and the sensitivity of the LLM to such shifts.

Figure 2 shows the inherent sensitivity of the LLM with re-
spect to an input-prompt, and the trends that GPT-40 responses
with respect to various specificity levels. From the results,
it can be inferred that a higher input prompt score typically
results in greater overall accuracy regardless of the medium
that is evaluated. However, because LLMs are primarily text-
based models, it is no a surprise that the accuracy of a
text description accuracy is marginally better than that of the
generated SVG accuracy. Additionally, our results demonstrate
that while an ideal prompt score of 100% is not always
feasible, a subsequent score of 50% still provides a relatively
helpful performance. Such behavior showcases the importance
of utilizing a prompt with a well-defined input-score for a
specified network configuration task, and demonstrates the in-
herent performance of an LLM with a wide range of erroneous
information and ambiguity.

C. Experiment 3: Varied schematic prompts based on scoring

The idea of utilizing schematic prompts in conjunction with
text is promising, as the approach has the potential to facilitate
the identification of parameters used in a problem solution. In
this approach, we start with a fully specified schematic, as
described in Table III, and much like the previous experiment,
we remove information to reduce the input prompt grade and
re-run the evaluation multiple times. Along with the image, we
utilize text to establish a clear set of deliverables and define
the problem statement as a network design task, and alter the
input schematic. We evaluate three different network scenarios,
and run the schematic-prompts five times. We evaluate the
description of the response, along with the router commands
in conjunction with the generated SVG image.

Figure 3 shows a similar behavior as in the previous
experiment. A higher input prompt grade results in a greater
amount of information that is presented to the LLM which
largely improves its chances at arriving at an optimal solution.
Furthermore, when comparing with the results in Figure 2,
it is noted that the accuracy with image-based prompts is
marginally better than that of text-prompts for both of the
evaluation methods. This boost to the accuracy is facilitated by
the clear definition of expectations that an image can provide
at a first-glance, as opposed to a medium like text in which
we expect the model to perform most of the analysis.

The interesting trend of a lower SVG accuracy when com-
pared with the description can be explained by a weakness
in the LLM’s image or code generation capabilities, which
exist regardless of the type of input-prompt that is chosen.
While intuitively it may seem that providing an image as
an input can potentially increase the chances of receiving a
proper SVG as an output, it must be noted that the process of
generating an SVG remains constant. This further emphasizes
the point that prompt-engineering techniques can be used to
improve the performance of the LLM without directly altering
its inherent composition. These results seem to indicate that
while training and designing an LLM that is domain-specific is
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Fig. 2: Average response accuracy of text-prompts w/ GPT-4o.

beneficial, defining proper prompt-engineering methodologies
are essential to achieve consistent performance.

D. Experiment 4: A comparison of state-of-the-art LLMs

As mentioned previously, there are a wide-variety of state-
of-the-art general purpose LLMs that could potentially be
used for network implementation purposes. In this experiment,
we verify the performance of three such models: OpenAl’s
ChatGPT-40, Google’s Gemini and Microsoft’s Copilot to
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Fig. 3: Average response accuracy of image-prompts w/ GPT-4o.

determine the impact of the model with respect to the input
prompt (Disclosure: this research received no support nor is
associated with the holders of such LLMs). As such, we utilize
a constant image input of a network topology and ask the
respective model to generate the Cisco router commands to
configure the network, along with an SVG to visualize it.
We evaluate the performance of all three LLMs across five
iterations and average the data to identify a clear trend across
three different network configuration scenarios. The results,



shown in Figure 4, indicate that GPT-40 outperforms its com-
petitors when it comes to network implementation scenarios.
This advantage could stem from exposure to additional training
performed on this LLM as opposed to the others, giving it
the ability to consistently identify an optimal solution. GPT-
4o often provided the same solution multiple times, which
reduced the overall randomness and bode well for the overall
performance.

It is equally interesting to see the trends that unfold between
Copilot and Gemini, with the former outperforming the latter
in SVG generation scenarios. Copilot’s primary shortcoming
when compared to GPT-40 was its lack of verbose definitions,
which often lead to certain commands being either forgotten or
missing entirely. With regards to SVG generation, the model
often missed to both labeling network elements and indicating
congruent IP addresses.

Unlike GPT and Copilot, Gemini’s responses were often
very short, providing a very brief or even no solution with
respect to the description accuracy. In terms of the commands
that were generated, some were often missed, similar to Copi-
lot. A majority of Gemini’s SVG drawings were also quite ab-
stract, often depicting invalid or impossible networks entirely.
We theorize that such unstable behavior could be attributed
to the lack of overall training, that Gemini’s competitors
supposedly seem to have. Such behavior also indicates a need
for domain-specific LLMs which could prove more useful for
error-sensitive tasks such as network implementation.
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Fig. 4: Average response accuracy of image-prompts w/ GPT-4o.

V. CONCLUSIONS

Here, we proposed using a schematic (graphical) input
prompt to improve LLM response accuracy and a scoring
policy to evaluate LLM response in network design. We
tested text and the proposed schematic prompts using various

levels of specificity in various network scenarios and evaluated
the response accuracy with the proposed scoring policy. We
demonstrated that utilizing schematic prompting in conjunc-
tion with text increases the overall LLM performance. Our
results strongly indicate that carefully designing the specifics
of an input-prompt has the potential to benefit the response
and inhibit the randomness of the model.
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