Exploring One-Shot GANs for Efficient Synthetic
Flower Image Creation

Vandana S”
Dept. of Electronics and Communication

Sugavanam Senthil”
Dept. of Electronics and Communication

National Institute of Technology Karnataka Surathkal, India National Institute of Technology Karnataka Surathkal, India

vandana.211ec260@nitk.edu.in

Dr. A. V. Narasimhadhan
Dept. of Electronics and Communication
National Institute of Technology Karnataka Surathkal, India
dhansiva@nitk.edu.in

Abstract—Generative Adversarial Networks (GANs) represent
a cutting-edge advancement in deep learning, renowned for their
capability to generate synthetic data across various domains
including images, music, and text. This project focuses on
implementing a one-shot GAN using Python and TensorFlow,
aimed at providing a concise yet effective demonstration of
GANs in action. The term ’one-shot’ denotes that the model
only has a few training inputs to learn from and make decisions.
Through Python and TensorFlow, the project offers a hands-on
exploration of GANSs.

Index Terms—Generative Adversarial Networks, One-shot
learning, Deep Convolutional GANs, Synthetic Image Genera-
tion, Frechet Inception Distance, FID,DCGAN, Synthetic Image
Generation,Low-data GAN.

I. INTRODUCTION

Generative Adversarial Networks (GANs) [1] have emerged
as a groundbreaking innovation in the realm of deep learning,
offering remarkable capabilities in synthesizing data across
diverse domains such as images, music, and text [2]. This
paper presents a focused endeavour towards implementing
a one-shot GAN using Python and TensorFlow, with the
objective of providing a concise yet insightful demonstration
of GANSs in practical application. The term ’one-shot’ [3] in
this context signifies that the model is tasked with learning
from a limited set of training inputs, thereby emphasizing
its ability to make decisions based on sparse data. In this
particular project, we harness the power of GANs to generate
synthetic flower images, utilizing a dataset comprising a small
number of images. This constrained dataset setting highlights
the model’s capacity to extrapolate and generate novel samples
despite minimal training data availability. Through the medium
of Python programming language and TensorFlow framework,
this project offers a hands-on exploration of GANSs, elucidating
their workings and showcasing their potential in the domain
of image synthesis. By delving into the implementation details
and intricacies of training a GAN on a limited dataset, this

“These authors contributed equally to this work.

sugavanam.211ec152 @nitk.edu.in

paper aims to provide researchers and practitioners with valu-
able insights into the practical considerations and challenges
associated with deploying GANSs in real-world scenarios. The
subsequent sections of this paper will delve into the method-
ology employed for training the one-shot GAN, followed by
a detailed exposition of the experimental setup and results
obtained. Additionally, discussions on the implications of the
findings, and concluding remarks will be presented, hereby
offering a comprehensive overview of the project’s objectives,
methodologies, and outcomes.

II. IMPLEMENTATION
A. Data Set

The Flowers dataset[4] available on Kaggle includes a
variety of flower species, making it an excellent choice for
training a one-shot GAN. This dataset, despite being relatively
small and manageable for training on a personal computer,
offers a diverse range of flower images. The variety of species
will help the GAN to learn and generate images of different
flowers effectively. Its structured format and high-quality im-
ages provide a solid foundation for developing and testing one-
shot GAN models aimed at generating realistic floral images.

B. Image pre-processing

We preprocess our image data by applying various trans-
formations, resizing them to dimensions of 64x64 pixels, and
incorporating random colour jittering, rotation, and horizontal
flipping. Subsequently, we convert these transformed images
into tensors and normalize them. To ensure randomness and
enhance the diversity and size of our dataset, we load these
processed images in batches of 32 from a designated folder
and shuffle them. This comprehensive approach contributes to
the robustness of our model by augmenting the dataset and
introducing variability during training.

C. Architecture

The Generative Adversarial Network (GAN) architecture
consists of two main components: the Generator (G) and the

Discriminator (D). The Generator aims to create synthetic data
by transforming random noise inputs into realistic samples,
typically images. In contrast, the Discriminator serves as
a critic, distinguishing between real data and the synthetic
images generated by the Generator.

In this model, we employ a Deep Convolutional GAN
(DCGAN)[5] architecture for both the Generator and the
Discriminator. The Generator utilizes a series of transposed
convolutional layers to upscale the input noise vector into
a high-resolution image. Each transposed convolutional layer
is followed by a Batch Normalization layer and a ReLU
activation function, except for the final layer which uses a Tanh
activation function. This helps stabilize the training process
and ensures the generated images have pixel values in the
range of [-1, 1].

N\ PISCRIMINATOR
ReAL
—
Fake

TRAINING SET

The generator turns noise into
an imitation of the data to try
to trick the discriminator network

GENERATOR /]
|

RANDOM NOISE

The discriminator network tries
to identify real data from fakes
created by the generator network.

Fig. 1. Architecture of a GAN

D. Working Principle

The training process of a Generative Adversarial Network
(GAN) is characterized by an iterative refinement of its
constituent components: the Generator and the Discriminator.
The Generator model takes a 100-dimensional random noise
vector as input and processes it through a series of transposed
convolutional layers followed by batch normalization and
ReLU activation functions. The network begins by upsampling
the input noise vector to a higher dimensional space (512
channels) through a convolutional transpose operation with a
kernel size of 4 and no padding. This is followed by batch
normalization and ReLU activation. Subsequently, the feature
map is further upsampled through subsequent layers with
decreasing channel sizes (512 to 256, 256 to 128, 128 to
64), each with stride 2 to progressively increase the spatial
dimensions of the feature maps. The final layer converts
the feature map into a 3-channel image using a transposed
convolutional layer followed by a hyperbolic tangent (Tanh)
activation function, ensuring the pixel values are in the range
[-1, 1], suitable for image generation tasks. The Discriminator
model on the other hand takes an image tensor as input and
processes it through a series of convolutional layers followed
by batch normalization and leaky ReLU activation functions.
The network starts by processing the input image through a
convolutional layer with 3 input channels, generating 64 output
channels with a kernel size of 4 and a stride of 2, effectively
reducing the spatial dimensions of the feature maps. This is
followed by a leaky ReLU activation function with a negative

slope of 0.2. Subsequent layers consist of convolutional layers
with increasing numbers of output channels (64 to 128, 128 to
256, 256 to 512), each followed by batch normalization and
leaky ReLU activation functions. The final convolutional layer
produces a single-channel output representing the probability
of the input image being real, followed by a sigmoid activation
function to squash the output to the range [0, 1].

Generative Adversarial Networks (GANSs)

Step #2: Pass Step #3: Sample
Step #1: Generate noise vector real/authentic
noise vector | through Generator »| images and mix
to create fake with synthetic
images ones
\

. i Step #5: Again X
vectors labeled as [vectorsbut < Discriminator on
“real images" purposely label mixed set
them as "real"

Fig. 2. Working Principle of a GAN

E. Model Training

1) Network Setup: We defined our GAN architecture as
consisting of a generator (netG) and a discriminator (netD).
The generator is responsible for generating synthetic images,
while the discriminator evaluates the authenticity of both real
and synthetic images.

2) Loss Function and Optimizers: We employed the Binary
Cross Entropy (BCE) loss function (criterion) [6] to quantify
the divergence between the predicted and target labels. Adam
optimizers were utilized to update the parameters of both the
generator and discriminator network

3) Training Loop: We iterated through the dataset for a
fixed number of epochs, updating the generator and dis-
criminator networks alternatively. The discriminator aims to
maximize the probability of correctly classifying real and fake
images, while the generator aims to minimize the discrimina-
tor’s ability to distinguish between real and synthetic samples.

4) Monitoring and Visualization: We monitored the train-
ing progress by recording the losses of both the generator
and discriminator at each iteration. Additionally, we visualized
the generated images periodically to assess the quality of the
synthetic samples.

5) Evaluating Performance: To objectively evaluate the
quality of the images generated by our one-shot GAN, we
utilized the Fréchet Inception Distance (FID)[7] score. The
FID score is widely recognized for measuring the similar-
ity between generated images and real images, providing a
quantitative metric for assessing the performance of generative
models.

6) Fréchet Inception Distance (FID) score: The quality
of the generated images was evaluated using the Frechet
Inception Distance (FID), which is computed as:

FID = ||y — ,“9”2 + Tr(Z, + X — 2(2T29)1/2)a (1

where 1, and p, represent the means of the real and
generated image feature vectors, respectively, and X, and X,
denote their covariance matrices. This metric quantifies the
similarity between the generated and real image distributions.

7) Reproducibility and Implementation Details: The imple-
mentation was carried out using Python 3.8 and TensorFlow
2.8. All experiments were conducted on a system with an
NVIDIA RTX 3060 GPU, 16 GB RAM, and Ubuntu 20.04.
The dataset was preprocessed to include 500 images resized
to 64x64 pixels, with random augmentations like horizontal
flips, rotation, and color jittering. The training loop included
250 epochs with a batch size of 32.

III. RESULTS AND DISCUSSION

On running through the training cycle for 250 epochs, these
are the results we drew:
o Average epoch duration = 47.3 seconds
e FID Score = 80.32
e On observing epochs 0-250, we noticed that the gen-
erator loss has increased and the discriminator loss has
decreased, thus indicating successful training.
Generator loss at epoch 1 = 2.456
Discriminator loss at epoch 1 = 0.8636
Generator loss at epoch 250 = 6.759
Discriminator loss at epoch 250 = 0.0541

Generator and Discriminator Loss - EPOCH 249

A

20000 40000 60000 80000 100000 120000
iterations

Fig. 3. Plot of the Generator and Discriminator losses at epoch 250

Fig. 4. Synthetic images generated by the DCGAN after 250 epochs. The
images demonstrate the generator’s ability to produce realistic outputs from
random noise inputs.

Fig. 5. Generated flower images using the one-shot GAN model after 250
epochs.

IV. COMPARISON WITH OTHER METHODS

In this section, we compare our GAN implementation with
other notable methods, focusing on the architecture, dataset
used, performance, and evaluation metrics.

A. Architectural Differences

The architecture of GANs can vary significantly across
different implementations. For instance, traditional GANs[1]
use fully connected layers, whereas our advanced model is
a DCGANs (Deep Convolutional GANs) [4] which utilizes
convolutional layers to capture spatial hierarchies more effec-
tively. Our one-shot GAN employs transposed convolutional
layers with batch normalization to ensure stable training,
which is crucial for generating high-quality images with
limited data.

B. Dataset Comparison

Different GAN models are often trained on diverse datasets,
impacting their performance and generalizability. For example,
initially, we used the Stanford dog dataset with a traditional
GAN setup to generate new dog images[8]. This dataset
proved to be quite cumbersome to use given its fairly large
file size. The choice of dataset significantly influences the
quality and diversity of the generated images. Despite using a
smaller dataset, our one-shot GAN demonstrates the capability
to generate realistic floral images, showcasing its effectiveness
in low-data scenarios

C. Performance Metrics

Here, we will compare the loss values and the FID scores
of the standard GAN model on the Stanford Dog dataset and
our DCGAN [4] on Kaggle’s Flower dataset.

o Loss values of the standard GAN:

— Generator loss at epoch 1 = 1.612
— Discriminator loss at epoch 1 = 1.213

— Generator loss at epoch 250 = 5.266
— Discriminator loss at epoch 250 = 0.4429

e FID score of the standard GAN = 113.06

D. Evaluation and Results

Our results indicate successful training, as evidenced by the
generator and discriminator loss trends. The generated images
demonstrate the model’s potential in synthesizing realistic
floral images. In comparison, methods like StyleGAN [9] and
PGGAN (Progressive Growing of GANs) [10] achieve more
visually appealing and higher-resolution images. However,
these models require extensive computational resources and
large datasets for training, making them less feasible for low-

resource scenarios.
PMEEERaARE
4
N =
EE-AENER

SEELVTL T

Fig. 6. Images Generated using the standard GAN model after 250 epochs

TABLE I
COMPARISON OF METRICS FOR STANDARD GAN AND DCGAN

Metric Standard GAN | DCGAN(Proposed)
Generator Loss (Epoch 250) 5.27 6.75
Discriminator Loss (Epoch 250) 0.44 0.05
FID Score 113.06 80.32

Our proposed approach outperforms the standard GAN by
achieving a 29% reduction in FID scores, emphasizing the
quality of the generated images. The visual differences are
also apparent, as shown in Figures 5 and 6, where the DCGAN
produces more consistent and realistic floral images.

Recent advancements such as StyleGAN [9] offer superior
results by utilizing style-based architectures that enable fine-
grained control over image synthesis. Similarly, PGGAN [10]
introduces a progressive training approach to improve stability
and resolution. Despite these advantages, their dependency on
large datasets and high computational requirements restricts
their applicability in resource-constrained environments.

In contrast, our work demonstrates the effectiveness of
applying DCGAN architecture in a low-data setting. By
leveraging one-shot learning, our model achieves competitive
results while maintaining computational efficiency, making it
a viable alternative for scenarios where data and resources are
limited.

While the generated images are realistic and diverse, future
work can explore incorporating transfer learning techniques

from larger pre-trained GANs to improve the output quality
further. Additionally, investigating advanced architectures such
as CycleGAN or BigGAN could help refine the synthesis
process.

V. CONCLUSION

This paper presents a practical implementation of a one-
shot GAN for synthetic image generation in low-data settings.
By employing DCGAN architecture, we achieved a 29% im-
provement in FID scores compared to traditional GAN models.
Our results demonstrate the feasibility of training GANs with
limited data, paving the way for applications in resource-
constrained environments. Future work will explore expanding
the dataset size, experimenting with other evaluation metrics,
and optimizing computational efficiency.

REFERENCES

[1] Ian J. Goodfellow et al.,, “Generative Adversarial Networks,”
arXiv:1406.2661 [stat. ML], 2014.

[2] M. Kavakli Algahtani and G. Kumar Ahuja, ”Applications of Genera-
tive Adversarial Networks (GANs): An Updated Review,” Archives of
Computational Methods in Engineering, vol. 28, pp. 1-13, 2019. doi:
10.1007/s11831-019-09388-y.

[3] VV. Sushko, J. Gall, and A. Khoreva, ”One-Shot GAN: Learn-
ing to Generate Samples from Single Images and Videos,” 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Nashville, TN, USA, 2021, pp. 2596-2600. doi:
10.1109/CVPRW53098.2021.00293.

[4] Flowers, "https://www.kaggle.com/datasets/1311ff/flowers”

[S] A. Radford, L. Metz, and S. Chintala, "Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks,”
arXiv:1511.06434 [cs.LG], 2015.

[6] R. Usha and V. Yendapalli, “Binary Cross Entropy with Deep Learning
Technique for Image Classification,” International Journal of Advanced
Trends in Computer Science and Engineering, vol. 9, 2020, Art. no.
175942020.

[7] S. Jayasumana, S. Ramalingam, A. Veit, D. Glasner, A. Chakrabarti,
and S. Kumar, “Rethinking FID: Towards a Better Evaluation Metric
for Image Generation,” arXiv:2401.09603 [cs.CV], 2023.

[8] Akshit Sharma. Generative Adversarial Networks (GAN) In One Shot,
“https://www.kaggle.com/code/akshitsharmal/generative-adversarial-
networks-gan-in-one-shot/notebook™

[9] T. Karras, S. Laine, and T. Aila, ”A Style-Based Generator Architecture

for Generative Adversarial Networks,” arXiv:1812.04948 [cs.CV], 2018.

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing of

GANSs for Improved Quality, Stability, and Variation,” arXiv:1710.10196

[cs.CV], 2017.

[10]

