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Abstract—This study introduces a novel edge Al system de-
signed to enhance industrial safety through real-time monitoring
of safety vests and worker emotions. Leveraging the NVIDIA
Jetson Orin Nano and a ZED 3D camera, the system employs
a YOLO-based deep learning model fine-tuned for industrial
applications. Achieving detection accuracies of 92 % for safety
vests and 85 % for emotion recognition, the system strikes
a balance between high performance and energy efficiency,
suitable for continuous monitoring. Our approach addresses
critical challenges in industrial safety, including timely hazard
detection and compliance monitoring, offering a scalable solution
that reduces workplace risks and ensures adherence to safety
protocols. The paper further discusses plans for field testing to
validate the system’s efficacy in real-world environments, thereby
reinforcing its practical utility.

Index Terms—Edge Al, Industrial Safety, Deep Learning,
NVIDIA Jetson Orin Nano, Real-Time Monitoring.

I. INTRODUCTION

Industrial environments often involve high-risk activities,
making safety monitoring essential to reduce accidents and en-
sure compliance with safety protocols. Traditional monitoring
approaches, which may rely heavily on human oversight, are
often limited by delayed responses and increased operational
costs [1]. Inadequate safety measures can lead not only to
financial losses but also to severe injuries or fatalities, under-
scoring the critical need for effective safety solutions.

Artificial intelligence (Al) offers automated solutions capa-
ble of real-time hazard detection and compliance monitoring,
significantly enhancing safety and efficiency in industrial
settings [2]. Recent advancements in edge Al have made it
feasible to deploy deep learning models on resource-efficient
devices, enabling rapid and autonomous decision-making
without the latency associated with cloud-based processing
[3]. Edge computing devices, such as the NVIDIA Jetson
Orin Nano, provide a balance between processing power and
energy efficiency, making them ideal for applications that
demand continuous and real-time monitoring in safety-critical
environments [4].

This study presents an edge Al solution that integrates a
YOLO-based deep learning model with the Jetson Orin Nano
and ZED 3D camera. The system detects safety vests and
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assesses worker emotions, contributing to a safer work envi-
ronment by continuously monitoring compliance and alerting
supervisors to potential hazards in real time. By supporting the
integration of real-time Al solutions in industrial settings, this
approach aims to provide a scalable pathway for autonomous
safety monitoring, ultimately reducing workplace hazards and
improving compliance with safety protocols.

The remainder of this paper is organized as follows: Section
II reviews related works in Al for industrial safety and edge
computing. Section III describes the methodology, including
system design and model training. Section IV presents the
results, and Section V discusses the findings and implications.
Finally, Section VI concludes with insights and future direc-
tions.

II. RELATED WORKS
A. Al for Industrial Safety

Artificial intelligence has played a pivotal role in advancing
industrial safety by enabling automated, real-time monitoring
of compliance and hazard detection. Recent studies have
highlighted the deployment of Al in various safety-critical
applications, showcasing its potential to significantly reduce
workplace accidents and enhance operational efficiency [?],
[5]. For instance, anomaly detection systems monitor machin-
ery operation for irregular patterns, while computer vision-
based compliance monitoring ensures adherence to safety
protocols among workers [?], [6]. Despite these advancements,
many existing systems are constrained by their reliance on
cloud processing, leading to latency issues that can impede
timely hazard detection. This study addresses these limitations
by introducing an edge Al-based solution that operates with
minimal latency, ensuring immediate responses in safety-
critical scenarios.

B. Edge Computing for Industrial Applications

Edge computing has emerged as a crucial enabler for
deploying Al in industrial environments, where real-time re-
sponsiveness is paramount. Unlike cloud-centric models, edge
devices process data locally, drastically reducing latency and
enabling real-time decision-making [?], [7]. The NVIDIA Jet-
son Orin Nano, known for its optimal balance of computational
power and energy efficiency, has been widely adopted for edge



Al applications, particularly in safety monitoring [8]. Recent
advancements have further enhanced the capabilities of edge
devices, making them more suited for continuous monitoring
in dynamic industrial settings. By leveraging these advance-
ments, our study presents a scalable edge Al solution that not
only improves response times but also reduces dependency on
external connectivity.

C. YOLO and Object Detection Models

The YOLO (You Only Look Once) framework has revolu-
tionized object detection by offering high accuracy and rapid
inference speeds, making it ideal for real-time applications [9].
Variants such as YOLOv4 and YOLOv5 have demonstrated
improved performance in various resource-constrained envi-
ronments, including industrial safety scenarios [?], [10]. These
models have been successfully deployed in edge computing
settings, illustrating their adaptability and efficiency. Our study
builds on this foundation by customizing the YOLO model to
detect safety vests and assess worker emotions in real-time,
addressing specific challenges in industrial safety monitoring.
By fine-tuning the model for the Jetson Orin Nano, we ensure
that our system maintains high accuracy and efficiency even
in complex industrial environments.

III. METHODOLOGY
A. Model Architecture

The YOLO-based model was selected for its real-time object
detection capabilities, making it suitable for both emotion
and safety vest detection. The architecture leverages a con-
volutional neural network (CNN) backbone, pre-trained on
the COCO dataset, and fine-tuned for the specific tasks at
hand. The model’s capability to simultaneously detect multiple
classes and provide bounding boxes enables efficient process-
ing of surveillance footage for industrial safety applications.

B. Training Setup

The model was trained using a custom dataset comprising
images labeled for two distinct tasks: emotion detection and
safety vest detection. A comprehensive breakdown of the
training parameters is presented in Table I.

TABLE I
TRAINING PARAMETERS FOR YOLO-BASED MODEL
Parameter Value
Batch Size 32
Epochs 50
Learning Rate 0.001
Optimizer Adam
Loss Function Categorical Cross-Entropy
Image Resolution 416x416
Transfer Learning | Yes (Pre-trained Weights)

C. Training Data Statistics

The training dataset plays a pivotal role in ensuring the
model generalizes well across various operational scenarios.
Table II provides a summary of the dataset, highlighting its
diversity in terms of class representation, lighting conditions,
and background variations.

TABLE II
TRAINING DATA STATISTICS

Details

2500 (1000 for Emotion Detection, 1500 for
Safety Vest Detection)

Safety Vests, Emotions

Bright, Dim, Mixed

Indoor, Outdoor

Category
Total Images

Classes Represented
Lighting Conditions
Background Variations

D. Data Augmentation

To further enhance the model’s robustness, various data
augmentation techniques were applied. These include random
rotations, flips, and brightness adjustments. Such augmen-
tations simulate real-world conditions, ensuring the model
performs well under varied environments.

E. Evaluation Metrics

The model performance was evaluated using precision,
recall, and the Fl-score. For object detection tasks, metrics
such as mean Average Precision (mAP) at Intersection over
Union (IoU) thresholds of 0.5 and 0.75 were calculated to
assess the accuracy of bounding box predictions.

F. Implementation Details

The implementation was carried out using the PyTorch deep
learning framework. Training was performed on a system
equipped with an NVIDIA RTX 3080 GPU, which signif-
icantly accelerated the model’s convergence. Early stopping
was employed to prevent overfitting, and the best-performing
model checkpoint was saved based on validation loss.

G. Post-Processing

Post-processing steps included non-maximum suppression
(NMS) to eliminate redundant bounding boxes and improve
detection accuracy. Thresholds for confidence scores and IoU
were fine-tuned to balance precision and recall across both
tasks.

H. Deployment

The final model was deployed on an edge device for real-
time inference. Optimizations such as quantization and pruning
were explored to ensure the model’s efficiency in resource-
constrained environments, without compromising accuracy.

1. Summary

This methodology outlines the comprehensive approach
taken to develop a robust YOLO-based model for dual detec-
tion tasks. From dataset preparation to deployment, each step
was meticulously designed to ensure optimal performance in
real-world industrial safety applications.



IV. RESULTS

A. Performance Metrics

The deployed YOLO-based model on the NVIDIA Jetson
Orin Nano was evaluated using key performance metrics:
accuracy, inference speed, latency, and energy consumption.
The system achieved a mean detection accuracy of 92% for
safety vest detection and 85% for emotion recognition under
standard lighting conditions. The average inference speed
was measured at 22 frames per second, with a latency of
45 milliseconds per frame [11]. These results indicate the
system’s suitability for real-time monitoring in safety-critical
industrial environments. Additionally, the energy consumption
was maintained at an optimal 8§ W, validating the Jetson Orin
Nano as a viable platform for edge applications [8].

Table III summarizes these key performance metrics, pro-
viding a comprehensive overview of the system’s capabilities.

TABLE III
PERFORMANCE METRICS ON NVIDIA JETSON ORIN NANO
Metric Value
Accuracy (Safety Vest Detection) 92%
Accuracy (Emotion Detection) 85%
Inference Speed 22 FPS
Latency 45 ms per frame
Energy Consumption 8 W

B. Comparative Analysis

To further evaluate system performance, a comparative
analysis was conducted against benchmarks from similar edge
devices, including the Google Coral and Intel Neural Compute
Stick. The Jetson Orin Nano demonstrated superior perfor-
mance with an inference speed of 22 FPS and an energy
efficiency of 8 W, compared to the Google Coral’s 15 FPS and
4 W, and the Intel Neural Compute Stick’s 10 FPS and 2.5 W.
Despite the Jetson Orin Nano’s higher energy consumption,
its increased inference speed makes it ideal for applications
where rapid response is critical [12].

Table IV provides a detailed comparison of performance
metrics across these devices, highlighting the Jetson Orin
Nano’s advantages in edge Al deployment for industrial set-
tings.

TABLE IV
COMPARATIVE PERFORMANCE METRICS OF EDGE Al DEVICES

Device Inference Speed (FPS) | Latency (ms) | Energy Consumption (W)
Jetson Orin Nano 22 45 8
Google Coral 15 60 4
Intel Neural Compute Stick 10 70 2.5

C. Challenges and Observations

Several challenges were observed during deployment. Vari-
ations in lighting conditions significantly impacted the ac-
curacy of emotion recognition, particularly in low-light sce-
narios, where misclassifications of expressions were noted.
Furthermore, complex backgrounds occasionally led to false
detections of safety vests, suggesting that further fine-tuning

or adaptive thresholding may be necessary for diverse envi-
ronments [13].

To address these issues, future work could explore enhanc-
ing the dataset with more diverse lighting conditions and
complex backgrounds, and incorporating adaptive learning
strategies. These improvements would bolster the model’s
robustness and adaptability, ensuring reliable performance in
varied real-world industrial settings.

V. DISCUSSION
A. Interpretation of Results

The results demonstrate that the proposed edge Al system
successfully balances key parameters—accuracy, speed, and
energy efficiency—required for real-time safety monitoring in
industrial settings. Achieving a detection accuracy of 92% for
safety vests and 85% for emotion recognition underlines the
model’s robustness and practical applicability. These metrics
are particularly significant when compared to industry stan-
dards, where detection rates above 90% are often considered
benchmarks for reliability in safety-critical applications. The
inference speed of 22 frames per second ensures the system
can respond swiftly to potential hazards, a critical requirement
for dynamic industrial environments [11].

B. Contextualization

In comparison to conventional Al solutions that depend
heavily on cloud-based processing, our edge Al system offers
a substantial improvement by mitigating latency issues and
enhancing response times. Traditional cloud-based models
often suffer from delays due to data transmission and pro-
cessing times, which can be critical in time-sensitive industrial
settings. By leveraging on-device computation, our system not
only ensures immediate hazard detection but also preserves
data privacy—a growing concern in industrial applications.
Previous studies indicate that similar cloud-dependent appli-
cations often exhibit lower accuracy and delayed responses,
reinforcing the value of our edge-based approach.

C. Implications for Industrial Safety

The implementation of this edge AI solution marks a
significant step forward in industrial safety practices. By
enabling real-time monitoring of worker compliance with
safety protocols, the system has the potential to dramatically
reduce workplace accidents. For instance, in environments
where high-risk activities occur, such as construction sites or
manufacturing plants, timely alerts can prevent accidents by
ensuring that safety measures are adhered to. Additionally, the
system’s energy efficiency (8 W consumption) makes it well-
suited for deployment in remote or resource-constrained envi-
ronments, thereby broadening its applicability across various
industrial sectors.

D. Limitations

While the system demonstrates robust performance, cer-
tain limitations were noted. Variations in lighting conditions,
particularly low-light scenarios, negatively impacted emotion



recognition accuracy. This suggests that the current model
may not fully generalize across all environmental conditions
encountered in real-world settings. Moreover, the training
dataset, while diverse, may not cover the entire spectrum of
operational scenarios, potentially limiting the model’s adapt-
ability. Addressing these limitations will require expanding the
dataset to include a broader range of lighting conditions and
refining the model to better handle these variations.

E. Future Work

Future research will focus on optimizing the model ar-
chitecture to enhance its robustness in diverse operational
conditions. Investigating ensemble learning techniques or inte-
grating additional sensor data (e.g., thermal or depth sensors)
could significantly improve detection accuracy and reliability.
Additionally, adaptive learning algorithms capable of adjusting
to environmental changes in real-time could further enhance
performance. Implementing a feedback mechanism for con-
tinuous learning and refinement post-deployment is another
promising avenue. By incorporating user feedback, the system
can evolve to meet the specific needs of different industrial
applications, ensuring long-term effectiveness and reliability.

VI. CONCLUSION

This study has demonstrated the feasibility and effectiveness
of deploying an edge Al solution for real-time safety monitor-
ing in industrial environments. By integrating a YOLO-based
deep learning model on the NVIDIA Jetson Orin Nano with
a ZED 3D camera, the system achieved reliable detection of
safety vests and emotion recognition, essential for monitoring
compliance and enhancing workplace safety. The results indi-
cate that the model provides high accuracy, efficient inference
speed, and optimal energy consumption, which are critical for
applications requiring continuous, low-latency monitoring.

The implications of this work suggest that edge Al can
significantly contribute to autonomous safety solutions, reduc-
ing reliance on centralized systems and minimizing latency
in hazard detection. However, challenges related to environ-
mental variability and memory constraints highlight areas for
future improvement. Addressing these issues will be crucial
for enhancing the robustness and adaptability of the system in
real-world industrial settings.

Future research should focus on optimizing model per-
formance across diverse conditions and exploring additional
features, such as integrating real-time feedback mechanisms
from users. By continuing to advance Al applications in
industrial safety, we can promote safer work environments and
improve overall operational efficiency.
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