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Abstract—To address the limitations of 5G/B5G network 
slicing approaches in meeting diverse and high-reliability 
service demands, this paper proposes the Slice Resource 
Management based on Traffic Classification and Multi-agent 
Deep Deterministic Policy Gradient (SRM-TCM) framework. 
The SRM-TCM framework leverages Multi-agent Deep 
Deterministic Policy Gradient (MADDPG) for centralized 
training and dynamic resource scheduling, enabling precise 
traffic classification and adaptive slice management. This 
approach enhances resource utilization and ensures high 
Quality of Service (QoS), outperforming traditional methods 
that lack traffic-specific resource optimization. 
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I. INTRODUCTION 
The advent of 5G/Beyond 5G (5G/B5G) networks has 

revolutionized modern communication systems, offering 
unprecedented opportunities for innovation across various 
sectors. However, as the demand for high-speed, low-latency, 
and reliable services grows, effectively managing the diverse 
and dynamic requirements of network traffic has become a 
critical challenge. Network slicing, which allows the creation 
of virtualized slices tailored to specific applications, plays a 
pivotal role in addressing this issue. Each slice can be 
customized to meet the unique requirements of applications, 
such as low latency for real-time systems or high reliability 
for mission-critical services. Despite its potential, the dynamic 
allocation and scheduling of resources within slices remain a 
significant technical hurdle due to the highly variable nature 
of traffic demands. 

Existing resource allocation methods, including Markov 
chains[1], big data analysis[2], and queuing theory[3], often 
fall short in adapting to the dynamic and unpredictable 
environment of 5G networks. These methods tend to either 
underutilize resources or fail to meet service-level agreements 
(SLAs), resulting in suboptimal Quality of Service (QoS)[4]. 
Furthermore, traditional slicing approaches typically treat 
traffic as homogeneous, leading to inefficient resource 
utilization and imbalanced service provisioning. These 
limitations underline the need for intelligent and adaptive 
solutions that can dynamically optimize resource allocation in 
response to real-time traffic demands. 

To address these challenges, this paper proposes the Slice 
Resource Management based on Traffic Classification and 
Multi-Agent Deep Deterministic Policy Gradient (SRM-TCM) 
framework. Unlike conventional methods, the SRM-TCM 
framework integrates advanced artificial intelligence 
techniques to classify traffic patterns and optimize resource 

allocation dynamically. It employs Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG) for centralized 
training and resource scheduling, enabling intelligent 
decision-making to enhance both resource utilization and 
QoS[5][6]. 

By combining traffic classification with intelligent 
resource management, the SRM-TCM framework represents 
a significant advancement in B5G network slicing. It not only 
enhances the adaptability and efficiency of resource allocation 
but also provides a scalable solution to meet the ever-growing 
demands of next-generation networks. 

II. BACKGROUND AND RELATED WORKS 
This section introduces the research background and basic 

knowledge of this paper, including 5G/B5G microservices, 
network slicing and reinforcement learning. 

A. 5G/B5G Microservices 
The microservices architecture decomposes complex 

systems into smaller, independent components, allowing for 
easier scalability, maintenance, and faulty isolation. In the 
context of 5G/B5G networks, this approach reduces system 
coupling, enhances reliability, and enables autonomous 
service management. These features make microservices an 
essential tool for improving network scalability and flexibility 
in dynamic environments. 

B. Network Slicing 
Network slicing allows the creation of virtualized 

networks tailored to diverse 5G application requirements[7], 
such as low latency, high bandwidth, and enhanced security. 
This segmentation supports key 5G scenarios defined by 
ITU[8], including Ultra-Reliable Low Latency 
Communications (uRLLC), Massive Machine Type 
Communications (mMTC), and Enhanced Mobile Broadband 
(eMBB). By enabling dynamic and flexible resource 
allocation, network slicing significantly improves network 
efficiency and ensures consistent Quality of Service (QoS) 
across applications[9][10].  

C. Reinforcement Learning and MADDPG 
Reinforcement Learning (RL) facilitates intelligent decision-
making in dynamic environments[11] by enabling systems to 
learn and adapt autonomously. In this context, MADDPG 
serves as a robust approach for multi-agent systems, 
combining centralized training with decentralized execution. 
MADDPG enhances resource scheduling by enabling agents 
to predict and adapt to each other's behaviors, optimizing 
strategies based on real-time observations. This makes it 
particularly well-suited for complex tasks like resource 



allocation in network slicing, where multiple agents must 
cooperate to balance traffic demands and QoS requirements. 

D. Related Works 
Previous studies have leveraged RL and AI-based methods 

for 5G network slicing and resource management. However, 
many approaches either lack traffic classification or rely on 
static resource allocation strategies, leading to inefficiencies 
and suboptimal QoS. Compared to these methods, the 
proposed SRM-TCM framework integrates traffic 
classification with MADDPG to dynamically allocate 
resources, significantly enhancing network performance while 
addressing diverse application demands[12]. 

III. SYSTEM ARCHITECTURE 
In this section, the proposed SRM-TCM will be introduced, 

as well as the strategies used when intensive learning is taking 
place. It includes an introduction to the system architecture, 
environment definition, state space, action space, reward 
function and replay buffer. 

A. System Architecture 
SRM-TCM consists of two main components: the AI 

Traffic Classifier and the MADDPG-based Resource 
Management Mechanism[13]. The AI Traffic 
Classifier[14][15] analyzes network packets to classify traffic 
into Light, Hybrid, and Heavyweight types, corresponding to 
5G/B5G slices A, B, and C, enabling more accurate and 
efficient resource allocation. The MADDPG-based Resource 
Management Mechanism dynamically adjusts bandwidth 
allocation through its Actor, optimizing strategies based on 
real-time network load to enhance resource utilization and 
user experience. The bandwidth requirements and overall 
system architecture are depicted in Figures 1 and 2. 

 
Fig. 1. Resource Allocation for Slice Requests 

 

Fig. 2. SRM-TCM framework 

B. Environment Definition 
The proposed SRM-TCM framework employs a modified 

MADDPG model to enable multiple agents to collaborate and 
share experiences[16] in the learning environment. Unlike 
traditional MADDPG, which assigns a separate Critic for each 
Actor, this framework uses a centralized Single-Critic 
approach to evaluate all Actors, reducing computational 
complexity and improving training efficiency. The centralized 
Critic evaluates Q-values for different states, while Actors 
dynamically manage resource slices based on policy functions. 
Figure 3 provides the flowchart of reinforcement learning for 
resource management. This setup ensures better coordination 
among agents and efficient resource allocation. 

To encourage exploration during the early training stages, 
an ε-Greedy strategy[17] is employed, gradually shifting from 
exploration to exploitation as training stabilizes. Actors 
allocate resources by selecting actions that optimize the 
overall system performance, balancing resource availability 
and slice demands. 

The state space includes information about current idle 
resources, requested resources, and pending demands for each 
slice, ensuring a comprehensive understanding of the network 
environment. The action space allows Actors to decide 
whether to accept or reject slice requests, request additional 
resources, or release unused ones, guided by a reward function. 
The reward function encourages optimal resource utilization 
by rewarding successful slice requests and penalizing idle 
resources. 

A replay buffer is used to store experiences, enabling 
random sampling during training to reduce correlation 
between consecutive samples. This mechanism enhances 
training efficiency and prevents overfitting, ensuring robust 
performance in dynamic network environments[18]. 

  
Fig. 3. Reinforcement Learning Flowchart for the Proposed SRM-TCM 

Mechanism in Network Slicing Resource Management 



 
Fig. 4. Experience Replay Buffer Sampling Diagram 

IV. EXPERIMENTS AND DISCUSSIONS 
This section presents the results and discussion of the 

experiments, including the training process, results and 
performance evaluation of the experiments, and the evaluation 
of the trained models in a simulated environment. To visualize 
the slice usage and performance metrics, Grafana[19] and 
Prometheus[20] were used as tools. 

A. Performance Evaluation of Slice Resource Allocation 
The performance of the proposed SRM-TCM mechanism 

was evaluated through simulations under two scenarios: low-
resource requests with 150 packets per unit time and high-
resource requests with 240 packets per unit time. Key 
performance metrics included idle Global Session Manager 
(GSM) resources, and average rewards. Results were 
compared against DQN and random strategies, and the 
experimental parameters are summarized in Table 1. 

TABLE I.  EXPERIMENTAL PARAMETERS TABLE 

Critic Learning Rate 1×10$% 

Actor Learning Rate 1×10$% 

Buffer Capacity 1×10& 

Batch Size 64 

Gamma (𝛾) 0.95 

System Time 10 
 

1) Reward Variations During Training 
The SRM-TCM mechanism demonstrated superior reward 

trends. In low-resource conditions, SRM-TCM achieved an 
average reward of 0.968, slightly outperforming DQN with 
0.947 and significantly surpassing the random strategy with 
0.765. Under high-resource conditions, SRM-TCM achieved 
an average reward of 0.941, exceeding DQN's 0.883 and the 
random strategy's 0.531. Figures 5 and 6 illustrate these trends. 

 
Fig. 5. Average Reward of Training Process with Low Resource Requests 

 
Fig. 6. Average Reward of Training Process with High Resource Requests 

2) Comparison of Idle GSM Resources 
SRM-TCM minimized resource wastage effectively 

across all scenarios. In low-resource conditions, idle resources 
averaged 0.91 for SRM-TCM, 0.52 for DQN, and 8.92 for the 
random strategy. Under high-resource conditions, idle 
resources were further reduced to 0.62 for SRM-TCM, 
compared to 0.89 for DQN and 17.09 for the random strategy. 
Figures 7 and 8 illustrate these results. 

 
Fig. 7. Number of Idle GSMs under Low Resource Request Scenario 



 
Fig. 8. Number of Idle GSMs under High Resource Request Scenario 

B. Monitor and Visualize Slice Usage 
Prometheus and Grafana were used for monitoring and 

visualizing resource usage and performance metrics. These 
tools provided real-time insights into resource allocation 
efficiency aduring experiments. 

1) Usage of Slice Resources 
Figure 11 shows the cumulative resource usage across 

time intervals, highlighting the total number of slice resources 
utilized during the experiment. It provides an overview of how 
effectively the system allocated resources to meet the demand, 
with higher utilization indicating better resource efficiency. 
The results suggest that SRM-TCM efficiently manages the 
available resources, minimizing underutilization. 

 

Fig. 9. Total number of slice resources used 

2) Number of Unused GSM-Requested Resources 
Figure 12 presents the number of unused GSM-requested 

resources over time. It highlights how well the SRM-TCM 
mechanism anticipates future resource needs, keeping idle 
resources to a minimum. The model maintains a near-zero idle 
resource level, ensuring optimal resource allocation and 
reducing waste, which is a key metric for improving system 
efficiency. 

 

 
Fig. 10. Number of unused resources that GSM assigns to slice 

V. CONCLUSIONS 
The SRM-TCM framework effectively addresses the 

challenges of dynamic resource allocation in 5G/B5G 
networks by combining MADDPG-based traffic classification 
with adaptive slice management. Experimental results show 
that SRM-TCM outperforms traditional methods, improving 
resource utilization and minimizing idle resources. This 
highlights its potential to optimize QoS in complex network 
environments. Future work will focus on integrating advanced 
AI techniques and expanding its application to diverse use 
cases. 
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