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Abstract—To address the limitations of SG/B5G network
slicing approaches in meeting diverse and high-reliability
service demands, this paper proposes the Slice Resource
Management based on Traffic Classification and Multi-agent
Deep Deterministic Policy Gradient (SRM-TCM) framework.
The SRM-TCM framework leverages Multi-agent Deep
Deterministic Policy Gradient (MADDPG) for centralized
training and dynamic resource scheduling, enabling precise
traffic classification and adaptive slice management. This
approach enhances resource utilization and ensures high
Quality of Service (QoS), outperforming traditional methods
that lack traffic-specific resource optimization.
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L INTRODUCTION

The advent of 5G/Beyond 5G (5G/B5G) networks has
revolutionized modern communication systems, offering
unprecedented opportunities for innovation across various
sectors. However, as the demand for high-speed, low-latency,
and reliable services grows, effectively managing the diverse
and dynamic requirements of network traffic has become a
critical challenge. Network slicing, which allows the creation
of virtualized slices tailored to specific applications, plays a
pivotal role in addressing this issue. Each slice can be
customized to meet the unique requirements of applications,
such as low latency for real-time systems or high reliability
for mission-critical services. Despite its potential, the dynamic
allocation and scheduling of resources within slices remain a
significant technical hurdle due to the highly variable nature
of traffic demands.

Existing resource allocation methods, including Markov
chains[1], big data analysis[2], and queuing theory[3], often
fall short in adapting to the dynamic and unpredictable
environment of 5G networks. These methods tend to either
underutilize resources or fail to meet service-level agreements
(SLAs), resulting in suboptimal Quality of Service (QoS)[4].
Furthermore, traditional slicing approaches typically treat
traffic as homogeneous, leading to inefficient resource
utilization and imbalanced service provisioning. These
limitations underline the need for intelligent and adaptive
solutions that can dynamically optimize resource allocation in
response to real-time traffic demands.

To address these challenges, this paper proposes the Slice
Resource Management based on Traffic Classification and
Multi-Agent Deep Deterministic Policy Gradient (SRM-TCM)
framework. Unlike conventional methods, the SRM-TCM
framework integrates advanced artificial intelligence
techniques to classify traffic patterns and optimize resource
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allocation dynamically. It employs Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) for centralized
training and resource scheduling, enabling intelligent
decision-making to enhance both resource utilization and

QoS[5][6].

By combining traffic classification with intelligent
resource management, the SRM-TCM framework represents
a significant advancement in BSG network slicing. It not only
enhances the adaptability and efficiency of resource allocation
but also provides a scalable solution to meet the ever-growing
demands of next-generation networks.

II.  BACKGROUND AND RELATED WORKS

This section introduces the research background and basic
knowledge of this paper, including 5SG/B5G microservices,
network slicing and reinforcement learning.

A. 5G/B5G Microservices

The microservices architecture decomposes complex
systems into smaller, independent components, allowing for
easier scalability, maintenance, and faulty isolation. In the
context of 5G/B5G networks, this approach reduces system
coupling, enhances reliability, and enables autonomous
service management. These features make microservices an
essential tool for improving network scalability and flexibility
in dynamic environments.

B. Network Slicing

Network slicing allows the creation of virtualized
networks tailored to diverse 5G application requirements[7],
such as low latency, high bandwidth, and enhanced security.
This segmentation supports key 5G scenarios defined by
ITU[8], including  Ultra-Reliable = Low  Latency
Communications (uURLLC), Massive Machine Type
Communications (mMTC), and Enhanced Mobile Broadband
(eMBB). By enabling dynamic and flexible resource
allocation, network slicing significantly improves network
efficiency and ensures consistent Quality of Service (QoS)
across applications[9][10].

C. Reinforcement Learning and MADDPG

Reinforcement Learning (RL) facilitates intelligent decision-
making in dynamic environments[11] by enabling systems to
learn and adapt autonomously. In this context, MADDPG
serves as a robust approach for multi-agent systems,
combining centralized training with decentralized execution.
MADDPG enhances resource scheduling by enabling agents
to predict and adapt to each other's behaviors, optimizing
strategies based on real-time observations. This makes it
particularly well-suited for complex tasks like resource



allocation in network slicing, where multiple agents must
cooperate to balance traffic demands and QoS requirements.

D. Related Works

Previous studies have leveraged RL and Al-based methods
for 5G network slicing and resource management. However,
many approaches either lack traffic classification or rely on
static resource allocation strategies, leading to inefficiencies
and suboptimal QoS. Compared to these methods, the
proposed SRM-TCM  framework integrates traffic
classification with MADDPG to dynamically allocate
resources, significantly enhancing network performance while
addressing diverse application demands[12].

III.  SYSTEM ARCHITECTURE

In this section, the proposed SRM-TCM will be introduced,
as well as the strategies used when intensive learning is taking
place. It includes an introduction to the system architecture,
environment definition, state space, action space, reward
function and replay buffer.

A. System Architecture

SRM-TCM consists of two main components: the Al
Traffic Classifier and the MADDPG-based Resource
Management Mechanism[13]. The Al Traffic
Classifier[14][15] analyzes network packets to classify traffic
into Light, Hybrid, and Heavyweight types, corresponding to
5G/B5G slices A, B, and C, enabling more accurate and
efficient resource allocation. The MADDPG-based Resource
Management Mechanism dynamically adjusts bandwidth
allocation through its Actor, optimizing strategies based on
real-time network load to enhance resource utilization and
user experience. The bandwidth requirements and overall
system architecture are depicted in Figures 1 and 2.
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B. Environment Definition

The proposed SRM-TCM framework employs a modified
MADDPG model to enable multiple agents to collaborate and
share experiences[16] in the learning environment. Unlike
traditional MADDPG, which assigns a separate Critic for each
Actor, this framework uses a centralized Single-Critic
approach to evaluate all Actors, reducing computational
complexity and improving training efficiency. The centralized
Critic evaluates Q-values for different states, while Actors
dynamically manage resource slices based on policy functions.
Figure 3 provides the flowchart of reinforcement learning for
resource management. This setup ensures better coordination
among agents and efficient resource allocation.

To encourage exploration during the early training stages,
an e-Greedy strategy[17] is employed, gradually shifting from
exploration to exploitation as training stabilizes. Actors
allocate resources by selecting actions that optimize the
overall system performance, balancing resource availability
and slice demands.

The state space includes information about current idle
resources, requested resources, and pending demands for each
slice, ensuring a comprehensive understanding of the network
environment. The action space allows Actors to decide
whether to accept or reject slice requests, request additional
resources, or release unused ones, guided by a reward function.
The reward function encourages optimal resource utilization
by rewarding successful slice requests and penalizing idle
resources.

A replay buffer is used to store experiences, enabling
random sampling during training to reduce correlation
between consecutive samples. This mechanism enhances
training efficiency and prevents overfitting, ensuring robust
performance in dynamic network environments[18].
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Fig. 3. Reinforcement Learning Flowchart for the Proposed SRM-TCM
Mechanism in Network Slicing Resource Management
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IV. EXPERIMENTS AND DISCUSSIONS

This section presents the results and discussion of the
experiments, including the training process, results and
performance evaluation of the experiments, and the evaluation
of the trained models in a simulated environment. To visualize
the slice usage and performance metrics, Grafana[19] and
Prometheus[20] were used as tools.

A. Performance Evaluation of Slice Resource Allocation

The performance of the proposed SRM-TCM mechanism
was evaluated through simulations under two scenarios: low-
resource requests with 150 packets per unit time and high-
resource requests with 240 packets per unit time. Key
performance metrics included idle Global Session Manager
(GSM) resources, and average rewards. Results were
compared against DQN and random strategies, and the
experimental parameters are summarized in Table 1.

TABLE L. EXPERIMENTAL PARAMETERS TABLE
Critic Learning Rate 1x1073
Actor Learning Rate 1x1073

Buffer Capacity 1x10*
Batch Size 64
Gamma (y) 0.95
System Time 10

1) Reward Variations During Training
The SRM-TCM mechanism demonstrated superior reward
trends. In low-resource conditions, SRM-TCM achieved an
average reward of 0.968, slightly outperforming DQN with
0.947 and significantly surpassing the random strategy with
0.765. Under high-resource conditions, SRM-TCM achieved
an average reward of 0.941, exceeding DQN's 0.883 and the

random strategy's 0.531. Figures 5 and 6 illustrate these trends.
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Fig. 6. Average Reward of Training Process with High Resource Requests

2)  Comparison of Idle GSM Resources

SRM-TCM minimized resource wastage effectively
across all scenarios. In low-resource conditions, idle resources
averaged 0.91 for SRM-TCM, 0.52 for DQN, and 8.92 for the
random strategy. Under high-resource conditions, idle
resources were further reduced to 0.62 for SRM-TCM,
compared to 0.89 for DQN and 17.09 for the random strategy.
Figures 7 and 8 illustrate these results.
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B. Monitor and Visualize Slice Usage

Prometheus and Grafana were used for monitoring and
visualizing resource usage and performance metrics. These
tools provided real-time insights into resource allocation
efficiency aduring experiments.

1) Usage of Slice Resources

Figure 11 shows the cumulative resource usage across
time intervals, highlighting the total number of slice resources
utilized during the experiment. It provides an overview of how
effectively the system allocated resources to meet the demand,
with higher utilization indicating better resource efficiency.
The results suggest that SRM-TCM efficiently manages the
available resources, minimizing underutilization.
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Fig. 9. Total number of slice resources used

2)  Number of Unused GSM-Requested Resources

Figure 12 presents the number of unused GSM-requested
resources over time. It highlights how well the SRM-TCM
mechanism anticipates future resource needs, keeping idle
resources to a minimum. The model maintains a near-zero idle
resource level, ensuring optimal resource allocation and
reducing waste, which is a key metric for improving system
efficiency.
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Fig. 10. Number of unused resources that GSM assigns to slice

V. CONCLUSIONS

The SRM-TCM framework effectively addresses the
challenges of dynamic resource allocation in S5G/B5G
networks by combining MADDPG-based traffic classification
with adaptive slice management. Experimental results show
that SRM-TCM outperforms traditional methods, improving
resource utilization and minimizing idle resources. This
highlights its potential to optimize QoS in complex network
environments. Future work will focus on integrating advanced
Al techniques and expanding its application to diverse use
cases.
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