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Abstract—The angle of departure (AoD) and the angle of
arrival (AoA) are crucial parameters of wireless channels to
enable location-aware applications for the sixth generation (6G)
communication systems. This paper addresses the problem of
predicting the AoD and AoA at locations within the coverage of
a deployed base station (BS) utilizing deep machine learning
(DML). Unlike exisitng works which rely on user location
information and AoA/AoD as direct input and output for DML
models, we generate five distinct maps, that characterize different
aspects of the transmission environment and use them as the
input and output for the DML. Additional, we introduce a method
which leverages a user location-specific transmission zone to
mask the area with minimum impact on the signal propagation.
This helps to reduce the ambiguity of the training dataset,
enabling the DML model to learn the relationship between the
transmission environment and the AoD and AoA more effectively.
The performance of the proposed method is evaluated using
DeepMIMO dataset. Simulation results show that the proposed
method can predict both the AoD and the AoA with satisfactory
accuracy compared to the true AoD and AoA. Furthermore, the
proposed method achieves better performance than the methods,
which utilized the location information only.

Index Terms—deep machine learning, regression, channel
knowledge map, AoD, AoA, geo-location, environment-aware,
image, prediction.

I. INTRODUCTION

Recently, channel knowledge map (CKM) has evolved as
a key technology to enable environment-aware communica-
tions for future sixth generation (6G) networks, by providing
insightful location-specific information on channel parameters
such as pathloss, path gains, angle of departure (AoD) and
angle of arrival (AoA) [1], [2], [2]-[4]. The AoD and AoA
are parameters of wireless channels referring to the directions
of propagation of radio signals with respect to the transmit
and receive antennas. AoD is essential to direct the transmit
signals toward specific users or regions [5], whereas AoA is
critical in positioning devices as well as receive beamforming
design [6].

The recent research efforts on CKM focus on the construc-
tion of radio environment map (REM) providing information
on signal strength or pathloss of user locations within the
coverage, which is mainly used to guide the deployment of
new base stations (BSs) [7]-[10]. The REM construction is
equivalent to collectively obtaining the signal strength or path
loss for all locations within the coverage. On the other hand,
CKM also needs to address the problem of predicting channel
parameters at specific user locations for a readily deployed

BS [4], [7], [11], [12]. In this context, the objective of the
CKM is to provide the users with the channel parameters
solely based on their location information. This is crucial to
achieve energy-efficient communications, especially when the
wireless networks become denser and the overhead becomes
formidable.

The prediction of channel parameters at user locations
without measurements is usually formulated as regression
problems. Intensive studies have shown that data-driven deep
machine learning (DML)-based methods achieved better per-
formance than statistical methods [7], [8], [13]. There are
plenty of research works on the REM construction for signal
strength and pathloss employing DML technique. However the
works on the prediction of AoD and AoA of readily deployed
BSs are very limited. The prediction of AoD of the strongest
path was investigated in [11] given the user locations. The
prediction of AoD and AoA of multiple paths was studied in
[12], by sequentially predicting the AoD and AoA. These two
works utilize only the coordinates of the user locations as the
input to the DML model.

However, the AoD and AoA are strongly affected by the
transmission environment, such as terrain structure, city land-
scape and texture of the obstacles. To this end, in this paper,
we propose a new method to predict the AoD and AoA of a
readily deployed BS utilizing the knowledge of transmission
environments. Four maps, the city map, the height map, the
LOS map and the location map are used to characterize
different aspects of the transmission environment.

In collective prediction of signal strength and pathloss of
all user locations, images of the whole coverage area of a
BS is usually used to train the DML model [7]-[10]. This is
reasonable since the training label is a REM image containing
the signal strength or path loss of all the user locations. There
exists a unique translation from the input image to the label
image. However when the prediction of AoD and AoA of a
particular user location is concerned, not the whole coverage
area affects the signal propagation. If the whole coverage area
is still used as input to the DML model, data ambiguity might
happen and the DML model will fail to learn the correlation
between the user locations and the AoD and AoA.

Therefore, we propose to use a rectangle transmission zone
of varying size to characterize the transmission environment
between the BS and the particular user location. The irrelevant
area less affecting the signal propagation will be masked, so



Fig. 1: The transmission environment considered in this paper
[14].

as to have a more deterministic relationship between the user
location and the AoD and AoA. Furthermore, the size of the
maps remains as constant although the size of the transmission
zone varies with the user locations, in order to simply the DML
model architecture.

The contribution of this paper is summarized as follows:

o We propose a DML-based method to predict the AoD
and AoA exploiting the transmission environments, the
location information and the radio U-Net architecture [7].

o Five maps, each characterizing different aspects of the
transmission environment, are generated as the training
dataset to train the DML model.

o A rectangle transmission zone of various size to charac-
terize the transmission environment between the BS and
the particular user locations.

The outline of the paper is as follows. The system model is
introduced in Section II. The proposed DML-based AoD and
AoA prediction is presented in Section III. The performance
achieved by the proposed method is investigated in Section
IV, followed by conclusions in Section V.

II. SYSTEM MODEL

In this paper, we consider an outdoor urban transmission
environment of area 440m x 600m, with two streets, one
intersection and some buildings, as shown in Fig. 1. The
heights of buildings range from 12 meters (m) to 34m, as
indicated by the number in the white blocks. We consider
only one BS at the location denoted as BS1 in Fig. 1. The BS
operates at 60 GHz and is equipped with horizontal antennas
P, = 6 and vertical antennas ); = 2, mounted at a height of
6 meters. Users are equipped with horizontal antennas P, = 3
and vertical antennas (), = 2 positioned at a height of 2
meters.

The radio signals propagating through the transmission
environments suffer scattering, diffraction and refraction. At
each user location, the signals might undergo line-of-sight
(LOS) transmission, non-line-of-sight (NLOS) transmission
or blockage by the surroundings. Each propagation path can
undergo a maximum of four reflections before reaching the
user.

For the k'" user location with coordinate (Tk, Yk, 21), WE
assume that there are L, paths present between the BS and the
user location. Note that we have L; = 1 for LOS transmission
and Ly = 0 for blocked transmission. In this paper we focus
on the prediction of AoD and AoA for the strongest path only.
Given the location-dependent path parameters, following the
classic geometry-based channel model, the wireless channel at
the k" location is given as [15]
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where M;, M, are the number of antennas in the transmitter
and receiver; gl(f) = Ael¥ denotes the complex path gain
of the [*" path, with A, being the amplitude and the
phase; B,il), goff) are the zenith and azimuth of AoD for the
Ith path at the BS; Gg)7 ,il) are the zenith and azimuth of
AoA for the It" path at the user location; a;, b, are column
vectors representing the BS and user antenna array response,

respectively.

The elements of a; at the p;-th horizontal antenna and ¢;-
th vertical antennas, where p; = 0,..., P, — 1 and ¢ =
0,...,Q¢ — 1, are given as
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The elements of b, at the p,.-th horizontal antenna and g,.-
th vertical antennas, where p, = 0,...,P. — 1 and ¢, =
0,...,Q, —1, are given as
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respectively, where ) is the wavelength of the radio signals and
d is the spacing between any two adjacent antenna elements.

Based on this model, at a given user location, with the
knowledge of the number of paths, path gains, AoDs and
AoAs, the channel matrix Hj can be easily reconstructed,
rather than estimated from real-time transmission of reference
signals.

III. PROPOSED DML-BASED AOD AND AOA PREDICTION

The prediction of AoD/AoA using the DML technique is
formulated as a regression problem, which involves developing
a DML model to replace the function f( ) that maps a location
Oy, = (xk, Yk, 2r) to its corresponding AoD (S, ¢k ) and AoA
(O, D).

In this section, we will propose a new method for the
prediction of AoD and AoA, leveraging the knowledge of the
environment. The proposed method will be elaborated in terms
of dataset generation and neural network architecture.

A. Dataset Generation

Note that DML models are able to solve regression prob-
lems with satisfactory performance only when there are 1)
hidden common structures, patterns and features in the training
dataset; 2) the input of the neural network and the labels should
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Fig. 2: Nllustrations of maps.

Fig. 3: Example of masked city map with transmission zone.

be correlated deterministically. These ensure the DML model
to learn the relationship through multiple layers of abstraction
of the neural network.

In this paper, we present our DML model for AoD and
Ao0A prediction, utilizing images as both the input and output.
This approach is motivated by two key reasons: (1) images
effectively capture the transmission environment between the
base station (BS) and the user location, and (2) we can leverage
existing neural network architectures, such as Radio U-Net,
which are well-established for image processing tasks.

To this end, in this paper, we propose to use five maps as
the training dataset, including the city map, the height map,
the LOS map, the location map and the AoD and AoA map.
The first four maps are images characterizing different aspects
of the transmission environment, whereas the AoD and AoA
map is an image as the target label.

1) Map Generation:

a) City map: A morphological image showing the place-
ment of the buildings and streets. It contains information on
building locations, building size, as well as the street layout,
as shown in Fig. 2 (a). The values of pixels inside and outside
the buildings are set to be 1 and 0, respectively.

b) Height map: An image containing the information of
building heights. The values of pixels inside the buildings are
the height of the building, as shown in Fig. 2 (b).

¢) LOS map: The LOS map contains the information of
LOS indicator at all locations, as shown in Fig. 2 (c). The LOS
indicators are 1,0, —1 for LOS transmission, NLOS trans-

mission and blockage, respectively. The values of pixels of
locations in the LOS map are their respective LOS indicators.

d) Location map: The location map contains the infor-
mation of the BS location and the user location whose AoD
and AoA will be predicted. One image is generated for each
user location, where the values of the pixel containing the BS
on the map are set as the BS’s actual coordinates and the
values of the pixel the user location resides on the map are
set as its actual coordinates as well. The values of the rest of
the pixel values on the location map are all set to be zero.

e) AoD and AoA map: The AoD and AoA at user
locations are within range (—180, 180) degrees. In each AoD
map and AoA map, the pixel value at the user location is set
as its AoD and AoA value, respectively.

The pixel values of all the above maps must be quantized
to integer values within (0, 255) before they are applied to the
DML model according to the equations below:

H™ — wints <2";f ’*) (4a)
LoS{"™") = uint8 <255 (LoSy +1) > (4b)
B — wint8 (255 e+ 180) ) (4c)
A7) — wints (255 ﬂk +180) ) )
) = wint8 (255 (6 +180) ) (4e)
o) = yint8 (255(¢§6; 180) ) (4f)

where unit8( ) is a function that converts a number to
unsigned 8-bit integer.

2) Generation of Rectangle Transmission Zone: In most
of the existing works [7]-[10], the above mentioned maps
generally include the whole coverage area of the BS. However,
in practical, only the surroundings around the BS, the user
location and the path from the BS to the user location affect
the AoD and AoA. The rest of the coverage area is irrelevant
and will cause data ambiguity if being included in the map.
Therefore, given the location of the BS and the user location,



we construct new maps comprised of a rectangle transmission
zone and a masked area. The rectangle transmission zone has
a pre-defined width, whereas the length and the rotation angle
are defined based on the locations of the BS and the user as
follows.

Given the coordinates of the BS and the user location k as
(rBs,yBs,zps) and (zk, Yk, 2k ) respectively, the coordinates
of the center of the transmission zone will be given by

Lo xk—’_% (5)
Yk +YBsS
Ye s (6)

The length S and the rotation angle « of the transmission zone
for the user location k are given by

Sk = V(&k—2Bs)?+ (yr — yBs)? (7
o = arctan (m> (8)
Ty — ITBS

Note that the transmission zone has variable length and
rotation depending on the relative location between the BS
and the user.

The rectangle transmission zone will then be applied to the
city map, the height map and the LOS map. The new maps
for the user location k are then constructed by retaining the
map information inside the zone, but masking the irrelevant
area outside the zone through setting the pixel values as zero.
An example of the new city map after applying the rectangle
transmission zone is shown in Fig. 3. Note that in this example,
the boundary of the rectangle transmission zone is invisible.

With this construction, each user location is associated with
a unique set of city map, height map and LOS map. This
uniqueness is crucial for the regression problem to translate
each specific user location map to AoD and AoA map. Note
that although the size of transmission zone varies with the user
location, the size of maps remain constant. This consistency
will simplify the design of DML model, without the need to
address variable size of input images.

B. Neural Network Architecture

We adopt the well developed Radio U-Net as our neural
network architecture to predict the AoD/AoA [7]. The U-Net
architecture mainly consists of an encoder contractive path, a
decoder expansive path, and skip connections.

« Encoder path: making use of convolution and pooling op-
erations to progressively reduce the spatial dimensions of
the input while increasing the number of feature channels.
This process helps to extract hierarchical representations
of the input image.

o Decoder path: converting the feature maps back to the
original input size by upsampling, which are used to
progressively increase the spatial dimensions and reduce
the number of feature channels.

« Skip connections: copying and concatenating the feature
maps in the encoder layers to the corresponding feature
maps with the same resolution in the decoder layers,
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Fig. 4: The colormaps of predicted and true AoD.
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Fig. 5: The colormaps of predicted and true AoA.

resulting an U-shape architecture. The skip connections
help preserve spatial information and promote better
segmentation.

The schematic illustration of the architecture of U-Net that
we use can be found in Fig. 1 of [16]. The U-Net architecture
used in this study has four convolutional layers in the encoder
and decoder, with a number of 32, 64, 128, 256 channels
respectively, and an activation function of Relu.

In this paper, we utilize U-Net to perform regression instead
of classification through image-to-image translation. We stack
the city map, the height map, the LOS map and the location
map together as a 3-dimensional (3D) tensor and feed it to the
U-Net.

In the training of the U-Net, the loss function is defined
as the minimum mean square error (MSE) between true AoD
and AoA map and the predicted AoD and AoA map. The
RMSprop optimizer is adopted to optimize the U-Net.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DML models for the prediction of the zenith angle B,(Cl and
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Fig. 7: The CDFs of AoA.
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azimuth angle of ¢, of the strongest path of AoD, as well

as the zenith angle 9(”, azimuth angle gbg) of the strongest
path of AoA. Each AoD and AoA parameter will have its
own model although they share the same U-Net architecture.

In the simulations, we consider the radio signal transmission
from BS1 which resides at the right end of the horizontal street
as shown in Fig. 1. To train the U-Net, we generate 1320 sets
of city map, height map, LOS map, location map and AoA
and AoD map, with each set for one user location. All the
maps have the same size of 500 x 702. The user locations are
randomly distributed along the main streets which are divided
into User Grid 1, 2 and 3. The spacing of user locations in
the User Grid 1, 2 and 3 are around 2m and 15m, 15m and
2m, and 10m and 2m in the horizontal and vertical direction,
respectively. The length of the transmission zone is set to be
300 pixels.

We use the DeepMIMO dataset Scienario O1, which is
available at https://www.deepmimo.net/scenarios/o1-scenario/,
to train the U-Net model [14], [17]. The performance will
be evaluated in terms of the colormap and the cumulative
distribution function (CDF).

1) Performance in Terms of Colormap and CDF: Fig. 4
and Fig. 5 show the predicted AoD and AoA map (left plots)
as well as the true AoD and AoA (right plots) by the proposed
DML model. The color bars in the figures show the degrees
of respective variables. Fig. 6 to Fig. 9 present the CDFs of
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Fig. 8: The CDFs of AoD with and without LOS information.
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Fig. 9: The CDFs of AoA with and without LOS information.

the absolute errors between the true AoD and AoA and the
predicted AoD and AoA.

It can be seen that all the predicted colormaps match the
true colormaps very well, which indicates that the proposed
DML models can predict the AoD and AoA with satisfactory
accuracy. From the colormaps, we also notice that along the
horizontal street, the prediction performance is better. This is
because the user locations along the horizontal street usually
experience LOS transmission which is more deterministic.

From 6 and Fig. 7, we observe that the prediction of the
azimuth is worse than the prediction of the zenith, for example,
in the zenith prediction of AoD, nearly 100% of the errors
being less than around 5 degrees, whereas in the azimuth
prediction of AoD, less than 90% of the error being less than
5 degrees. For the prediction of AoA parameters, it can be
seen that, 98% of the errors of zenith prediction is less than
2 degree, while only 90% of errors are less than 5 degree for
azimuth prediction. The reason is that zenith angle is generally
less affected by surroundings on the horizon. Therefore, it is
less random and easy for the DML model to learn the hidden
feature.

2) Effects of LOS Information: Fig. 8 and Fig. 9 show the
effects of LOS information on the prediction of AoD and
AoA. Obviously, the LOS maps provide another dimension
of transmission environment which significantly improve the
prediction performance, as shown in the figures. Particularly



in our example, the prediction on zenith has considerable
improvement, from 40% errors to 95% errors less than 2
degree for AoD, and from 42% errors to 98% errors less than
2 degree for AoA.

3) Performance Comparison with Other Methods: We com-
pare the prediction performance achieved by our proposed
method with the methods in [11], [12], in terms of CDFs as
shown in Fig. 6 and Fig. 7.

It can be seen that, in the prediction of AoD parameters, our
porposed method has better performance than the methods in
[11], [12], for example, 95% of zenith errors by our method
are less than 2 degrees, whereas only 85% of the errors are
less than 2 degrees by the methods in [11], [12].

For AoA parameters, our proposed method achieves signif-
icantly better performance than the methods in [11], [12] in
the prediction of AoA azimuth. For prediction of AoA zenith,
our proposed method achieves performance not worse than
the method in [12]. We also notice that, our method achieves
errors less than 8 degrees with 100%, whereas it is 10 degrees
for the method in [12].

V. CONCLUSIONS

In this paper, we have developed DML-based method to
predict the location-specific AoD and AoA, by leveraging the
transmission environment and the user location information,
without requiring explicit knowledge of channel models. In
the proposed method, five maps, each characterizing different
aspects of the transmission environment, have been generated
as the training dataset to train the DML model. To further
enhance the model’s learning capability for regression tasks,
a rectangular transmission zone, whose size varies with user
locations, is employed to characterize the location-specific
transmission environment between the base station (BS) and
the user The simulation results have shown that the proposed
method can achieve better prediction performance for AoD and
Ao0A zenith and azimuth angles than the methods in [11], [12]
which leveraged the user location information only. Future
research could explore the use of additional maps, such as
map of reflection factor of obstacles, to better characterize
the transmission environments and futher enhance the perfor-
mance of the DML model.
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