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Abstract—Continual learning has become essential in many
practical applications such as online news summaries and product
classification. The primary challenge is known as catastrophic
forgetting, a phenomenon where a model inadvertently dis-
cards previously learned knowledge when it is trained on new
tasks. Existing solutions involve storing exemplars from previous
classes, regularizing parameters during the fine-tuning process,
or assigning different model parameters to each task. The
proposed solution LSEBMCL (Latent Space Energy-Based Model
for Continual Learning) in this work is to use energy-based
models (EBMs) to prevent catastrophic forgetting by sampling
data points from previous tasks when training on new ones. The
EBM is a machine learning model that associates an energy value
with each input data point. The proposed method uses an EBM
layer as an outer-generator in the continual learning framework
for NLP tasks. The study demonstrates the efficacy of EBM in
NLP tasks, achieving state-of-the-art results in all experiments.

Index Terms—continual learning, energy-based model, catas-
trophic forgetting, question answering, language generation

I. INTRODUCTION

Label prediction for continuously occurring instances is
crucial in practical applications like online news summaries,
product classification, and dialogue learning systems. To ad-
dress these scenarios, models must acquire, fine-tune, and
transfer knowledge over time, a concept referred to as con-
tinual learning [1]. Continual Learning (CL) aims to create
systems that can rapidly acquire new skills and integrate
them with prior knowledge, mimicking human learning. A key
challenge in CL is catastrophic forgetting, where models forget
previously learned knowledge when training on new tasks.

Approaches to mitigate catastrophic forgetting can be cat-
egorized into: (1) storing exemplars from previous tasks;
(2) parameter regularization during fine-tuning; and (3) task-
specific parameter allocation. These methods aim to retain
prior knowledge while learning new tasks. Our method pre-
vents forgetting by sampling data from previous tasks using an
Energy-based Model (EBM) during training. The EBM is first
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trained on each task, enabling the retention of prior knowledge
and improving performance on subsequent tasks.

An EBM associates scalar energy values with input data
points, assigning lower energy to more likely inputs and higher
energy to less likely ones. EBMs are applicable to various
tasks, including classification and regression. For instance,
Pang et al. [2] used EBMs in the latent space to enhance
the expressivity of generative models, demonstrating its utility
in improving latent space structure for both generation and
classification.

Despite advancements in CL, EBM applications in this
domain remain limited. For example, [3] applied EBMs for
classification in complex CL scenarios like boundary-agnostic
and class-incremental learning. Unlike their approach, which
uses EBMs as the core model, we employ EBMs as an exter-
nal sampling mechanism, simplifying updates and preserving
flexibility. Additionally, while their work focuses on computer
vision datasets, our study applies EBMs to natural language
processing datasets.

Our proposed method, LSEBMCL, makes three key con-
tributions: (1) integrating an EBM layer into a continual
learning framework for NLP tasks for the first time; (2) ad-
dressing catastrophic forgetting in NLP tasks using EBM; and
(3) achieving state-of-the-art performance across experiments,
demonstrating the effectiveness of our approach.

II. RELATED WORKS
A. Continual Learning

Continual learning involves sequential tasks and is partic-
ularly relevant in scenarios where data arrives in a non-i.i.d.
manner and new tasks emerge. However, deep neural networks
face the challenge of catastrophic forgetting, which hinders
their ability to retain prior knowledge. Current continual
learning methods fall into three categories: (1) Replay methods
[4], [5]; (2) Regularization-based methods [6], [7]; and (3)
Parameter isolation methods [8], [9]. Replay methods either



store raw samples or generate pseudo-samples using generative
models. For instance, iCaRL [10] stores class exemplars, and
GEM [11] uses gradients from previous tasks to constrain
updates. LAMOL [12] reduces forgetting by generating artifi-
cial examples of previous tasks. Regularization-based methods
avoid storing raw inputs, introducing regularization terms
to consolidate knowledge. LwF [13] uses model outputs as
soft labels, while MAS [14] estimates parameter importance
for adaptation. IDBR [15] applies disentanglement-based reg-
ularization for text classification, and LPC [16] combines
parameter calibration with logit preservation. Parameter iso-
lation methods allocate distinct parameters per task to prevent
forgetting, as seen in PackNet [17] and HAT [18]. Our method
employs replay-based EBMs to generate artificial samples for
previous tasks.

B. Energy-based Models

Energy-based models (EBMs) represent probability density
functions via an energy function E(x), mapping realistic
points to low energy values and unrealistic points to high
values [19]. EBMs offer simplicity, stability, and parameter
efficiency. Recent advancements enable EBMs to model high-
dimensional data [20], [21], and latent space EBMs [2] im-
prove model expressivity for tasks such as text generation
and trajectory modeling. EBMs have been shown to prevent
catastrophic forgetting in continual learning [3]. Unlike [3],
which uses EBMs as the primary model for classification, our
method employs EBMs as an outer-generator for tasks such as
classification and text generation. Other applications of EBMs
include joint training with pretrained text encoders to enhance
calibration [22] and leveraging low-dimensional structures for
anomaly detection [23].

III. METHODOLOGY

We initiate the process with a pre-trained base model,
specifically the latest Large Language Model (LLM) Mistral
7B. [24]. We have developed the LSEBMCL model, which
consists of four main components. The initial component is
the Inference Network, followed by Operator 1, Operator 2,
and finally, the Energy Function. In the subsequent sections,
we will provide a detailed introduction to each of these
components individually.

A. Inference Network

Following decaNLP [25], we make the datasets pre-
processed as a QA (Question Answering) problem. First, we
convert continual learning tasks to a unified QA format as:

<z,y>€D (D

where x is the Question, y is the Answer, and D is a
training set of QA. We target handling diverse tasks, covering
Question Answering (QA), Natural Language Inference (NLI),
Sentiment Analysis (SA), Semantic Role Labeling (SRL), etc.

We introduce an inference network, denoted as Ay(x),
which is also referred to as the “energy-based inference net-
work” (as depicted at the bottom of Figure 1). This network is

parameterized by ¥ and trained with the objective of achieving
the following goal:

Ay (x) = argmingeyy, ) Eeo(,y) 2

where Yg(z) are the true labels. Specifically, we train the
inference network parameters ¥ as follows (assuming O is
the parameters of EBM):

U = argming Z Eo(z, Ay(x)) 3)

<z,y>€D
B. Operator 1

We employ two operators o' and o2 that are used to map 2
logits into distributions for use in the energy. As shown at the
middle of Figure 1, we seek an operator o' to modulate the
way that logits z; output by the inference network is fed to the
decoder input slots in the energy function. o' is the operation
for feeding inference network outputs into the decoder input
slots in the energy.

C. Operator 2

An operator 0® to determine how the distribution pg(-|...)
is used to compute the log probability of 7. 0? is the operation
for computing the energy on the output. Explicitly, then, we
write each local energy term as

em(2,y) = —0°(2m) log pe (10" (2m), Tm) 4)

Our objective is to minimize the aforementioned energy
function concerning the variable z; in our inference networks.
The softmax operation is selected for o' and o?.

D. Energy Function

Figure 1 shows the proposed latent space EBM continual
learning model. We design an EBM layer to play the role
of outer-generator. After training each task, the EBM model
generates samples based on data from previous tasks before
training on the new task. During training on the new task, the
model not only trains a model on the new data but also trains
on the extra data generated from previous tasks by the EBM
model as shown at the top of Figure 1. The equation is shown
below:

M

Eo(z,y) = Y em(,y) (5)

m=1

where © is the parameters of the EBM. m means the index
of the task and M means the total number of tasks. e, (z,y)
is calculated using the following equation:

em(z,y) = —10g p(Ym|Tm) (6)

In Figure 1, for each task, we have:

pg(l‘,Z) :pa(Z)p5($|Z) @)



Fig. 1. The Overview of LSEBMCL Framework. (1) Inference Network: The process begins with the inference network at the bottom, where inputs (x) are
processed to generate encoded representations (z). (2) Operator 1 and (3) Operator 2: These operators facilitate the transition of logits from the inference
network to the decoder inputs and compute the energy on the outputs, respectively. (4) Energy Function: At the culmination of the process, the energy function

evaluates the outputs, contributing to the model’s generation.

where p,,(z) is the prior model with parameters «, z is a latent
dense continuous vector, and pg(z|z) is given by a generative
model parameterized with .

The EBM prior of z, p,(z), is in the form of the energy-
based correction of an isotropic Gaussian reference distribution

po(z):

1 1

Z(a) OPFa(@)po(2) o< explFa(z) - oz l1217]

Pa(z) =
=exp E(z)

®)

where E(z) = Fo(z) — 52z|2||* is the energy function

that maps z to a scalar, where F,(z) is parameterized by a

small multi-layer perceptron (MLP), o2 is the regularization

related hyper-parameter. Z(a) = [ exp[F,(z)|po(z)dz is the
normalizing constant/partition function.

For language modeling, assuming = € RP,
x=gp(z)+e )

where € ~ N(0,0%Ip), so that pg(x|z) ~ N(gs(z),0%Ip).
gs(z) can be a transformer, bert, gpt, bart for language
learning.

For text modeling, pg(x|z) is an autoregressive model as
shown in equation 10:

T
pp(z|z) = Hpﬁ(x(t)|x(1)7 ._.7x(t—1)’z)

t

(10)

Let paata () be the data distribution, learning of 5 of pg(x)
can be based on ming K L(pdata()|Ps())-
Observe {z;,i =1,..., N} ~ pgata (),

N
i K L(paaa () pa() ~ LB) = > togpata)

(11)
which is the Maximum Likelihood Estimation (MLE). We
calculate the gradient of log pg(z):

Vslogps(x) = Vps()

ps(z)
= @/Vﬂpg(x,z)dz

= Ep,(2lo) [V log ps(z, 2)]

(12)

The marginal distribution of z is pg(z) = [ pg(x, z)dz. The
inference of z based on posterior is pg(z|z) = pg(x, z)/ps(z).
With gradient descent, in each iteration, we have:

1
Btv1 = B + 6tNEpgt(zi|m,-)[v log ps(wi, 2:)|8 = B8] (13)

where Ej,; (2, z,)[.--] is the gradient calculated by equation 12,
approximated by short-run MCMC inference dynamics with
Langevin dynamics.

We approximate the intractable expectation FE, with
MCMC, Langevin dynamics, a gradience-based MCMC. We
draw samples from the EBM prior:



Zhp1 = 2k — 8V 1og pa(2k) + V2seg,

(14)
k=1,...K,20 ~po(z),ex ~ N(0,Iy)

The short-run Langevin dynamics is always initialized from
the fixed initial distribution pg, and only runs a fixed number
of K steps, e.g., K = 20.

Similarly, we can also draw samples from the posterior
distribution pg(z|z):

zpy1 = 2z — sV log pg(zk|r) + V2sey,

(15)
k=1,...K,20 ~po(z),ex ~ N(0, )

where s is the small Langevin step size, ¢ indexes the time step
of the Langevin dynamics, V log p,(2x) or Vlogpg(zk|z)
can be efficiently computed by back propagation.

IV. EXPERIMENTS

In this section, we assess the performance of our model on
various tasks. In our experiment, we focus on task-incremental
learning. We conduct a comparison of our method with eleven
different techniques. All the methods use Mistral 7B as the
backbone pretrained large language model. In the continual
learning scenario, we train the model sequentially on a series
of distinct tasks, following a predetermined order. After each
training phase, we assess the model’s performance on all
previously encountered tasks.

A. Experimental Setup

1) Tasks, Datasets, and Metrics: We collect datasets for
five different tasks related to natural language processing
mentioned in decaNLP [25], including question answering,
semantic parsing, sentiment analysis, semantic role labeling,
and goal-oriented dialogue. To compare our method with [26],
we also conduct experiments on four text classification tasks:
news classification, sentiment analysis, Wikipedia article clas-
sification, and question-and-answer categorization with five
datasets, following the same procedure for producing equal-
sized datasets. Due to limited computational resources, we did
not train on all datasets. We use a corresponding evaluation
metric for each task. Table I summarizes the tasks, datasets,
and metrics. The scores for the metrics range between 0 and
100%.

2) Methods for Comparison: The paper discusses various
approaches to tackling the problem of catastrophic forgetting
in continual learning, where a model trained on a sequence
of tasks tends to forget the previous tasks when trained on
subsequent tasks. The approaches considered in the paper
include fine-tuning, multi-task learning, replay methods and
architecture-based methods LAMOL, RVAE-LAMOL [27],
HMI-LAMOL [28], PMR [29], regularization-based methods
such as Online EWC [30] and MAS [14], Gradient Episodic
Memory (GEM) [11], Improved Memory-Based Parameter
Adaptation (MBPA++) [26], IDBR [15], and other methods
like ProgPrompt [31]:

(1) LSEBMCL: Uses top-k sampling with & = 1.
LSEBMCLY, ;; » denotes a sampling ratio ~y, applying the same

GEN token across tasks. (2) LAMOL: Employs £ = 20
for top-k sampling and A = 0.25 for LM loss weighting.
(3) RVAE-LAMOL: Enhances LAMOL with a residual vari-
ational autoencoder. (4) HMI-LAMOL: Adds hippocampal
memory indexing to improve generative replay via compressed
features. (5) PMR: Stores minimal samples for efficient con-
tinual learning. (6) Fine-tuning: Sequentially trains tasks with-
out task interaction. (7) Multitask learning: Trains all tasks
simultaneously, serving as a continual learning upper bound.
(8) Regularization methods: Includes Online EWC and MAS
for mitigating forgetting. (9) GEM: Randomly samples 5%
of prior task data for gradient calculation. (10) MBPA++:
Combines sparse experience replay with local adaptation.
(11) IDBR: Uses disentanglement-based regularization for text
classification. (12) ProgPrompt: Prevents catastrophic forget-
ting without data replay or extensive task-specific parameters.

B. Experimental Results

1) SST, QA-SRL, and WOZ Tasks: To gain a preliminary
understanding of the effectiveness of the different methods and
the impact of the task order, we conducted an experiment on
three small datasets: SST, QA-SRL, and WOZ. We trained all
methods except for the multitasked method on six different
orders of tasks. We evaluated the model’s final score after
training on each order, and the results are presented in Table
II. Based on the results, we made several observations. We ob-
served several things as follows: (1) Fine-tuned, EWC, MAS,
GEM, LAMOL, and RVAE-LAMOL had worse performance
than LSEBMCL even with v = 0 and significantly worse than
LSEBMCL with v > 0. (2) LSEBMCLY%Z ,; achieves the best
performance, even approximating the multitasked upper bound
with 2.6%, implying little forgetting during continual learning.
(3) Task order does influence performance with LSEBMCL.
(4) When using LSEBMCL, the performance of old tasks
remained almost the same throughout the training process.
Increasing the sampling ratio v improved the performance,
particularly when increased from 0 to 0.05. (5) A better contin-
ual method had a smaller standard deviation, indicating it was
less affected by the task order. LSEBMCL even achieves the
lowest standard deviation among all the baselines, indicating
its robustness to task order variations.

2) Five DecaNLP Tasks: In this sequential training ex-
periment, five tasks were tackled in order of decreasing
size, commencing with the largest task (SQuAD 2.0) and
concluding with the smallest (WOZ). This task sequence was
determined by the constraints of limited computing resources.
Notably, LSEBMCL exhibited superior performance across all
tasks, outperforming other methods by a significant margin
and even approximates the multitasked upper bound with
0.9%, as detailed in Table III. Moreover, the effectiveness
of LSEBMCL demonstrated further enhancement with an
increase in the sampling ratio . The experiment’s results
underscore LSEBMCL’s remarkable efficacy and suitability for
diverse tasks, confirming its robust performance.

3) Text Classification Tasks: We compare our proposed
method, LSEBMCL, against the state-of-the-art MBPA++,



TABLE I
SUMMARY OF TASKS, DATASETS, DATASET SIZES, AND THEIR CORRESPONDING METRICS. AS THIS WORK USES NO DEVELOPMENT SET, ONLY THE
TRAINING AND TEST DATASETS ARE SHOWN. NF1 IS THE NORMALIZED VERSION OF THE F1 SCORE; EM REPRESENTS AN EXACT MATCH BETWEEN
TEXTS: FOR TEXT CLASSIFICATION, THIS AMOUNTS TO ACCURACY; FOR WOZ, IT IS EQUIVALENT TO DFEM (TURN-BASED DIALOGUE STATE EXACT
MATCH); FOR WIKISQL, IT IS EQUIVALENT TO LFEM (EXACT MATCH OF LOGICAL FORMS).

Task Dataset # Train | # Test | Metric
Question answering SQuAD 2.0 130319 11873 nF1
Semantic parsing WikiSQL 56355 15878 ItEM
Sentiment analysis SST 6920 1821 EM
Semantic role labeling QA-SRL 6414 2201 nF1
Goal-oriented dialogue | WOZ 2536 1646 dsEM

AGNews

Amazon
Text classification DBPedia 115000 7600 EM

Yahoo

Yelp

TABLE II

SUMMARY OF AVERAGED METRIC SCORES FOR DIFFERENT METHODS UNDER PERMUTED TASK ORDERS USING MODELS AT THE LAST EPOCH OF THE
LAST TASK. THE AVERAGE AND STD COLUMNS RESPECTIVELY ARE THE AVERAGE AND STANDARD DEVIATION OF THE AVERAGED SCORES FOR EACH
ROW OF THE METHODS. MULTITASKED LEARNING AS AN UPPER BOUND IS SHOWN AT THE BOTTOM.

Model SST SRL WOZ | SST WOZ SRL | SRL SST WOZ | SRL WOZ SST | WOZ SST SRL | WOZ SRL SST [ Average | Std
Fine-tuned 520 255 64.6 32 346 346 408 | 146
EWC 510 50.0 66.4 375 443 40.7 84 102
MAS 373 462 573 323 50.3 32 426 [ 103
GEM 521 315 64.0 329 453 36.7 438 [ 126
LAMOL 7. 47.1 384 57.8 394 455 46.6 458 |70
LAMOL %% 8LS5 79.5 74.8 737 70.2 75.8 759 | 41
LAMOL %2 80.8 8LI 81.2 80.3 78.9 819 80.7 1.0
RVAE-LAMOL %5 80.7 79.6 79.9 80.2 79.6 78.0 79.7 09
RVAE-LAMOL .2 815 823 85 82.0 81 82.8 819 [ 06
LSEBMCL . o 66.4 571 71.7 66.8 64.6 65.6 665 | 64
LSEBMCL %%, 82.8 818 844 81.9 82.7 80.5 824 1.3
LSEBMCL %7 831 82.5 827 824 83.7 83.2 829 | 05
Multitasked 87.0
TABLE III

SUMMARY OF THE AVERAGED SCORE ON FIVE TASKS. THE SEQUENCE ORDER IS SQUAD 2.0, WIKISQL, SST, QA-SRL, AND WOZ. THE SCORES ARE
REPORTED AS THE AVERAGED SCORE OVER ALL TASKS OF THE MODELS AFTER TRAINING ON EVERY TASK. THE RIGHTMOST COLUMN MULTITASKED IS
THE UPPER BOUND FOR COMPARISON. THE BEST PERFORMANCE IS IN BOLDFACE.

Fine-tuned | MAS [ LAMOL %% [ LAMOL %7 - [ HMI-LAMOLY, [ HMI-LAMOLYZ | LSEBMCL %%, [ LSEBMCL U2 | Multitasked
526 | 512 703 741 76.0 769 765 713 782

TABLE IV
SUMMARY OF RESULTS ON TEXT CLASSIFICATION TASKS USING AVERAGED EM SCORE (EQUIVALENT TO AVERAGED ACCURACY IN [26]) OF MODELS AT
LAST EPOCH OF LAST TASK. THE FOUR ORDERS MIRROR THOSE IN [26]. FOR MBPA++, MBPA++ (OUR IMPL.), LAMOL (7)“}2451(’ PMR, IDBR,
PROGPROMPT, HMI-LAMOL, AND LSEBMCL%%, ., THE RESULTS ARE AVERAGED OVER TWO RUNS.

Order | MBPA++ | MBPA++ (our impl) | LAMOL 7%, [ PMR | IDBR | ProgPrompt | HMI-LAMOL | LSEBMCL 77>y

i 70.8 75.3 78.6 73.5 71.0 789 71.8 80.2
ii 70.9 76.0 78.3 74.3 71.2 78.4 18.7 80.0
iii 70.2 73.9 78.0 72.0 78.1 79.0 79.7 80.2
iv 70.7 76.7 76.9 70.2 71.8 78.0 78.4 80.3

Average 70.7 75.5 719 72.5 71.5 79.0 78.6 80.2




LAMOL, PMR, IDBR, ProgPrompt, and HMI-LAMOL. The
results are shown in Table IV. LSEBMCLZ%, outper-
formed LAMOLJ -, our implementation of MBPA++,
PMR, IDBR, ProgPrompt, and HMI-LAMOL even with sam-
pling ratio 0.05 and GEN token. This indicates that the
improvements made in LSEBMCL were significant and that it
is a strong method for mitigating catastrophic forgetting with
less sampling data.

V. CONCLUSION

In this study, we introduce an innovative approach known
as LSEBMCL that integrates an EBM layer into the continual
learning framework for NLP tasks. In addition to its promising
applications in NLP tasks, it holds potential implications for
computer vision tasks. Leveraging the expressive power of
the EBM prior in text modeling, we construct a latent space
conducive to interpretable generation and text classification. To
achieve this, we devise a novel prior distribution that integrates
continuous latent variables for generation and discrete latent
variables for inducing structural elements. Furthermore, we
utilize the EBM to generate samples from previous tasks when
training the model on new tasks. The experiments demonstrate
the superior performance of our proposed approach.
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