
Quantifying the Effectiveness of Cloud and Edge

Offloading: An Optimization Study on Energy

Efficiency of Mobile Real-Time Systems

Gahyeon Kwon

Dept.of Computer Engineering

Ewha University

Seoul, Republic of Korea

sonaby2@ewhain.net

Hyokyung Bahn

Dept.of Computer Engineering

Ewha University

Seoul, Republic of Korea

bahn@ewha.ac.kr

Abstract — The rapid growth of IoT and AI technologies has

driven the increased use of mobile embedded systems with real-

time constraints. These battery-powered systems should minimize

energy consumption while meeting task deadlines. Optimizing the

trade-off between energy consumption and performance is crucial,

particularly as workload demands fluctuate. Previous research

has focused on optimizing system resources, such as processors

and memory, by configuring low-power modes based on workload

intensity. Task offloading to cloud or edge servers has also been

studied, leveraging the ample resources of cloud servers for

resource-constrained mobile systems and the ability of edge

servers to efficiently meet deadline constraints with stable network

connections. In this paper, we quantify the effectiveness of task

offloading to cloud and edge servers in terms of power savings for

mobile systems. Unlike previous approaches, we analyze the

impact of offloading when co-optimized with other energy-saving

techniques, such as dynamic voltage scaling and low-power

memory configurations. Through extensive experiments, we

explore the trade-offs between cloud and edge environments,

accounting for workload intensity, network conditions, and server

computing capabilities. Our findings offer valuable insights for

designing optimized task offloading strategies tailored to specific

mobile system characteristics, effectively balancing the benefits of

cloud and edge environments.

Keywords — real-time task, offloading, cloud, scheduling, edge,

optimization

I. INTRODUCTION

The advancements in Internet of Things (IoT) and Artificial
Intelligence (AI) technologies have transformed various sectors,
including healthcare [1, 2], manufacturing [3], transportation
[4], and disaster management [5, 6]. As a result, there has been
a rapid increase in the deployment of embedded systems that
rely on real-time data acquisition, transmission, and AI-driven
training and inference through sensors [7–10]. In such systems,
minimizing energy consumption while adhering to the deadline
constraints of real-time workloads is critical [11, 12]. To meet
these demands, researchers have been focusing on optimizing
the trade-off between performance and energy consumption
across different system layers, dynamically adjusting these
factors based on the workload intensity [13, 14].

For instance, when workload demand is low, resources can
be configured to operate in low-power modes while still meeting
deadline constraints, thereby reducing energy consumption [15].
Conversely, when workload demand is high, resource
configurations are adjusted to maximize performance, even at
the cost of increased energy consumption.

At the memory layer, techniques such as integrating low-
power memory (LPM) into conventional DRAM have been
studied. LPM (also known as NVM or persistent memory)
consumes less power but offers lower performance than
traditional DRAM [16, 17]. In these approaches, DRAM is
activated for frequently accessed data, while LPM is prioritized
for less active periods. For the processor layer, dynamic voltage
and frequency scaling (DVFS) techniques adjust processor
speeds based on computational demand — lowering speeds for
light tasks and maximizing them for more demanding ones [18].
Additionally, task offloading to remote servers has been
suggested as a solution for mobile systems with limited
computing resources, especially when handling compute-
intensive workloads [19]. Offloading to cloud servers, which
have abundant computational resources, reduces the burden on
mobile processors and leads to significant energy savings.
Alternatively, offloading to nearby edge servers with stable
network connections provides predictable latency, which is
crucial for real-time systems while also achieving energy
savings for mobile devices [20, 21].

In this paper, we analyze the impact of task offloading to
cloud and edge servers on energy-saving optimization in mobile
real-time systems. Specifically, we investigate the combined
effects of processor’s DVFS, low-power memory techniques,
and task offloading to remote servers, comparing the
effectiveness of cloud versus edge server offloading under
various conditions. Our extensive experiments demonstrate that
offloading to cloud servers is more efficient in terms of energy
savings for high-computation workloads exceeding 50% of the
full capacity of a mobile resource. In contrast, offloading to edge
servers is more effective when the workload is below this
threshold. However, the trade-offs between cloud and edge
offloading are influenced by factors such as network bandwidth
and the computational capabilities of the respective servers.

Specifically, when the capacity of a cloud server is no more than
twice that of an edge server, offloading to the edge server proves
to be more efficient.

The findings of this research provide valuable insights for
designing optimized offloading strategies integrated with DVFS
and low-power memory techniques in mobile embedded
systems, taking into account the specific characteristics of real-
time tasks and the diverse environmental factors of cloud and
edge servers.

The remainder of this paper is structured as follows: Section
II describes the task execution model used in this study. Section
III describes the optimized execution of real-time tasks in our
study. Section IV presents an analysis of how task offloading to
cloud and edge servers varies depending on workload demand.
Finally, Section V concludes the paper.

II. TASK EXECUTION MODEL

The task execution model in this paper extends the

conventional real-time task model to include optimizations such

as processor speed control, low-power memory allocation, and

offloading to remote servers [22]. The set of tasks is defined as

T = {t1, t2, …, tn}, and the target mobile system consists of a

processor with Dynamic Voltage and Frequency Scaling

(DVFS) capabilities, as well as main memory comprising low-

power memory (LPM) and high-performance memory (HPM)

in the form of DRAM. Additionally, we assume the availability

of cloud and edge servers capable of handling offloaded tasks.

Each task can be executed either on the local mobile processor

or offloaded to a remote cloud or edge server, which leads to

dividing the task set T into two subsets: MOBILE and

OFFLOADED. Although increasing the offloading ratio is

generally more efficient due to the superior computing power of

remote servers, tasks must be carefully chosen for offloading.

Tasks offloaded to remote servers must return their results

before their deadlines, and some control tasks that interact with

sensors or actuators should always be executed locally on the

mobile processor.

Since tasks can reside in two different memory types, the

task set T is further divided into HPM and LPM. A task ti is

defined as ti = <WCETi, Periodi, Datai>, where WCETi

represents the worst-case execution time of task ti when

executed at the default clock speed of the mobile processor.

Periodi denotes the execution period, and Datai represents the

data characteristics, defined as Datai = <Sizei, Inputi, Outputi,

Rdi, Wri>. Sizei refers to the memory footprint of ti, Inputi is the

input data required for execution, and Outputi is the output data

generated. Rdi and Wri denote the number of read and write

operations to memory, respectively. For tasks ti∈OFFLOADED,

the input data size Inputi must be transmitted to the remote server

before execution, and after execution, the output data Outputi

must be received from the remote server. This paper deals with

periodic real-time tasks, where each task’s deadline is

determined by its period Periodi. The overall period EpochT for

all tasks ti∈T is defined as the least common multiple of the

individual periods.

Since we focus on real-time systems, even in cases of
temporary network disconnection, the tasks should meet their
deadlines. Therefore, the mobile processor must satisfy the
following utilization test at its maximum clock speed without
relying on remote servers:

����������� = � �
������������∈� ≤ 1 (1)
If Equation (1) is satisfied, preemptive scheduling via the

Earliest-Deadline-First (EDF) algorithm is possible for the given
task set. Since we use DVFS, the worst-case execution time
(WCET) of each task must be recalculated based on the
processor’s clock speed, and the following test should be
satisfied:

����������� = � ��� (�
���)���������∈� ≤ 1 (2)
Here, DVFS (WCETi) represents the worst-case execution

time of task ti after applying DVFS to the processor. Since the
system employs two types of memory (HPM and LPM), the
following test must also be satisfied:

����������� = � ��� "#$ (�
���)���������∈"#$  +

� ��� '#$ (�
���)���������∈'#$ ≤ 1 (3)
The terms DVFSHPM (WCETi) and DVFSLPM (WCETi) are

calculated as: ��� "#$ (�
���) = ��� (�
���) (4)

��� '#$ (�
���) = ��� (�
���) +

)*+ ∗ -�� +)./ ∗ ��� (5)

where)*+ and)./ represent the read/write delay differences
between HPM and LPM, respectively. Since the model supports
task offloading to remote servers, the processor utilization must
also satisfy the following equation:

����������� = � ��� "#$ (�
���)���������∈$123'4∩"#$

 + � ��� '#$ (�
���)���������∈$12'34∩'#$
+ �
�6����7�8ℎ���∈1::'1;<4< ≤ 1 (6)

Here, Comndi represents the time required for the mobile
processor to issue offloading commands to the network module
for task ti at the start of each EpochT. After determining the
execution location and processor speed for each task, the mobile

processor initiates the offloading commands for tasks in the

OFFLOADED set at the beginning of EpochT, maximizing the
parallelism between tasks executed on the mobile device and
those on the server.

To ensure that the offloaded tasks meet their deadlines, the
following condition must be satisfied:

∀ti∈OFFLOADED, Trnarndi < Periodi (7)

where Trnarndi is calculated as:

Trnarndi = Comndi + Upi + Remote (WCETi) + Dni (8)
where Remote (WCETi) denotes the worst-case execution time
on the remote server, which is determined by the difference in
clock frequency between the mobile and remote processors.

The upload time Upi and download time Dni are defined as:

�7� =
⎩⎪⎨
⎪⎧

 ����D�EF if first execution

Input �D�EF otherwise (9)

��� = PQ�7Q��D�+R (10)
where BWup and BWdn represent the uplink and downlink
bandwidths, respectively.

The basic model aforementioned assumes a single-core
processor of mobile systems. For multi-core processors, the
right-hand side of Equations (1), (2), (3), and (6) can be adjusted
by replacing 1 with the number of cores. In this case, multi-core
scheduling can be performed using a P-Fair class of algorithms,
instead of EDF [23]. Figure 1 illustrates the basic structure of
the task execution model proposed in this paper.

III. OPTIMIZAED EXECUTIONS OF TASK SET

The objective of this study is to quantitatively analyze the
energy-saving effects of task offloading to cloud versus edge
servers. Rather than identifying the best offloading option for
fixed conditions, we aim to explore a range of solutions that
minimize power consumption under varying workload
intensities, network conditions, and server capabilities. These

factors may influence the energy-saving optimization of
processor, memory, and other component configurations in
mobile devices, which are comprehensively considered to
evaluate the offloading effectiveness between cloud and edge.

In this paper, we use a genetic algorithm to optimize the
execution of a given task set, by determining task location,
processor clock frequency, and memory placement. A genetic
algorithm is a probabilistic optimization method that mimics the
principles of natural evolution in population genetics [24]. Our
objective function aims to minimize the energy consumption of
the mobile system, while ensuring that all tasks meet their
deadlines. Tasks can be offloaded to either cloud servers or edge
servers, and the mobile processor’s clock frequency is defined
in four levels: {0.125, 0.25, 0.5, 1.0}, where 1.0 represents the
maximum clock frequency of the processor. Memory locations
are represented as {0, 1}, indicating HPM (High-Performance
Memory) or LPM (Low-Power Memory).

The solutions in the genetic algorithm consist of three strings
per task, specifying the task’s execution location (whether on the
mobile device, edge server, or cloud server), the processor’s
clock frequency (chosen from the four defined levels), and the
memory location (either HPM or LPM). The length of each
string corresponds to the total number of tasks. The objective
function used to evaluate the fitness of each solution is the
energy consumption of the mobile device when scheduled with
the given settings. If the processor’s utilization exceeds 1 or the
offloaded tasks fail the deadline test, a penalty is applied to the
solution to promote the elimination of such attributes.

The population size for each generation in the genetic
algorithm is set to 100, with the initial population generated
randomly. After the initial population is created, a pair of parent
solutions is selected in each generation, followed by crossover

–––
Algorithm 1
–––
encoding processor, memory, offloading information with 3 strings;

initialize (population);

while population does not converge

select parents p1, p2 from population;

offspring ← crossover (p1, p2);

offspring ← mutation (offspring);

replace population with offspring;

end while

return the best solution in population;
–––

Fig. 1 Basic structure of the proposed task execution model.

and mutation operations, to generate new solutions [25]. This
process is repeated until a converged set of solutions is achieved.

In the selection operation, solutions with better objective
function values have a higher probability of being chosen as
parents. Specifically, the selection probabilities are normalized
based on the objective function values, ensuring that the best-
ranked solution has four times the probability of being selected
compared to the 100th-ranked solution. For the crossover
operation, we use a one-point crossover, one of the most
common techniques in genetic algorithms, where the segments
on either side of a randomly chosen crossover point are inherited
from different parent solutions [24]. To explore a broader search
space, we apply the mutation operation after the crossover to
perturb certain values in the solution [24]. The resulting new
solutions are inserted into the next generation, while the weakest
solutions are eliminated from the population.

The evolution process is repeated until the population
converges. In our experiments, the genetic algorithm converged
within an average of one second, confirming that the overhead
is minimal. The experimental parameters followed those used in
previous studies [22]. Algorithm 1 shows the pseudocode of the
genetic algorithm used in this paper.

IV. ANALYZING EFFECTIVENESS OF EDGE AND CLOUD

OFFLOADING

The objective function of this paper is to minimize the
energy consumption of the mobile device. Energy consumption
is measured by calculating the energy usage of the processor,
memory, and network resources separately and then summing
them. First, the processor energy ����TUVWXYZ[[XW is defined as:

����TUVWXYZZ[[XW = 8 ��\]� ^ � ��� (�
���)
�� ∈$123'4

+ �
�6���

�� ∈1::'1;<4<
_ (11)

where c is the switching capacitance, Vi is the supplied voltage
during the execution of task ti , and fi is the clock frequency. The
network energy ����TU`ZabXWc is defined as:

����TU`ZabXWc = � d��_��f��
�� ∈1::'1;<4<

∗ (�7� + ���) (12)

where Net_Power represents the power consumption of the
network module. Memory energy is the sum of dynamic energy ����TUgZgXWh_i and static energy ����TUgZgXWh_[, defined as

follows:

 ����TUgZgXWh_i = � (��� ∗ j�k_�/+ + f�� ∗ j�k_�l/m
�� ∈"#$

 + � (��� ∗ n�k_�/+ + f�� ∗ n�k_�l/m

�� ∈'#$
 (13)

����TUgZgXWh_[= � (j�k_��f�� ∗ ���� ∗ �m
�� ∈"#$

 + � (n�k_��f�� ∗ ���� ∗ �m
�� ∈'#$

 (14)

Here, j�k_�/+ and j�k_�l/ represent the energy
consumption for reading and writing per access unit in HPM,
while n�k_�/+ and n�k_�l/ represent the corresponding
values for LPM. j�k_��f�� and n�k_��f�� refer to the
power consumptions per unit capacity of HPM and LPM,
respectively, and T is the total elapsed time while executing the
task set.

In the experiment, both HPM and LPM are assumed to have
sufficient capacity to store the entire task set, and tasks placed
in LPM ensure that the corresponding HPM sections operate in
low-power mode, thereby preventing static energy consumption.
The access times for HPM and LPM are set to 50 nanoseconds
and 100 nanoseconds for reads, and 50 nanoseconds and 350
nanoseconds for writes, respectively, based on previous studies
[22]. The energy consumption for HPM and LPM is set to 0.1
nanojoule/bit and 0.2 nanojoule/bit for reads, and 0.1
nanojoule/bit and 1.0 nanojoule/bit for writes, respectively. The
static power consumption values for HPM and LPM are set to 1
watt/GB and 0.1 watt/GB, respectively [22].

The task configurations are based on representative values
from previous research [22]. The task set contains 100 tasks, and
the worst-case execution time (WCET) is randomly assigned
between 500 milliseconds and 1000 milliseconds. The task
periods are set based on the determined WCET to match the load
of the task set. The task sizes range from 500 kilobytes to 750
kilobytes, input sizes from 100 kilobytes to 500 kilobytes, and
output sizes from 100 kilobytes to 250 kilobytes.

In our experiments, we evaluate energy consumption in
mobile systems as the workload is offloaded to either edge
servers or cloud servers, depending on task load variations. The
task load ranges from a mobile processor utilization of 0.2 to 0.9,
where a utilization of 1.0 represents the maximum processing
capability of the mobile processor when operating at full speed.

Figure 2(a) shows the energy consumption when offloading
tasks to cloud and edge servers, with the cloud server having
four times the computational capacity of the edge server. In this
experiment, the network bandwidth for the edge server is set to
80 Mbps, as used in previous research [22], while the cloud
server’s bandwidth is set to 50 Mbps. As illustrated, under high
workload intensity conditions, offloading to the cloud results in
greater energy savings, demonstrating the advantage of the
cloud server’s superior computational capabilities in handling
heavy loads. However, when the workload intensity is below
0.5, offloading to the edge server shows better energy-saving
performance. Although the edge server has less computational
power compared to the cloud server, the superior network
bandwidth allows the edge server to achieve satisfactory results
under low workload conditions.

Figure 2(b) presents the energy consumption difference
when the cloud server’s computational capacity is reduced to
twice that of the edge server. In this experiment, the cloud
server’s network bandwidth is set to 40 Mbps. The results
indicate that, in most cases, offloading to the edge server results
in better energy savings compared to the cloud server. Even
when the workload exceeds 0.7, the cloud server shows only
marginally better results, suggesting that when the cloud
server’s computational capacity is not vastly superior, the edge
server’s proximity and better network bandwidth provide more
efficient scheduling results in mobile real-time systems.

Figure 3(a) compares the optimized offloading ratios of
cloud and edge servers under the same conditions as Figure 2(a),
where the cloud server’s computational capacity is four times
that of the edge server. As shown, the offloading ratio to the edge
server is generally higher, although certain workload segments
favor offloading to the cloud server. In both cases, the offloading
ratio is consistently high, indicating that the computational
power of remote servers is sufficiently large to offset the cost of
offloading tasks via the network.

Figure 3(b) illustrates the optimized offloading ratio results
in the environment of Figure 2(b), where the cloud server’s
computational capacity is reduced to twice that of the edge
server, and its network bandwidth is also lowered. As shown,
the offloading ratio to the cloud server is significantly lower than
to the edge server in all cases, with this trend becoming more
pronounced as the workload intensity decreases. This suggests
that when the cloud server’s computational capacity is only
moderately better than the edge server’s and network conditions
are inferior, the relative benefit of offloading to the cloud
diminishes. This effect becomes especially apparent under low
workload intensity conditions, indicating that for cloud
offloading to be effective, the workload intensity should be high,
the network conditions favorable, and the computational
capacity significantly superior.

V. CONCLUSION

In this paper, we designed a real-time task execution model
that co-optimizes the energy-efficient configurations of
resources in both mobile systems and remote servers. We then
conducted extensive experiments to quantify the effectiveness

(a) Cloud server with 4x edge server computing power (b) Cloud server with 2x edge server computing power

Fig. 2 Comparison of mobile system’s energy consumption when offloading to cloud and edge servers.

(a) Cloud server with 4x edge server computing power (b) Cloud server with 2x edge server computing power

Fig. 3 Comparison of the optimized offloading ratio as the workload intensity is varied.

of edge/cloud offloading. Our experimental results indicate that
offloading to cloud servers is more energy-efficient under high
task load conditions exceeding 50% of a mobile processor’s
capacity, while offloading to edge servers yields better energy
savings when the task load remains below this threshold.
Moreover, the trade-offs between cloud and edge offloading are
significantly influenced by factors such as network bandwidth
and the computational capabilities of the respective servers.
Specifically, when the capacity of a cloud server is no more than
twice that of an edge server, offloading to the edge server proves
to be a more effective approach. Based on these findings, we
anticipate that optimized task offloading strategies can be
realized by accounting for the specific characteristics of cloud
and edge servers, the configurations of mobile resources such as
processors and memory, and the unique properties of the real-
time task set.

ACKNOWLEDGMENT

This work was supported in part by the National Research
Foundation of Korea (NRF) under Grant RS-2024-00461678
and in part by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) under grant RS-
2024-00459026 funded by Korean Government (MSIT).

REFERENCES

[1] F. Alshehri and G. Muhammad, “A Comprehensive Survey of the Internet
of Things (IoT) and AI-Based Smart Healthcare,” IEEE Access, vol. 9,
pp. 3660-3678, 2021, doi: 10.1109/ACCESS.2020.3047960.

[2] N. Taimoor and S. Rehman, “Reliable and Resilient AI and IoT-Based
Personalised Healthcare Services: A Survey,” IEEE Access, vol. 10, pp.
535-563, 2022, doi: 10.1109/ACCESS.2021.3137364.

[3] V. Kharchenko, O. Illiashenko, O. Morozova and S. Sokolov,
“Combination of Digital Twin and Artificial Intelligence in
Manufacturing Using Industrial IoT,” Proc. 11th IEEE Int’l Conf. on
Dependable Systems, Services and Technologies (DESSERT), pp. 196-
201, 2020, doi: 10.1109/DESSERT50317.2020.9125038.

[4] S. Chavhan, D. Gupta, S. Gochhayat, Chandana B. N., A. Khanna, K.
Shankar, and J. Rodrigues, “Edge Computing AI-IoT Integrated Energy-
efficient Intelligent Transportation System for Smart Cities,” ACM
Transactions on Internet Technology, vol. 22, no. 4, article 106, pp.1-18,
2022, doi: 10.1145/3507906.

[5] M. Lee and T. Chien, “Artificial Intelligence and Internet of Things for
Robotic Disaster Response,” Proc. IEEE Int’l Conf. on Advanced
Robotics and Intelligent Systems (ARIS), pp. 1-6, 2020, doi:
10.1109/ARIS50834.2020.9205794.

[6] M. Abdalzaher, M. Krichen, and F. Falcone, “Emerging Technologies and
Supporting Tools for Earthquake Disaster Management: A Perspective,
Challenges, and Future Directions,” Progress in Disaster Science, vol. 23,
article 100347, pp. 1-28, 2024, doi: 10.1016/j.pdisas.2024.100347.

[7] J. Lee and H. Bahn, “File Access Characteristics of Deep Learning
Workloads and Cache-Friendly Data Management,” Proc. 10th IEEE Int’l
Conf. on Electrical Engineering, Computer Science and Informatics
(EECSI), pp. 328-331, 2023, doi: 10.1109/EECSI59885.2023.10295817.

[8] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep
Learning on Mobile and Embedded Devices: State-of-the-art, Challenges,
and Future Directions,” ACM Computing Surveys, vol. 53, no. 4, pp. 1-
37, 2021, doi: 10.1145/3398209.

[9] S. Kwon and H. Bahn, “Memory Reference Analysis and Implications for
Executing AI Workloads in Mobile Systems,” Proc. IEEE Int’l Conf. on
Electrical and Information Technology (IEIT), pp. 281-285, 2023, doi:
10.1109/IEIT59852.2023.10335577.

[10] S. Nam and H. Bahn, “Adaptive Swapping for Variable Workloads in
Real-time Task Scheduling,” Proc. IEEE Int’l Conf. on Communications,
Computing, Cybersecurity, and Informatics (CCCI), pp. 1-6, 2023, doi:
10.1109/CCCI58712.2023.10290800.

[11] J. Bi, H. Yuan, S. Duanmu, M. Zhou, and A. Abusorrah, “Energy-
Optimized Partial Computation Offloading in Mobile-Edge Computing
with Genetic Simulated-Annealing-based Particle Swarm Optimization,”
IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3774-3785, 2021, doi:
10.1109/JIOT.2020.3024223.

[12] S. Panda, M. Lin and T. Zhou, “Energy-Efficient Computation Offloading
With DVFS Using Deep Reinforcement Learning for Time-Critical IoT
Applications in Edge Computing,” IEEE Internet of Things Journal, vol.
10, no. 8, pp. 6611-6621, 2023, doi: 10.1109/JIOT.2022.3153399.

[13] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge
Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling,” IEEE Transactions on Communications, vol. 64, no. 10, pp.
4268-4282, 2016, doi: 10.1109/TCOMM.2016.2599530.

[14] R. Duan, J. Wang, C. Jiang, Y. Ren, and L. Hanzo, ‘‘The Transmit-Energy
vs Computation-Delay Trade-off in Gateway-Selection for
Heterogeneous Cloud Aided Multi-UAV Systems,’’ IEEE Transactions
on Communications, vol. 67, no. 4, pp. 3026-3039, 2019, doi:
10.1109/TCOMM.2018.2889672.

[15] S. A. Nam, K. Cho, and H. Bahn, “A New Resource Configuring Scheme
for Variable Workload in IoT Systems,” Proc. IEEE Asia-Pacific Conf.
on Computer Science and Data Engineering (CSDE), pp. 1-6, 2022, doi:
10.1109/CSDE56538.2022.10089270.

[16] E. Lee, H. Bahn, S. Yoo and S. H. Noh, “Empirical Study of NVM
Storage: An Operating System’s Perspective and Implications,” Proc.
22nd IEEE Int’l Symp. on Modelling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), pp. 405-410,
2014, doi: 10.1109/MASCOTS.2014.56.

[17] J. Lee and H. Bahn, “Analyzing Data Access Characteristics of Deep
Learning Workloads and Implications,” Proc. 3rd IEEE Int’l Conf. on
Electronic Information Engineering and Computer Science (EIECS), pp.
546-551, 2023, doi: 10.1109/EIECS59936.2023.10435537.

[18] S. Li, W. Sun, Y. Sun, and Y. Huo, “Energy-Efficient Task Offloading
Using Dynamic Voltage Scaling in Mobile Edge Computing,” IEEE
Transactions on Network Science and Engineering, vol. 8, no. 1, pp. 588-
598, 2021, doi: 10.1109/TNSE.2020.3046014.

[19] S. Raza, S. Wang, M. Ahmed, M. R. Anwar, M. A. Mirza, and W. U.
Khan, “Task offloading and resource allocation for IoV using 5G NR-
V2X communication,” IEEE Internet of Things Journal, vol. 9, no. 13, pp.
10397-10410, 2022, doi: 10.1109/JIOT.2021.3121796.

[20] T. Zheng, J. Wan, J. Zhang, C. Jiang, and G. Jia, “A Survey of
Computation Offloading in Edge Computing,” Proc. IEEE Int’l Conf. on
Computer, Information and Telecommunication Systems (CITS), pp. 1-6,
2020, doi: 10.1109/CITS49457.2020.9232457.

[21] S. Park and H. Bahn, “Trace-Based Performance Analysis for Deep
Learning in Edge Container Environments,” Proc. 8th IEEE Int’l Conf.
on Fog and Mobile Edge Computing (FMEC), pp. 87-92, 2023, doi:
10.1109/FMEC59375.2023.10306027.

[22] S. Ki, G. Byun, K. Cho and H. Bahn, “Co-optimizing CPU voltage,
memory placement, and task offloading for energy-efficient mobile
systems,” IEEE Internet of Things Journal, vol. 10, no. 10, pp. 9177-9192,
2023, doi: 10.1109/JIOT.2022.3233830.

[23] J. Anderson and A. Srinivasan, “Mixed Pfair/Erfair Scheduling of
Asynchronous Periodic Tasks,” Journal of Computer and System
Sciences, vol. 68, pp. 157-204, 2004, doi: 10.1016/j.jcss.2003.08.002.

[24] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, Boston, MA, 1989.

[25] D. Whitley and T. Starkweather, “Genitor II: A Distributed Genetic
Algorithm,” Journal of Experimental & Theoretical Artificial
Intelligence, vol. 2, no. 3, pp. 189-214, 1990, doi:
10.1080/09528139008953723.

