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Abstract — The rapid growth of IoT and AI technologies has 

driven the increased use of mobile embedded systems with real-

time constraints. These battery-powered systems should minimize 

energy consumption while meeting task deadlines. Optimizing the 

trade-off between energy consumption and performance is crucial, 

particularly as workload demands fluctuate. Previous research 

has focused on optimizing system resources, such as processors 

and memory, by configuring low-power modes based on workload 

intensity. Task offloading to cloud or edge servers has also been 

studied, leveraging the ample resources of cloud servers for 

resource-constrained mobile systems and the ability of edge 

servers to efficiently meet deadline constraints with stable network 

connections. In this paper, we quantify the effectiveness of task 

offloading to cloud and edge servers in terms of power savings for 

mobile systems. Unlike previous approaches, we analyze the 

impact of offloading when co-optimized with other energy-saving 

techniques, such as dynamic voltage scaling and low-power 

memory configurations. Through extensive experiments, we 

explore the trade-offs between cloud and edge environments, 

accounting for workload intensity, network conditions, and server 

computing capabilities. Our findings offer valuable insights for 

designing optimized task offloading strategies tailored to specific 

mobile system characteristics, effectively balancing the benefits of 

cloud and edge environments. 

Keywords — real-time task, offloading, cloud, scheduling, edge, 

optimization  

I. INTRODUCTION  

The advancements in Internet of Things (IoT) and Artificial 
Intelligence (AI) technologies have transformed various sectors, 
including healthcare [1, 2], manufacturing [3], transportation 
[4], and disaster management [5, 6]. As a result, there has been 
a rapid increase in the deployment of embedded systems that 
rely on real-time data acquisition, transmission, and AI-driven 
training and inference through sensors [7–10]. In such systems, 
minimizing energy consumption while adhering to the deadline 
constraints of real-time workloads is critical [11, 12]. To meet 
these demands, researchers have been focusing on optimizing 
the trade-off between performance and energy consumption 
across different system layers, dynamically adjusting these 
factors based on the workload intensity [13, 14]. 

For instance, when workload demand is low, resources can 
be configured to operate in low-power modes while still meeting 
deadline constraints, thereby reducing energy consumption [15]. 
Conversely, when workload demand is high, resource 
configurations are adjusted to maximize performance, even at 
the cost of increased energy consumption. 

At the memory layer, techniques such as integrating low-
power memory (LPM) into conventional DRAM have been 
studied. LPM (also known as NVM or persistent memory) 
consumes less power but offers lower performance than 
traditional DRAM [16, 17]. In these approaches, DRAM is 
activated for frequently accessed data, while LPM is prioritized 
for less active periods. For the processor layer, dynamic voltage 
and frequency scaling (DVFS) techniques adjust processor 
speeds based on computational demand — lowering speeds for 
light tasks and maximizing them for more demanding ones [18]. 
Additionally, task offloading to remote servers has been 
suggested as a solution for mobile systems with limited 
computing resources, especially when handling compute-
intensive workloads [19]. Offloading to cloud servers, which 
have abundant computational resources, reduces the burden on 
mobile processors and leads to significant energy savings. 
Alternatively, offloading to nearby edge servers with stable 
network connections provides predictable latency, which is 
crucial for real-time systems while also achieving energy 
savings for mobile devices [20, 21]. 

In this paper, we analyze the impact of task offloading to 
cloud and edge servers on energy-saving optimization in mobile 
real-time systems. Specifically, we investigate the combined 
effects of processor’s DVFS, low-power memory techniques, 
and task offloading to remote servers, comparing the 
effectiveness of cloud versus edge server offloading under 
various conditions. Our extensive experiments demonstrate that 
offloading to cloud servers is more efficient in terms of energy 
savings for high-computation workloads exceeding 50% of the 
full capacity of a mobile resource. In contrast, offloading to edge 
servers is more effective when the workload is below this 
threshold. However, the trade-offs between cloud and edge 
offloading are influenced by factors such as network bandwidth 
and the computational capabilities of the respective servers. 



Specifically, when the capacity of a cloud server is no more than 
twice that of an edge server, offloading to the edge server proves 
to be more efficient. 

The findings of this research provide valuable insights for 
designing optimized offloading strategies integrated with DVFS 
and low-power memory techniques in mobile embedded 
systems, taking into account the specific characteristics of real-
time tasks and the diverse environmental factors of cloud and 
edge servers. 

The remainder of this paper is structured as follows: Section 
II describes the task execution model used in this study. Section 
III describes the optimized execution of real-time tasks in our 
study. Section IV presents an analysis of how task offloading to 
cloud and edge servers varies depending on workload demand. 
Finally, Section V concludes the paper.  

 

II. TASK EXECUTION MODEL 

The task execution model in this paper extends the 

conventional real-time task model to include optimizations such 

as processor speed control, low-power memory allocation, and 

offloading to remote servers [22]. The set of tasks is defined as 

T = {t1, t2, …, tn}, and the target mobile system consists of a 

processor with Dynamic Voltage and Frequency Scaling 

(DVFS) capabilities, as well as main memory comprising low-

power memory (LPM) and high-performance memory (HPM) 

in the form of DRAM. Additionally, we assume the availability 

of cloud and edge servers capable of handling offloaded tasks. 

Each task can be executed either on the local mobile processor 

or offloaded to a remote cloud or edge server, which leads to 

dividing the task set T into two subsets: MOBILE and 

OFFLOADED. Although increasing the offloading ratio is 

generally more efficient due to the superior computing power of 

remote servers, tasks must be carefully chosen for offloading. 

Tasks offloaded to remote servers must return their results 

before their deadlines, and some control tasks that interact with 

sensors or actuators should always be executed locally on the 

mobile processor. 

Since tasks can reside in two different memory types, the 

task set T is further divided into HPM and LPM. A task ti is 

defined as ti = <WCETi, Periodi, Datai>, where WCETi 

represents the worst-case execution time of task ti when 

executed at the default clock speed of the mobile processor. 

Periodi denotes the execution period, and Datai represents the 

data characteristics, defined as Datai = <Sizei, Inputi, Outputi, 

Rdi, Wri>. Sizei refers to the memory footprint of ti, Inputi is the 

input data required for execution, and Outputi is the output data 

generated. Rdi and Wri denote the number of read and write 

operations to memory, respectively. For tasks ti∈OFFLOADED, 

the input data size Inputi must be transmitted to the remote server 

before execution, and after execution, the output data Outputi  

must be received from the remote server. This paper deals with 

periodic real-time tasks, where each task’s deadline is 

determined by its period Periodi. The overall period EpochT for 

all tasks ti∈T is defined as the least common multiple of the 

individual periods. 

Since we focus on real-time systems, even in cases of 
temporary network disconnection, the tasks should meet their 
deadlines. Therefore, the mobile processor must satisfy the 
following utilization test at its maximum clock speed without 
relying on remote servers: 

����������� =  � �
������������∈�  ≤ 1                          (1) 
If Equation (1) is satisfied, preemptive scheduling via the 

Earliest-Deadline-First (EDF) algorithm is possible for the given 
task set. Since we use DVFS, the worst-case execution time 
(WCET) of each task must be recalculated based on the 
processor’s clock speed, and the following test should be 
satisfied: 

����������� =  � ���  (�
���)���������∈�  ≤ 1                  (2) 
Here, DVFS (WCETi) represents the worst-case execution 

time of task ti after applying DVFS to the processor. Since the 
system employs two types of memory (HPM and LPM), the 
following test must also be satisfied: 

����������� = � ��� "#$ (�
���)���������∈"#$  + 

� ��� '#$ (�
���)���������∈'#$ ≤ 1                    (3) 
The terms DVFSHPM (WCETi) and DVFSLPM (WCETi) are 

calculated as: ��� "#$ (�
���) =  ��� (�
���)                   (4) 
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���) + 
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where )*+ and )./  represent the read/write delay differences 
between HPM and LPM, respectively. Since the model supports 
task offloading to remote servers, the processor utilization must 
also satisfy the following equation: 

����������� = � ��� "#$ (�
���)���������∈$123'4∩"#$  

 + � ��� '#$ (�
���)���������∈$12'34∩'#$                     
+ � 
�6����7�8ℎ���∈1::'1;<4<  ≤ 1                           (6) 

Here, Comndi represents the time required for the mobile 
processor to issue offloading commands to the network module 
for task ti at the start of each EpochT. After determining the 
execution location and processor speed for each task, the mobile 



processor initiates the offloading commands for tasks in the 

OFFLOADED set at the beginning of EpochT, maximizing the 
parallelism between tasks executed on the mobile device and 
those on the server. 

To ensure that the offloaded tasks meet their deadlines, the 
following condition must be satisfied: 

∀ti∈OFFLOADED,  Trnarndi < Periodi                      (7) 

where Trnarndi is calculated as: 

Trnarndi = Comndi + Upi + Remote (WCETi) + Dni              (8)   
where Remote (WCETi) denotes the worst-case execution time 
on the remote server, which is determined by the difference in 
clock frequency between the mobile and remote processors.     

The upload time Upi and download time Dni are defined as: 

�7� =
⎩⎪⎨
⎪⎧   

 ����D�EF       if first execution

Input �D�EF                otherwise                     (9) 

 

��� =   PQ�7Q��D�+R                                                      (10) 
where BWup and BWdn represent the uplink and downlink 
bandwidths, respectively.  

The basic model aforementioned assumes a single-core 
processor of mobile systems. For multi-core processors, the 
right-hand side of Equations (1), (2), (3), and (6) can be adjusted 
by replacing 1 with the number of cores. In this case, multi-core 
scheduling can be performed using a P-Fair class of algorithms, 
instead of EDF [23]. Figure 1 illustrates the basic structure of 
the task execution model proposed in this paper.  

   

III. OPTIMIZAED EXECUTIONS OF TASK SET 

The objective of this study is to quantitatively analyze the 
energy-saving effects of task offloading to cloud versus edge 
servers. Rather than identifying the best offloading option for 
fixed conditions, we aim to explore a range of solutions that 
minimize power consumption under varying workload 
intensities, network conditions, and server capabilities. These 

factors may influence the energy-saving optimization of 
processor, memory, and other component configurations in 
mobile devices, which are comprehensively considered to 
evaluate the offloading effectiveness between cloud and edge. 

In this paper, we use a genetic algorithm to optimize the 
execution of a given task set, by determining task location, 
processor clock frequency, and memory placement. A genetic 
algorithm is a probabilistic optimization method that mimics the 
principles of natural evolution in population genetics [24]. Our 
objective function aims to minimize the energy consumption of 
the mobile system, while ensuring that all tasks meet their 
deadlines. Tasks can be offloaded to either cloud servers or edge 
servers, and the mobile processor’s clock frequency is defined 
in four levels: {0.125, 0.25, 0.5, 1.0}, where 1.0 represents the 
maximum clock frequency of the processor. Memory locations 
are represented as {0, 1}, indicating HPM (High-Performance 
Memory) or LPM (Low-Power Memory).  

The solutions in the genetic algorithm consist of three strings 
per task, specifying the task’s execution location (whether on the 
mobile device, edge server, or cloud server), the processor’s 
clock frequency (chosen from the four defined levels), and the 
memory location (either HPM or LPM). The length of each 
string corresponds to the total number of tasks. The objective 
function used to evaluate the fitness of each solution is the 
energy consumption of the mobile device when scheduled with 
the given settings. If the processor’s utilization exceeds 1 or the 
offloaded tasks fail the deadline test, a penalty is applied to the 
solution to promote the elimination of such attributes. 

The population size for each generation in the genetic 
algorithm is set to 100, with the initial population generated 
randomly. After the initial population is created, a pair of parent 
solutions is selected in each generation, followed by crossover 

––––––––––––––––––––––––––––––––––––––––––––––––– 
Algorithm 1 
––––––––––––––––––––––––––––––––––––––––––––––––– 
encoding processor, memory, offloading information with 3 strings;  

initialize (population); 

while population does not converge 

select parents p1, p2 from population; 

offspring ← crossover (p1, p2); 

offspring ← mutation (offspring); 

replace population with offspring; 

end while 

return the best solution in population; 
––––––––––––––––––––––––––––––––––––––––––––––––– 

 

 

Fig. 1 Basic structure of the proposed task execution model. 

 



and mutation operations, to generate new solutions [25]. This 
process is repeated until a converged set of solutions is achieved. 

In the selection operation, solutions with better objective 
function values have a higher probability of being chosen as 
parents. Specifically, the selection probabilities are normalized 
based on the objective function values, ensuring that the best-
ranked solution has four times the probability of being selected 
compared to the 100th-ranked solution. For the crossover 
operation, we use a one-point crossover, one of the most 
common techniques in genetic algorithms, where the segments 
on either side of a randomly chosen crossover point are inherited 
from different parent solutions [24]. To explore a broader search 
space, we apply the mutation operation after the crossover to 
perturb certain values in the solution [24]. The resulting new 
solutions are inserted into the next generation, while the weakest 
solutions are eliminated from the population.  

The evolution process is repeated until the population 
converges. In our experiments, the genetic algorithm converged 
within an average of one second, confirming that the overhead 
is minimal. The experimental parameters followed those used in 
previous studies [22]. Algorithm 1 shows the pseudocode of the 
genetic algorithm used in this paper. 

 

IV. ANALYZING EFFECTIVENESS OF EDGE AND CLOUD 

OFFLOADING 

The objective function of this paper is to minimize the 
energy consumption of the mobile device. Energy consumption 
is measured by calculating the energy usage of the processor, 
memory, and network resources separately and then summing 
them. First, the processor energy ����TUVWXYZ[[XW  is defined as: 

����TUVWXYZZ[[XW = 8 ��\ ]� ^ � ���  (�
���)
�� ∈$123'4  

 
+ �   
�6���  

�� ∈1::'1;<4<
_                             (11) 

where c is the switching capacitance, Vi  is the supplied voltage 
during the execution of task ti , and fi  is the clock frequency. The 
network energy ����TU`ZabXWc is defined as: 

����TU`ZabXWc = � d��_��f��
�� ∈1::'1;<4<

∗ (�7� + ���)        (12) 

where Net_Power represents the power consumption of the 
network module. Memory energy is the sum of dynamic energy ����TUgZgXWh_i and static energy ����TUgZgXWh_[, defined as 

follows: 

   ����TUgZgXWh_i = � (��� ∗ j�k_�/+ + f�� ∗ j�k_�l/m
�� ∈"#$

 
                 + � (��� ∗ n�k_�/+ + f�� ∗ n�k_�l/m

�� ∈'#$
         (13) 
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                   + � (n�k_��f�� ∗  ���� ∗ �m       
�� ∈'#$

      (14) 
 

Here, j�k_�/+  and  j�k_�l/  represent the energy 
consumption for reading and writing per access unit in HPM, 
while n�k_�/+  and  n�k_�l/  represent the corresponding 
values for LPM. j�k_��f��  and n�k_��f��  refer to the 
power consumptions per unit capacity of HPM and LPM, 
respectively, and T is the total elapsed time while executing the 
task set. 

In the experiment, both HPM and LPM are assumed to have 
sufficient capacity to store the entire task set, and tasks placed 
in LPM ensure that the corresponding HPM sections operate in 
low-power mode, thereby preventing static energy consumption. 
The access times for HPM and LPM are set to 50 nanoseconds 
and 100 nanoseconds for reads, and 50 nanoseconds and 350 
nanoseconds for writes, respectively, based on previous studies 
[22]. The energy consumption for HPM and LPM is set to 0.1 
nanojoule/bit and 0.2 nanojoule/bit for reads, and 0.1 
nanojoule/bit and 1.0 nanojoule/bit for writes, respectively. The 
static power consumption values for HPM and LPM are set to 1 
watt/GB and 0.1 watt/GB, respectively [22]. 

The task configurations are based on representative values 
from previous research [22]. The task set contains 100 tasks, and 
the worst-case execution time (WCET) is randomly assigned 
between 500 milliseconds and 1000 milliseconds. The task 
periods are set based on the determined WCET to match the load 
of the task set. The task sizes range from 500 kilobytes to 750 
kilobytes, input sizes from 100 kilobytes to 500 kilobytes, and 
output sizes from 100 kilobytes to 250 kilobytes. 

In our experiments, we evaluate energy consumption in 
mobile systems as the workload is offloaded to either edge 
servers or cloud servers, depending on task load variations. The 
task load ranges from a mobile processor utilization of 0.2 to 0.9, 
where a utilization of 1.0 represents the maximum processing 
capability of the mobile processor when operating at full speed. 

Figure 2(a) shows the energy consumption when offloading 
tasks to cloud and edge servers, with the cloud server having 
four times the computational capacity of the edge server. In this 
experiment, the network bandwidth for the edge server is set to 
80 Mbps, as used in previous research [22], while the cloud 
server’s bandwidth is set to 50 Mbps. As illustrated, under high 
workload intensity conditions, offloading to the cloud results in 
greater energy savings, demonstrating the advantage of the 
cloud server’s superior computational capabilities in handling 
heavy loads. However, when the workload intensity is below 
0.5, offloading to the edge server shows better energy-saving 
performance. Although the edge server has less computational 
power compared to the cloud server, the superior network 
bandwidth allows the edge server to achieve satisfactory results 
under low workload conditions. 

 



Figure 2(b) presents the energy consumption difference 
when the cloud server’s computational capacity is reduced to 
twice that of the edge server. In this experiment, the cloud 
server’s network bandwidth is set to 40 Mbps. The results 
indicate that, in most cases, offloading to the edge server results 
in better energy savings compared to the cloud server. Even 
when the workload exceeds 0.7, the cloud server shows only 
marginally better results, suggesting that when the cloud 
server’s computational capacity is not vastly superior, the edge 
server’s proximity and better network bandwidth provide more 
efficient scheduling results in mobile real-time systems.  

Figure 3(a) compares the optimized offloading ratios of 
cloud and edge servers under the same conditions as Figure 2(a), 
where the cloud server’s computational capacity is four times 
that of the edge server. As shown, the offloading ratio to the edge 
server is generally higher, although certain workload segments 
favor offloading to the cloud server. In both cases, the offloading 
ratio is consistently high, indicating that the computational 
power of remote servers is sufficiently large to offset the cost of 
offloading tasks via the network.  

Figure 3(b) illustrates the optimized offloading ratio results 
in the environment of Figure 2(b), where the cloud server’s 
computational capacity is reduced to twice that of the edge 
server, and its network bandwidth is also lowered. As shown, 
the offloading ratio to the cloud server is significantly lower than 
to the edge server in all cases, with this trend becoming more 
pronounced as the workload intensity decreases. This suggests 
that when the cloud server’s computational capacity is only 
moderately better than the edge server’s and network conditions 
are inferior, the relative benefit of offloading to the cloud 
diminishes. This effect becomes especially apparent under low 
workload intensity conditions, indicating that for cloud 
offloading to be effective, the workload intensity should be high, 
the network conditions favorable, and the computational 
capacity significantly superior. 

 

V. CONCLUSION  

In this paper, we designed a real-time task execution model 
that co-optimizes the energy-efficient configurations of 
resources in both mobile systems and remote servers. We then 
conducted extensive experiments to quantify the effectiveness 

      

(a) Cloud server with 4x edge server computing power                                        (b) Cloud server with 2x edge server computing power 

Fig. 2 Comparison of mobile system’s energy consumption when offloading to cloud and edge servers. 

    

(a) Cloud server with 4x edge server computing power                                        (b) Cloud server with 2x edge server computing power 

Fig. 3 Comparison of the optimized offloading ratio as the workload intensity is varied. 

 



of edge/cloud offloading. Our experimental results indicate that 
offloading to cloud servers is more energy-efficient under high 
task load conditions exceeding 50% of a mobile processor’s 
capacity, while offloading to edge servers yields better energy 
savings when the task load remains below this threshold. 
Moreover, the trade-offs between cloud and edge offloading are 
significantly influenced by factors such as network bandwidth 
and the computational capabilities of the respective servers. 
Specifically, when the capacity of a cloud server is no more than 
twice that of an edge server, offloading to the edge server proves 
to be a more effective approach. Based on these findings, we 
anticipate that optimized task offloading strategies can be 
realized by accounting for the specific characteristics of cloud 
and edge servers, the configurations of mobile resources such as 
processors and memory, and the unique properties of the real-
time task set. 
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