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Abstract—Image classification is a fundamental computer vi-
sion task crucial for interpretation of visual data. Significant
advancements have been observed in image classification models
over recent years. In this paper, a taxonomy is presented
categorizing image classification models into CNN, Transformer,
and Hybrid models, in addition to an evaluation of these models
for pneumonia detection using a chest X-ray (CXR) dataset. Key
metrics such as accuracy, precision, recall, F1-score, and average
inference time per image were analyzed to understand trade-
offs between performance and efficiency for most feasible model
selection concerning this task. Transformer-based models, partic-
ularly SwinV2, proved their robustness for pneumonia detection,
achieving the highest accuracy (95.03%), recall (94.66%), and
F1-score (94.70%). However, the longer inference time (133.58
ms) presents a considerable disadvantage. Although, CNN models
like EfficientNetB0 and ResNet50 achieved the highest precision,
they underperformed in other metrics, highlighting the need for
balanced evaluations. Hybrid models, such as CvT, consistently
performed well across all metrics, showcasing the potential of
transformers integrated with convolutional layers. However, no
single model category demonstrated unanimous superiority, as
CNN models exhibited much faster temporal efficiency than
Transformer and Hybrid models. The source code for this work
can be accessed here: https://github.com/MdSaifulIslamSajol/
pneumonia-detection-with-chest-x-ray-images

Index Terms—Vision Classifier, Image Classification, Trans-
former, CNN

I. INTRODUCTION

Image or Vision classification is a fundamental task in com-
puter vision, essential for interpreting and understanding visual
data [1, 2]. It involves categorizing images into predefined
classes, enabling various applications such as object recog-
nition, facial recognition, medical imaging, and autonomous
driving. Accurate classification facilitates advancements in
machine learning (ML) and artificial intelligence, enhancing
automation and decision-making processes [3]. Moreover, it
offers a basis for complex tasks like image segmentation and

object detection, making it crucial for developing intelligent
systems that interact with and interpret visual data. The appli-
cation of image classification models in the medical imaging
domain, particularly for disease detection using X-Ray images,
can be highly beneficial. Developing highly accurate image
classification models to assist in disease diagnosis through X-
Ray imaging has become a growing area of interest among
researchers.

The evolution of image classification models has made
significant advancements, beginning with simple linear clas-
sifiers and advancing to sophisticated deep learning architec-
tures. Initially, models like k-Nearest Neighbors (kNN) and
Support Vector Machines (SVM) were employed for basic
image classification tasks. The introduction of Convolutional
Neural Networks (CNNs) revolutionized the field by enabling
automatic feature extraction and hierarchical learning of image
features. Models such as LeNet, AlexNet, and VGG showcased
the power of deep learning in achieving high accuracy in
image classification. Subsequently, the development of more
complex architectures like ResNet, which introduced residual
connections, addressed the issue of vanishing gradients and
allowed for much deeper networks. The recent emergence of
transformer-based models, originally from natural language
processing, brought further innovation by providing greater
flexibility for processing multi-modal inputs including im-
ages [4]. Further, hybrid models were proposed combining the
strengths of CNNs and transformers, pushing the boundaries
of image classification capabilities and opening new avenues
for research and application.

Khalil et al. [1] provided a chronological overview of
transformer-based vision classifiers, but their study did not
categorize the models. This research offers a comprehensive
overview of models developed for vision classification by
establishing a taxonomy of the existing methodologies. Unlike



existing researches that predominantly concentrate on assess-
ing the accuracy of individual models [2, 5, 6] or comparing
models of similar types [7, 8, 9, 10] or only a few models [11,
12, 13], our study provides a broader comparative analysis. We
utilized Chest X-Ray images as a case study to evaluate and
compare at least one representative model from each category
within the proposed vision classifier taxonomy. This approach
not only highlights the distinct characteristics of each model
type but also provides insight of their performances.

Introduction of newer vision classification models within
the scope of Chest X-Ray leads us to the following research
questions:

• RQ#1. What are the prominent models used for image
classification? Is there a taxonomy for categorizing these
models?

• RQ#2. Which classification model performs best for
diagnosing Pneumonia through Chest X-Ray images?

Rest of the paper is organized as following: in Section II
we answer RQ#1 by providing taxonomy of existing vision
classifiers. Section III describes the dataset and experiment,
and result of these experiments are presented in Section IV.
Finally, in Section V, we conclude our paper.

II. TAXONOMY OF VISION CLASSIFIERS

CNNs have been utilized for image classification for many
years, revolutionizing the field of computer vision [14]. Instead
of requiring preprocessing to derive features like textures and
shapes, CNNs use raw pixel data as input and ”learn” to
extract these features, ultimately identifying the objects within
the images. In 2014 Google introduced GoogLeNet [15],
with Inception module, which allows the network to capture
multi-scale features by applying multiple convolution filters
of different sizes simultaneously within the same layer. This
innovative design enhances the network’s ability to recognize
complex patterns while maintaining computational efficiency.
Visual Geometry Group (VGG) [16] employs a series of
straightforward CNN architectures, consisting primarily of
3x3 convolutional layers stacked on top of each other with
increasing depth, interspersed with max-pooling layers to
reduce spatial dimensions. This simple and uniform design
allows VGG networks to capture intricate patterns and hier-
archical features effectively. Residual Network (ResNet) [17]
is another popular deep CNN architecture designed to address
the degradation problem in deep neural networks. By incorpo-
rating residual learning through shortcut connections, ResNet
allows for the training of extremely deep networks without
the issues of vanishing gradients. These shortcut connections
effectively skip one or more layers, enabling the network
to learn identity mappings that preserve information across
layers. MobileNet [18] proposed to use depthwise separable
convolutions, which significantly reduce the computational
cost and number of parameters compared to standard convo-
lutions. Further, inverted residuals and linear bottlenecks were
introduced in MobileNetV2 [19], improving the performance
and efficiency. This bottleneck convolution block concept was
extended by EfficientNet [20] family with an addition of

squeeze-and-excitation optimization to improve channel-wise
feature recalibration.

Transformers have achieved state-of-the-art performance in
a wide range of tasks from Natural Language Processing
(NLP) [21] to image classification [1]. Dosovitskiy et al. [22]
extended Transformer concept to visual images by introducing
the pioneering Vision Transformer (ViT), a global vision
transformer, which differs from traditional CNN models by
employing a self-attentive mechanism. ViT requires global fea-
ture reasoning by computing self-attentions among all tokens,
making it computationally inefficient when processing images
with many visual tokens [4]. To address this issue, local vision
transformer, such as Swin Transformer [23] and PvT [24], have
been proposed. In contrast to global vision transformers, local
vision transformer architectures utilize more convenient atten-
tion windows that can remain fixed or adjusted during fine-
tuning phase. Later, Swin Transformer V2 [25] was proposed
to address the limitations and scaling challenges of Swin by
incorporating several key innovations, including a hierarchical
architecture with shifted windows for local attention, which
improves computational efficiency and performance. Addi-
tionally, Swin V2 introduces post-normalization and a scaled
cosine attention mechanism to stabilize training and enhance
generalization. Pyramid Vision Transformer (PvT) V2 [26],
iGPT [27] are notable among other transformer based visual
classifiers.

Transformers lack the inductive biases inherent to CNNs,
which results in lower performance compared to similarly
sized CNN counterparts when trained on smaller datasets [22,
28, 29]. To overcome this issue, a hybrid CNN-Transformer
model, Convolutional Vision Transformer (CvT) [28] was
proposed that incorporates convolutional layers within the
transformer architecture. Recently another model, FastViT [30]
proposed to use large convolutional kernels to substitute self-
attention layers in early stages. Alternatively, Local Relation
Network (LR-Net), BoTNet e.t.c., introduces self-attention
mechanism in CNNs. LR-Net [31] enhance CNNs by incor-
porating self-attention mechanisms to capture local relational
features between neighboring pixels or regions. Similarly,
EfficientFormer [32], a successor of EfficientNet, employs
factorized self-attention with linear approximation and sparse
attention pattern. ConvNext V2 [33, 34], building upon its
predecessor ConvNeXt, maintains the architectural simplicity
and scalability of traditional CNNs while incorporating mod-
ern enhancements inspired by vision transformers, such as
improved self-attention mechanisms and hierarchical feature
extraction.

Based on the architectures used in vision classification,
classifier models can be categorized into three main types:
(a) CNN based model, (b) transformer based model, and (c)
hybrid model. Hybrid models integrate features from both
CNN and transformer architectures, either by incorporating
self-attention mechanisms from transformers into CNNs or
by adding convolutional layers to transformer models. CNN
based models can be sub-divided furthermore based on the
number of layers used in their architecture, i.e., classic, deep,
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Fig. 1: Architectural Taxonomy of Vision Classifier Models

very deep e.t.c, however for simplicity those divisions were
not included. Fig. 1 represents the architectural taxonomy of
visual classifiers where leaf nodes represents popular models.

III. EXPERIMENT

This research aims to find the best method for Pneumonia
detection using various methods.

(a) Normal (b) Pneumonia

Fig. 2: Chest X-rays

A. Dataset

The Chest X-Ray Image dataset (CXR) [35] for Pneumonia
Detection is a publicly available collection of chest radio-
graphs aimed at facilitating the development and evaluation
of machine learning models for diagnosing pneumonia. This
dataset contains thousands of X-ray images categorized into
two classes: (a) normal, and (b) pneumonia. Table I depicts
the number of samples in the test and train dataset used in our
experiment. The images are typically grayscale and vary in
resolution, reflecting the real-world variability encountered in
clinical settings. Each image is labeled by expert radiologists,
providing a reliable ground truth for training and validating
diagnostic models.

TABLE I: CXR Dataset Description

Normal Pneumonia
train 1341 3875
test 234 390

B. Preprocessing

Data preprocessing helps to improve model accuracy and
enhance efficiency. Initially, training set images are resized to
256x256 pixels. Data augmentation is an important step in
training ML models [7], hence images were randomly rotated
by upto 20 degrees and zoomed-in by centre-cropping. The
images are center-cropped to 224x224 pixels for two reasons:
a) to match the input shape of the VGG16 and ResNet50 pre-
trained model used [36], and b) some images might be larger
or in a different aspect ratio, recropping will ensure an uniform
aspect ratio. The final preprocessing step involves normalizing
the images using the mean and standard deviation values
derived from the dataset. This normalization step ensures
that the input data has a consistent scale, which aids in the
convergence of the model during training.

For the test phase, the preprocessing pipeline is simplified.
Images are directly resized to 224x224 pixels and normalized
using the same mean and standard deviation values as in
the training phase. This consistency in preprocessing across
different phases ensures that the model evaluates data under
similar conditions as it was trained.

C. Training

This phase involves training the ML models for 30 epochs
with a batch size of 100. The AdamW optimizer is utilized
with a learning rate set at 0.0001, and the learning rate is
adjusted using a StepLR scheduler. This optimizer combines
the benefits of Adam and weight decay regularization, which
helps in achieving better generalization. The learning rate
scheduler adjusts the learning rate at predefined steps, aiding
in fine-tuning the model’s convergence during training. The
learning rate selection is done by varying it from 0.1 to 0.0001
and observing the best outcome.

The Cross-Entropy loss function is employed as the objec-
tive function, which is suitable for classification tasks as it
measures the performance of the model’s output probabilities
against the true class labels. Training is conducted on NVIDIA
GPUs with CUDA support, which significantly accelerates
the computation, allowing for more efficient training of deep
learning models. The authors would like to mention that,
although the training process is resource-intensive, the models



do not need to be trained during deployment. Once trained,
they can be deployed for inference.

IV. RESULT AND ANALYSIS

Fig. 3: Confusion Matrices of different models for test dataset

Results obtained from the experiments performed are pre-
sented and analyzed in this section. Fig. 3 presents the
confusion matrices for each model on the test dataset. It
can be observed that all methods perform reasonably well.
However, for a more thorough analysis, we need to compare
the models across different performance metrics. Figure 4
compares the performance of ML models from the main
categories of our taxonomy: CNN, Transformer, and Hybrid.
The x-axis represents different ML models, while the y-
axis shows performance in percentages, with bars ordered in
descending order by metric value. For performance evaluation
we compare four most prominent metrics for classification
task: accuracy, precision, recall and F1-score.

Figure 4a shows that SwinV2 achieves the highest accuracy
at 95.03%, while ViT, CvT, and EfficientNetB0 each reach
94.71%. EfficientFormer and VGG16 perform the poorest,
with an accuracy of 93.75%.

Figure 4b presents the precision values of the trained mod-
els. The CNN models EfficientNetB0 and ResNet50 achieve
the highest precision at 95.19% and 94.96%, respectively.
SwinV2 and ViT, both Transformer-based models, follow with
precision values of 94.74% and 94.70%, respectively. Most
Hybrid models, except CvT, show lower precision.

Figure 4c indicates that the SwinV2 model has the highest
recall at 94.66%, followed by CvT at 94.40% and PvTV2
at 94.06%. CNN models exhibit recall rates from 92.52% to
94.02%. Figure 4d shows similar trends, with SwinV2 (94.7%)
and CvT (94.36%) leading, followed by ViT (94.31%). For
both recall and F1-score, ConvNextV2, EfficientFormer, and
VGG16 are the lowest performers.

The comparison of results highlights SwinV2 as the best-
performing model, achieving the highest scores in three out
of four metrics: accuracy, recall, and F1-score. In the case
of precision, it ranks third. CvT demonstrates the second-best
overall performance among the models. Similar to SwinV2, it
excels in accuracy, recall, and F1-score, ranking second, but

falls short in precision. Among other transformer models, ViT
demonstrates decent but inconsistent performance. In contrast,
PvTV2 does not deliver noteworthy results. Excluding CvT,
the hybrid models ConvNextV2 and EfficientFormer exhibit
poor performance across all metrics, ranking third-to-last and
second-to-last, respectively. Regarding CNN models, Efficient-
Former and ResNet50 display the best precisions but are aver-
age or below average in other metrics. From this performance
analysis, it can be inferred that while certain architectures
show strong capabilities for diagnosing pneumonia from chest
X-rays, there is no visible advantage of one architectural
taxonomy over another for this specific task.

Figure 5 illustrates the average inference time for image
classification across various models. Swinv2 demonstrates the
longest average inference time at 133.58 ms, significantly
exceeding the other models. CvT follows with an average in-
ference time of 41.25 ms, though still substantially lower than
Swinv2. Both Swinv2 and CvT are top-performing models,
and their higher inference times suggest a trade-off between
accuracy and speed. The remaining models have average
inference times ranging from 12.44 ms to 22.55 ms, with
VGG being an exception at 4.59 ms. Despite its low inference
time, VGG is among the poorest performers based on the
evaluation metrics, indicating that its speed advantage could
be leveraged only by compensating its lower accuracy. The
results also indicate that CNN models demonstrate better
temporal performance compared to transformer and hybrid
models, likely due to the heavier architecture of transformers.
The exception is EfficientFormer, which is expected as it
is specifically designed as a lightweight, low-latency vision
transformer optimized for faster performance.

V. CONCLUSION

Vision classification is essential for the interpretation and
understanding of visual data, making it one of the prominent
research field of computer vision. The ability to accurately
classify images facilitates advancements in automation and
decision-making processes across various fields, including
medical imaging applications. In recent years, image clas-
sification models have undergone significant advancements,
driven by the development of sophisticated deep learning
architectures. This paper identifies the popular image clas-
sification models and develop a comprehensive taxonomy
to categorize these models systematically. Following this, a
thorough evaluation of various ML models for pneumonia
detection using the CXR dataset is conducted, comparing them
based on the architectural taxonomy. Our study compared
the performance of three categories of models: Convolutional
Neural Networks (CNNs), Transformer models, and Hybrid
models. We focused on key performance metrics such as
accuracy, precision, recall, and F1-score. Temporal efficiency
is also assessed by comparing the inference times of the
models.

The performance analysis demonstrates that Transformer-
based models, particularly SwinV2, consistently outperformed
other models across multiple metrics. SwinV2 achieved the
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Fig. 4: Performance comparison (in descending order)

Fig. 5: Inference Time Comparison (in milliseconds)

highest accuracy (95.03%), recall (94.66%), and F1-score
(94.70%), indicating its robustness and reliability in pneu-
monia detection. However, the inference time is too high
for SwinV2 compared to rest of the models. Although CNN
models like EfficientNetB0 and ResNet50 showed the highest
precision and median inference time, they did not perform
as well in other metrics. CvT, a hybrid model also shows
good performance in classification task, although with a higher
time. These illustrate the compromise between performance

versus the speed of the models. While no evidence of a clear
advantage is observed among the categories when performance
is taken into account, the CNNs clearly exhibit superiority in
speed compared to other models.

In future research, we plan to expand our investigation by
exploring a wider variety of datasets to determine whether
Transformer-based models consistently demonstrate superior
performance across diverse applications.
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