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Abstract—Asynchronous Proximal Policy Optimization
(APPO) has emerged as a crucial framework for achieving
scalability in distributed reinforcement learning. In this paper,
we propose an enhanced APPO framework that addresses
critical challenges in gradient synchronization and inter-
worker communication. Our framework introduces optimized
mechanisms to maintain training stability and efficiency
while minimizing additional computational overhead. Through
extensive experiments, we demonstrate that the proposed
approach achieves superior performance and accelerates
convergence compared to traditional APPO frameworks. These
improvements advance the stability and scalability of distributed
reinforcement learning systems, making them more suitable for
large-scale applications.

Index Terms—Distributed Reinforcement Learning, Asyn-
chronous PPO, Gradient Update Optimization

I. INTRODUCTION

Reinforcement learning (RL) has achieved remarkable
progress in recent years, driven by advances in distributed
learning systems. A significant breakthrough in this domain
was the introduction of asynchronous frameworks, pioneered
by the Asynchronous Advantage Actor-Critic (A3C) algorithm
[1]. A3C demonstrated that asynchronous updates from mul-
tiple agents could stabilize training and improve convergence
speed, effectively decoupling updates between workers and
enabling efficient scaling across devices and environments.
These asynchronous frameworks laid the foundation for scal-
able distributed RL systems [2], addressing challenges such as
synchronization bottlenecks and slow convergence.

These asynchronous frameworks paved the way for the
development of more advanced policy optimization methods
in distributed RL. One such method is Proximal Policy Opti-
mization (PPO) [3], which introduced a policy optimization
approach that balances exploration and exploitation while

ensuring training stability. PPO’s robustness and simplicity
made it a widely adopted framework for both single-agent
and distributed RL settings. By combining PPO’s optimization
framework with asynchronous updates, researchers developed
the APPO algorithm—a powerful tool for large-scale RL ap-
plications. APPO leverages the strengths of both frameworks,
offering significant improvements in scalability and efficiency.

Despite these advancements, traditional APPO frameworks
encounter several challenges, such as synchronization bottle-
necks and slow convergence, which limit their scalability in
distributed environments. These challenges arise due to the
reliance on frequent synchronization among workers, which
introduces delays and reduces overall efficiency in large-scale
systems.

In this paper, we propose an enhanced APPO framework
that addresses the aforementioned challenges. Our framework
optimizes gradient synchronization and worker communica-
tion, enabling faster convergence and improved sample effi-
ciency. Unlike traditional approaches, we manually calculate
gradients at the worker level, reducing the need for frequent
synchronization and alleviating bottlenecks.

To evaluate the effectiveness of our framework, we conduct
extensive experiments in various challenging environments.
The results demonstrate that our optimized APPO outperforms
traditional frameworks, achieving superior training stability,
efficiency, and reduced variance across multiple runs.

The key contributions of this paper are:

1) A novel enhanced APPO framework with optimized gra-
dient updates and asynchronous communication strate-
gies.

2) A comprehensive evaluation of the proposed framework,
demonstrating enhanced training stability and efficiency.



3) Insights into the advantages of asynchronous updates
in distributed RL systems, paving the way for more
scalable solutions.

This work advances the field of distributed RL by providing
a more scalable, robust, and efficient solution for training in
complex and dynamic environments.

II. PRELIMINARIES

In this section, we describe the PPO algorithm [3], which
serves as the foundation for the proposed framework, and
provide an overview of its core components and principles.
PPO is one of the most widely used RL algorithms due to its
simplicity, robustness, and effectiveness in both single-agent
and distributed settings.

A. Actor-Critic PPO Algorithm

The PPO algorithm is an on-policy RL algorithm that
iteratively improves a stochastic policy. As a member of
the policy gradient frameworks class, PPO directly opti-
mizes the policy by adjusting the probabilities of actions
to maximize cumulative rewards. Unlike traditional policy
gradient frameworks, PPO introduces mechanisms to constrain
updates, improving stability and preventing drastic changes
to the policy. This characteristic makes it a popular choice
for training robust policies in various RL applications [4].
PPO builds on previous work, notably Trust Region Policy
Optimization (TRPO), which also constrains policy updates
but uses a more computationally expensive constraint based
on the natural gradient [5]. The improvements in PPO allow
for more efficient learning and scalability compared to TRPO.

PPO is implemented within the actor-critic framework,
where learning is facilitated by two separate neural networks:

• Actor network: Responsible for selecting actions based
on the policy πθ(at|st) parameterized by θ, where st and
at represent the state and the selected action, respectively,
at time step t.

• Critic network: The value of the state is evaluated using
the value function Vω(st) parameterized by ω, which
guides policy updates by estimating the advantage of each
action.

This architecture enables the separation of action selec-
tion and value estimation, promoting more stable learning
by reducing the variance of gradient estimates through the
advantage function.

The interaction process involves workers using the Actor
network to sample actions, observing the resulting state transi-
tions and rewards. These interactions are stored as trajectories,
which are later used to compute policy updates. The Critic
network evaluates the state values, providing feedback to refine
the Actor’s policy. This feedback loop ensures that the policy
adapts to maximize cumulative rewards over time.

B. Mathematical Foundation of PPO

The PPO algorithm introduces several key innovations to
stabilize training and improve efficiency:

Policy Gradient Objective: The primary objective in PPO
is to maximize the expected cumulative rewards by optimizing
the policy πθ. The traditional policy gradient objective JP is
defined as:

JP (θ) = Ê
[
log πθ (at|st) Ât

]
, (1)

where Ât is the advantage, representing the relative value of
an action compared to the baseline. This advantage is typically
computed using the Generalized Advantage Estimator (GAE)
[6]:

Ât = δt + (γλ) δt+1 + · · ·+ (γλ)
U−t+1

δU−1. (2)

where:
• γ ∈ [0, 1] is the discount factor that balances immediate

and future rewards.
• λ ∈ [0, 1] is the GAE decay parameter, balancing bias

and variance in advantage estimation.
• δt is the Temporal-Difference (TD) residual at time step

t, defined as:

δt = R(st) + γVω(st+1)− Vω(st),

where R(s) is the reward function defined for any state
s.

• U is the horizon or the last time step in the trajectory
being considered.

1) Value Function Objective: The critic network is trained
to minimize the error between the predicted state value and the
target state value, each obtained from Vω(st) and V target

ω̄ (st),
respectively. Formally, this objective LV (ω) is defined as:

LV (ω) = Ê
[(
V target
ω̄ (st)− Vω(st)

)2]
, (3)

where the target critic network, V target
ω̄ (st) with frozen pa-

rameters ω̄, is:

V target
ω̄ (st) = R(st) + γVω̄(st+1). (4)

Clipped Surrogate Objective: One of the key contribu-
tions of PPO is the use of the clipped surrogate objective
to constrain policy updates. The clipped surrogate objective
JCLIP (θ) is defined as follows:

JCLIP (θ) = Ê
[
min

(
rt (θ) , clip (rt (θ) , 1− ϵ, 1 + ϵ)

)
Ât

]
,

(5)
where rt(θ) is the ratio of new policy πθ and old policy πθold

probabilities:

rt(θ) =
πθ(at|st)
πθold(at|st)

. (6)

In the ratio rt(θ), πθold denotes the policy that generated
the trajectories before the current update step. The clipping
function ensures that policy updates stay within a predefined
range, preventing overly large steps that could destabilize
learning.



Fig. 1: Asynchronous PPO Framework: Each worker independently interacts with its environment and updates the global policy
asynchronously.

C. Advantages of PPO

The simplicity, computational efficiency, and robustness of
PPO make it ideal for large-scale distributed training. By
combining the advantages of actor-critic architectures with
stable policy updates, PPO is widely applicable across various
domains, from robotics to multi-agent systems. The enhanced
scalability of PPO provides the foundation for further improve-
ments, such as the APPO algorithm proposed in this work.

III. PROPOSED FRAMEWORK

We provide a detailed explanation of our proposed APPO
framework in this section. In the proposed APPO:

• Workers send gradients ηθ, ηω to the global network
asynchronously, and the global parameters θg , ωg are
updated periodically.

• Updates are propagated back to workers, ensuring diverse
policy exploration and avoiding delays caused by syn-
chronization.

Our APPO leverages asynchronous updates to improve
scalability and reduce communication overhead. Each worker
optimizes its local policy using JCLIP and LV , and the global
network aggregates their contributions.

The distributed asynchronous approach enhances learning
efficiency, enabling robust training across multiple environ-
ments. It is well-suited for large-scale RL applications requir-
ing decentralized execution and high throughput.

A. The Architecture of the Proposed APPO Framework

The proposed APPO framework, a distributed RL system
illustrated in Figure 1, addresses the challenges of scalability
and efficiency by employing a decentralized, asynchronous

optimization paradigm. This framework consists of a central-
ized Global Network and multiple distributed Worker Nodes.
Each Worker Node interacts with its respective environment,
collects trajectories, and computes gradient, ηθ for the policy
and ηω for the value function, based on updates of local
parameters θl and ωl. These gradients are then asynchronously
aggregated by the Global Network to periodically update the
global parameters, θg and ωg . By enabling Worker Nodes to
operate independently, the APPO framework ensures efficient
utilization of computational resources and scalability, over-
coming the bottlenecks often faced by traditional synchronous
federated systems that rely on strict synchronization. We
provide a detailed explanation of the proposed APPO update
process in the following sections.

1) Worker Nodes Training Process: Each Worker Node op-
erates independently, as detailed in Algorithm 2. The training
process begins by synchronizing the local parameters with the
global network:

θl ← θg, ωl ← ωg. (7)

Worker Nodes interact with their environments to collect
trajectories, storing N transitions in a local buffer DN . For
each trajectory, the following computations are performed:

• The advantage is estimated using A
πθold
ωl (st, at).

• The target state value is estimated using V
πθold

target (st, at).

It is important to note that A
πθold
ωl (st, at) and V

πθold
target (st) are

derived using trajectories that were generated by πθold prior to
the current update step.

Subsequently, the local policy and value function are up-
dated over E epochs. The policy is optimized using the clipped



surrogate objective JCLIP
t (θl) to prevent excessive updates as

shown in Eq. (5). The value function is updated to minimize
the loss Lt(ωl), thereby improving the accuracy of state value
predictions:

Lt(ωl) =
(
V πθ
ωl

(st)− V
πθold

target (st)
)2

. (8)

The Lt(ωl) values computed for each transition are aggregated
to LV , which is subsequently used for the update:

LV =

N−1∑
t=0

Lt(ωl). (9)

After completing the local updates, the scaled gradients ηθ
and ηω are computed and sent asynchronously to the global
network. The update process for θl and ωl during local training
can be detailed as:

θinit ← θ0l ,

θ1l = θ0l + αl∇JCLIP
0 ,

θ2l = θ1l + αl∇JCLIP
1 = θ0l + αl(∇JCLIP

0 +∇JCLIP
1 ),

...

θnl = θ0l + αl

n−1∑
t=0

∇JCLIP
t .

(10)

Similarly, for the value function:

ωinit ← ω0
l ,

ω1
l = ω0

l − αl∇L0,

ω2
l = ω1

l − αl∇L1 = ω0
l − αl(∇L0 +∇L1),

...

ωn
l = ω0

l − αl

n−1∑
t=0

∇Lt.

(11)

Unlike traditional synchronous PPO frameworks, the APPO
framework introduces a key novelty: global parameter updates
occur less frequently, and gradients are computed manually at
the worker level. Specifically, after performing n local updates,
each worker calculates the aggregate gradients ηθ and ηω using
the following formulas:

ηθ =
θnl − θinit

αl
, ηω =

ωinit − ωn
l

αl
, (12)

where αl is the learning rate, and θinit and ωinit represent the
initial local parameters before updates. These gradients, nor-
malized by the local learning rate, ensure that the contributions
to the global network are proportional to the local progress
made by the worker nodes.

This manual computation of gradients aligns with the the-
oretical foundations of asynchronous distributed optimization,
ensuring correctness and stability during the training process.
As described in Algorithm 1, the global network updates the
shared parameters θg and ωg using a predefined global learning
rate αg:

θg ← θg + αgηθ, ωg ← ωg − αgηω. (13)

Algorithm 1 Master Training Pseudocode
ωg: global value function parameters
θg: global policy parameters
ηω: the scaled difference between ωinit and ωl

ηθ: the scaled difference between θinit and θl
αg: global learning rate

1: Initialize the network parameters: ωg , θg
2: for k = 0, 1, 2, . . . do
3: wait and get a gradient ηω ,ηθ from a worker
4: ωg ← ωg − αgηω
5: θg ← θg + αgηθ

Algorithm 2 Worker Training Pseudocode
ωl: local value function parameters
θl: local policy parameters
ωinit: initial local value function parameters
θinit: initial local policy parameters
πθold : policy under previous parameters θold
DN : buffer holding N sampled transitions
αl: local learning rate

1: Initialize the local network parameters: ωl, θl
2: for k = 0, 1, 2, . . . do
3: assign global parameters to local: ωl ← ωg, θl ← θg
4: πθold ← θl
5: using πθold , sample N step transitions into DN

6: for each transition (at, st, R(st), st+1) in DN do
7: A

πθold
ωl (st, at) = R(st) + γV

πθold
ωl (st+1)− V

πθold
ωl (st)

8: V
πθold

target (st) = R(st) + V
πθold
ωl (st+1)

9: θinit ← θl, ωinit ← ωl

10: for h = 0, 1, 2, . . . E − 1 do
11: for each transition (at, st,t+1 , st+1) in DN do
12: Lt(ωl)← V

πθold
target (st)− V

πθl
ωl (st)

13: rt(θl) =
πθl

(at|st)
πθold

(at|st)

14: compute JCLIP
t (θl) by Eq. (5)

15: ωl ← ωl − αl∇ωl

∑N−1
t=0 Lt(ωl) by Eq. (11)

16: θl ← θl + αl∇θl

∑N−1
t=0 JCLIP

t (θl) by Eq. (10)
17: ηω ← (ωinit − ωl)/αl, ηθ ← (θl − θinit)/αl by Eq. (12)
18: send ηω, ηθ to master

The proposed APPO framework offers several advantages
over traditional PPO and synchronous distributed systems:

1) Scalability: The asynchronous architecture eliminates
the need for global synchronization, enabling efficient
scaling across numerous worker nodes.

2) Reduced Latency: Workers perform updates indepen-
dently, ensuring that straggling nodes do not delay the
training process.

3) Improved Resource Utilization: By distributing the
computational workload across workers, the framework
maximizes the utilization of available resources.

4) Faster Convergence: Frequent local updates and asyn-
chronous gradient aggregation allow the system to adapt
quickly to the dynamic training environment.



(a) LunarLanderContinuous-v3 Time Steps (b) LunarLanderContinuous-v3 Process Time

(c) BipedalWalker-v3 Time Steps (d) BipedalWalker-v3 Process Time

(e) Hopper-v5 Time Steps (f) Hopper-v5 Process Time

(g) HalfCheetah-v5 Time Steps (h) HalfCheetah-v5 Process Time

Fig. 2: Comparison of rewards over training time steps and process time (in seconds) for different numbers of workers.



IV. EXPERIMENTS

This paper proposes an enhanced APPO framework and
evaluates its performance across various continuous control
environments. The goal of these experiments is to demonstrate
the scalability and stability of the APPO framework when
using a different number of workers in distributed training.

A. Environments

For our experiments, we employed multiple OpenAI Gym
[7] environments, several of which utilize the MuJoCo physics
engine [8]. Specifically, we considered the following environ-
ments:

• LunarLanderContinuous-v3: A continuous control task
where the goal is to land a spacecraft safely on a platform
by controlling the thrust of the main and side engines.

• BipedalWalker-v3: A task where a two-legged robot
must learn to walk across uneven terrain.

• Hopper-v5: A one-legged robot must learn to hop for-
ward efficiently while maintaining balance.

• HalfCheetah-v5: A two-dimensional cheetah-like robot
must maximize forward velocity by learning efficient
limb coordination.

Each of these environments presents unique challenges in
terms of control complexity and reward dynamics, providing
a robust benchmark for evaluating the performance of RL
algorithms.

B. Experimental Setup

To evaluate the effectiveness of the proposed APPO frame-
work, we conducted experiments with 1, 2, and 4 workers. For
each configuration, training was performed 5 times, and the
average results were plotted to assess performance and stabil-
ity. All experiments were conducted using CPUs to ensure the
scalability of the approach to low-resource environments.

The experiments aimed to analyze:
1) Training Time Efficiency: How quickly the algorithm

achieves a stable reward.
2) Performance: The maximum reward obtained during

training.
3) Stability: The variance in reward across runs.

C. Experimental Results and Analysis

Figure 2 presents the mean performance values and
standard deviations across 5 runs for four environments:
LunarLanderContinuous-v3, BipedalWalker-v3, Hopper-v5,
and HalfCheetah-v5, with 1, 2, and 4 workers used in the
experiments.

In all tested environments, the use of 2 and 4 workers con-
sistently results in improved training performance compared
to the 1-worker setup. The configurations with more workers
tend to converge faster and achieve higher rewards. Moreover,
the standard deviation of rewards is generally smaller with
2 and 4 workers, indicating more stable and reliable training.
These findings suggest that the APPO framework weffectively
scales with the number of workers, improving both training
speed and stability across multiple environments.

Further experiments with Hopper-v5 and HalfCheetah-v5
will provide additional insights into the scalability of APPO
across more challenging environments.

V. CONCLUSION

In this paper, we introduced a new APPO frame-
work, which combines asynchronous optimization and multi-
worker setups to enhance the scalability, stability, and effi-
ciency of RL. Through experiments on environments such
as LunarLanderContinuous-v3, BipedalWalker-v3, Hopper-v5,
and HalfCheetah-v5, we showed that increasing the number
of workers from 1 to 2 and 4 results in improved training
speed and performance. Furthermore, the manual gradient
update optimization in APPO contributes to more efficient
convergence, as it allows each worker to independently com-
pute gradients and reduce synchronization bottlenecks. The
results demonstrate that APPO accelerates convergence while
maintaining consistent reward performance. These findings
highlight the potential of APPO as a flexible and efficient
framework for large-scale distributed RL tasks. Future work
could further optimize the gradient update process and explore
its application in more complex environments.
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