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Abstract— This study addresses health and safety risks in the
underground mining by developing an Internet of Things (1oT)
Station using compressive sensing architecture to monitor vital
parameters such as heart rate, body temperature, carbon
monoxide (CO) levels, and environmental temperature in real-
time manner. Data transmission is facilitated through a LoRa
wireless network utilizing a star multihop topology, which allows
sensor modules to first send data to a central LoRa transceiver
before relaying it to a main base station. The communication
module extends coverage and enhances data reliability, making it
suitable for challenging underground environments. Simulation
and testing demonstrated effective communication up to 1.6 km in
open areas and 1 km in closed areas, with stable data transmission.
This multihop approach reduces accident risks and enhances
safety and productivity by ensuring comprehensive monitoring
across extended areas. The Compressive Sensing architecture
improves bandwidth and energy efficiency by reducing the data
volume by up to 50% without losing important information. In
addition, the system employs thresholding to classify conditions
into 'safe,’ "alert,’ and "danger’ categories based on specific ranges
for humidity, CO levels, temperature, and heart rate.

Keywords — Internet of things, compressive sensing, real-time
monitoring, LoRa network, mining health.

|.INTRODUCTION

The mining industry is one of the sectors with high potential
risks related to the health and safety of workers. Therefore,
innovation in technological development is needed to help
identify and mitigate these risks. One potential solution is the
use of loT-based safety vests to monitor the health and safety
of mining workers. These vests can anticipate accidents and
injuries, monitor workers’ health, ensure traffic safety, and
improve workers' quality of life.

Factors such as toxic gas concentrations, extreme
temperatures, and high humidity can threaten workers’ safety if
not effectively monitored. Monitoring systems are an urgent
need to mitigate these risks. The Internet of Things (loT) offers
an innovative approach through the collection, processing, and
analysis of real-time mine environmental data, enabling faster
and more accurate data-driven decision-making [1].

The development of loT-based safety vests involves
research and development costs for hardware and software. The
potential economic benefits include increased productivity,
reduced costs from workplace accidents, and savings through
improved worker health monitoring. These vests also provide
extra protection against physical risks in the mining

environment and help prevent serious injuries or fatal accidents.
The use of environmentally friendly materials and sustainable
production processes is also important for the product's
sustainability.

In this study, we developed an loT station that integrates
Compressive Sensing (CS) architecture to monitor critical
environmental parameters. The compressed data is transmitted
via a LoRa (long range)-based wireless network, which has
advantages in power efficiency and wide coverage [2]. This
system is designed to improve monitoring efficiency while
overcoming the limitations of 10T technology in challenging
mining environments. Through the implementation of this
solution, we hope to make a significant contribution to
improving occupational safety in underground mines and
support further development towards artificial intelligence-
based systems for automatic risk detection and mitigation.

Several studies have been conducted on loT-based mines
monitoring. In [3], the authors explore the implementation of a
monitoring system aimed at preventing thermal events in
mining and landfill waste disposal sites. Data-driven insights
enabled operators to take preventive measures, reducing the
likelihood of thermal events.

However, conventional safety systems in mines may be less
responsive to real-time changes in situations. A more adaptive
and proactive solution is needed to address the continuously
evolving safety challenges. Mine workers may also be exposed
to environmental conditions that can affect their health. Safety
vests have become an integral part of worker protection across
various industries. Designing safety vests equipped with loT
technology can be an innovative step to enhance safety and
worker monitoring in the mining environment.

Il. STATE-OF-THE-ART

A. Networking

10T is a concept that enables physical devices to connect
with each other and the internet, collecting and sharing data in
real-time. These devices, such as sensors or actuators, can
interact with their surroundings and central systems, facilitating
automatic monitoring and control. 10T applications in
underground mining include monitoring hazardous gases such
as methane and carbon monoxide; measurement of temperature,
humidity, and structural stability; and tracking of worker
location.



LoRa is a low-power wireless communication protocol
designed for long-distance communication, making it ideal for
IoT applications. LoRa operates in unlicensed frequency
spectrums and allows data transmission over several kilometers
with minimal power consumption [4]. It is used in the
LoRaWAN communication standard, which connects loT
devices to gateways and subsequently to the internet. It can be
deployed as star or partial mesh topology. This central point
acts as a communication controller, ensuring that a failure in
one device does not affect the entire network.

On the other hand, ESP-NOW is a wireless communication
protocol developed by Espressif, allowing ESP32 or ESP8266
devices to communicate without a Wi-Fi network stack. This
protocol is efficient in power consumption, offers low latency,
and provides a longer range compared to Wi-Fi. It can be
implemented in a star topology, allowing edge devices to send
data directly to a central node. To extend the range, ESP-NOW
can be combined with LoRa, forming a partial mesh or tree
topology that increases the communication range up to 5 km in
rural areas and 2 km in urban areas. This evaluation of LoRa
technology as an alternative communication protocol highlights
its effectiveness in enhancing network range and reliability in
low-power, long-distance applications.

Spreading Factor (SF) in LoRa is a parameter that
determines the number of bits sent per symbol [7]. SF values
affect the range and data speed. Lower SF values (e.g., SF7)
provide higher data speeds but shorter range, while higher SF
values (e.g., SF12) offer a longer range but lower data speed.
The choice of SF must be tailored to the specific needs of the
application, balancing the need for longer range versus higher
data speed.

The combination of these technologies enables the
development of efficient and reliable 10T systems for real-time
monitoring of workers and environmental conditions in the
mining industry.

B. Compressive Sensing

CS is a signal processing technique that enables
simultaneous sampling and compression of data. The core
principle of CS is that sparse signals in certain domains, such
as frequency, can be represented with far fewer samples than
required by conventional sampling theories like Nyquist-
Shannon [8]. This reduces the amount of data to be stored or
transmitted without losing critical information. In loT
applications, particularly in resource-constrained environments
like underground mines, CS helps save bandwidth and power,
as well as real-time analysis. By integrating 10T technology, CS
can be an effective solution for health and safety monitoring in
underground mines, where extreme working environments
require reliable and resource-efficient monitoring systems.

However, the implementation of 10T in underground mines
faces several challenges, including limited communication
bandwidth, high power consumption of devices, and difficulties
in managing the big data generated by sensors [5] [6]. This is
where compressive sensing becomes relevant, as it allows for
resource savings while maintaining the data accuracy required
to monitor environmental conditions and worker health. CS in
our scheme consists of three main stages:

1. Compressed sampling: Data is captured in a transform
domain with a random measurement matrix. The volume

of data collected is much smaller compared to traditional
sampling methods.

2. Data Transmission: Compressed data requires less
bandwidth, thus saving power and transmitting faster.

3. Signal Reconstruction: Data received at the server is
processed using algorithms such as basis pursuit or
orthogonal matching pursuit (OMP). The original signal is
reconstructed for further analysis.

In the context of CS, Fast Fourier Transform (FFT)
transforms signals from the time domain to the frequency
domain, where they can be more sparsely represented [5]. This
frequency representation is then compressed using CS. FFT
enables faster and more efficient signal processing, making it
essential for analyzing large and complex datasets. In
underground mining health monitoring systems, FFT allows for
the quick identification of significant changes, such as
hazardous gas levels or sudden shifts in workers' heart rates.

x(f) = FFT(x()) 1)
x(f) : signal in frequency domain
x(t) : signal in the time domain

Gaussian and Bernoulli processes also play a role within CS
frameworks, particularly in modeling and predicting sensor
behavior. A Gaussian distribution is often used for its properties
of simplicity and flexibility in modeling real-world data,
making it a valuable tool for analyzing noise characteristics and
variability in sensor signals. In this study, Gaussian noise
models can be applied to simulate realistic conditions where
sensor readings might be corrupted by environmental factors.
By accounting for Gaussian noise, the accuracy and robustness
of CS in processing health monitoring data are enhanced,
making it possible to detect anomalies with greater reliability.
A random Gaussian matrix has entries sampled from a Gaussian

distribution:
1
0 ~(03)
Where N(O,%) is a normal distribution with mean 0 and

variance 1/M.

On the other hand, a random Bernoulli matrix is a type of
measurement matrix widely used in CS, where each element is
independently sampled from a Bernoulli distribution.
Typically, entries are either +1/YM or +1/YM with equal
probability (0.5). Random Bernoulli matrices are particularly
suitable for resource-constrained environments due to their low
storage requirements and fast matrix-vector multiplications.

OMP is a commonly used signal reconstruction algorithm.
It reconstructs the original signal from compressed samples by
selecting the atoms from a basis that best matches the observed
signal [6]. OMP is known for its simplicity and strong
performance in reconstructing sparse signals. In this study,
OMP is used to reconstruct data from compressed sensor
signals, ensuring that the integrity of health monitoring data is
maintained. Data reconstruction in OMP involves matching
between the observed signal and a sparse representation in the
form:

y=®x +e 2
where y is the observation vector (measured signal) with
dimension of m, @ is the basis matrix or dictionary, x is the



sparse coefficient vector (dimension of n), and e is the noise
vector or measurement error.

We can find the least squares solution using the selected
atoms:

XSp41 — A8 mZin"y - q)sk+1z||2 (3)
Then calculate the new residual:
Tkv1 =Y — ¢sk+1xsk+1 (4)

I'y41 iS the residual atiterationk + 1, ®s is matrix
constructed on the selected columns, and xs is coefficients of
the signal representation.

C. Thresholding

We applied thresholding as a processing technique used to
categorize data into specific groups [7]. In this monitoring
system, the thresholding function is employed to classify sensor
data into safe, alert, or danger categories. This technique
enables the system to issue warnings or trigger automated
actions in response to detected environmental conditions,
enhancing the responsiveness to potential hazards in mining
environments. By employing adaptive thresholding, the system
can also adjust its sensitivity to varying conditions, providing
more accurate and timely alerts based on real-time data
fluctuations. This approach further reduces the likelihood of
accidents by allowing for proactive safety measures.

HEART RATE €O CONCENTRATION TEMPERATURE

© O O O
N

Figure 1. Sensor Value Thresholding

N

I1l. METHOD

Given the requirements which involve preventing and
minimizing risks in underground mining, such as harmful
temperatures and humidity levels, the risk of exposure to
toxic gases like carbon monoxide, and the need for heart rate
monitoring, the device is designed to monitor these
underground conditions effectively. Utilizing methods like
FFT and Gaussian or Bernoulli projection, the data is
compressed and then reconstructed using OMP. This
approach ensures that critical information regarding
environmental conditions and health parameters is
accurately captured and relayed.

A. Networking

The following figure depicts an 10T system with a star
topology where some ESP32 connects to sensors sending data
to LoRa transceiver that acts as a gateway, which then sends the
data to the database for further storage and analysis. The system
workflow is as follows: (1) Data is collected by sensors and
compressed at the lIoT node; (2) The compressed data is
transmitted via a gateway to a server or cloud; (3) The server
performs signal reconstruction and analysis to detect anomalies
or hazardous conditions; and (4) Critical information is sent
back to the mine operator for decision making.
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Figure 3. Network Topology

The image depicts the architecture of an loT-based health
monitoring system for underground mining, utilizing various
components such as sensors, ESP32, LoRa transceiver, and data
storage. ESP32 collects data from the sensors and sends it to the
nearest LoRa transceiver. The data from the first LoRa
transceiver is then transmitted to a second LoRa node, which
may function as a gateway or base station. Firebase stores this
data, making it accessible for real-time monitoring, analysis,
and further actions if necessary.

In this research, the process begins with data collection from
various sensors, including the MQ7, DHT11, and MAX30102,
which respectively detect carbon monoxide concentration,
measure temperature and humidity, and monitor heart rate. The
collected data is then transmitted via a LoRa network to the
database.

B. Compressive Sensing

Compressive Sensing enables efficient data collection by
reducing the number of required samples. This can overcome
bandwidth limitations and optimize resource utilization.
Compression algorithm development involves 2 main stages.
Firstly, the selection of sparsifying matrix: FFT is used in this
study. Secondly, data projection in 0T nodes: simple random
matrices such as Gaussian or Bernoulli matrices are used to
ensure compression can be performed with minimal resources.
The compression level is adjusted based on the sensitivity of
the data (e.g., heart rate data has higher priority than humidity).

The data acquisition method on the transmitter side using
FFT allows loT devices equipped with sensors such as DHT



(for measuring temperature and humidity), MAX30102 (for
monitoring health parameters like heart rate and blood oxygen
levels), and MQ7 (for detecting carbon monoxide
concentration) to continuously collect data. This raw data is
then transformed using FFT to identify the dominant frequency
coefficients. The FFT makes the data easier to analyze in terms
of its coefficients, which can be very useful for detecting
patterns and features that may not be visible in the time domain.
After the transformation, the data is transmitted to the data
processing center through the 10T network.
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Figure 4. Compressive Sensing Flowchart

The data reconstruction method used on the receiver side is
OMP. It is an efficient approach to integrating and managing
data from various sensors. The data is then transmitted to the
processing center through the 10T network. The OMP algorithm
helps optimally identify patterns and anomalies in the data,
enabling more accurate and real-time analysis. This analysis is
used to make better and more responsive decisions in response
to changes in environmental and health conditions, as well as to
improve the overall efficiency and reliability of the 10T system.

C. Application

This research uses a prototype-based development method
to design and build an application for monitoring and predicting
hazardous conditions in mining environments. The research
process was conducted in several stages, including system
design, technology implementation, and application testing.

The system design stage involves identifying the
requirements for monitoring the mining environment, including
determining the types of sensors to be used, selecting the data
processing devices, and choosing the appropriate
communication technology such as ESP32 and LoRa
Transceiver. Additionally, this stage includes designing the
system architecture that integrates the sensors, Firebase as the
data storage solution, and the Flask framework as the web
interface.

In the implementation stage, sensors are connected to the
ESP32 and LoRa Transceiver to facilitate data transmission.
The real-time database is then configured to store and
synchronize the sensor data in real-time. Furthermore, a user
interface is developed using HTML to display the sensor data
in an interactive dashboard, with Flask serving as the backend
framework.

IVV. RESULTS AND DISCUSSION

A. Network Testing

This research conducted two tests with 1.6 km for LOS
(Line of Sight). The first test was carried out from an elevated
area to a lower elevation, simulating real-world conditions
where LOS is maintained across varying terrains. The lower
elevation helped evaluate the transmission performance in
conditions where the receiver is at a lower altitude compared to
the transmitter.

The second test, NLOS (Non-Line of Sight), was conducted
in a forested area known for its dense vegetation and rugged
terrain. Specifically, the transmitter was placed inside
subterranean structures, simulating underground mining
environments, while the receiver was located outside the cave
at 1 km. This setup was chosen to replicate the challenging
conditions of mining sites, where signal propagation is affected
by physical obstructions and materials with high attenuation
properties, such as rock and soil.

For the LOS test, the experiment was conducted over 1.6
km, maintaining a clear LOS to assess the maximum
transmission range and signal quality. The selection of a
location with varying elevation and open spaces provided
realistic insights into signal behavior in both urban and natural
environments.

Mine health and environmental monitoring involves
measuring various parameters, i.e. hazardous gases like the
concentration of carbon monoxide (CO) to prevent fire or
explosion, environmental conditions such as temperature and
humidity to detect significant environmental changes, and
worker health such as heart rate, blood oxygen, and physical
activity to ensure worker safety and health.

Table 1 LoRa NLOS Test Result

SF7 1 -45 -118 -80.26 6.73 36.83 18.07 0.0816
SF12 1 -20 -121 -89.32 122 5.58 345 0.4559

The Spreading Factor (SF) in a LoRa network significantly
impacts various aspects of communication performance. When
the SF is increased from SF7 to SF12, several notable changes
occur. First, throughput drastically decreases from 164.84 bps
at SF7 to 42.26 bps at SF12. Second, latency increases from
9.41 seconds at SF7 to 12.92 seconds at SF12. However, the Bit
Error Rate (BER) decreases from 0.9% at SF7 to 0.1% at SF12,
indicating that the bit error rate is reduced. Additionally, the
Signal-to-Noise Ratio (SNR) decreases from 6.28 dB to 4.01
dB. Overall, increasing SF improves communication reliability
in poor signal conditions but at the expense of data transmission
efficiency and speed.

For the NLOS test, we conducted the experiment in the
caves located in Bandung, Indonesia. In this test, we performed
two measurements, one with SF 7 and the other with SF 12. The
average measurement results are as follows.

Table 2 LoRa LOS Test Result 1

SF7 16 -46 114 | 896 | 628 | 16484 | 941 [ 09
[ sfr2 | 16 | 37 | 126 | 005 [ 401 [ 4226 [ 1292 [ 01 ]




The change from SF7 to SF12 has several significant
impacts. Increasing the SF from 7 to 12 results in lower
throughput, dropping from 36.83 bps to 5.58 bps. Additionally,
latency nearly doubles, increasing from 18.07 seconds at SF7
to 34.5 seconds at SF12. The SNR drops from 6.73 dB to 1.22
dB, indicating more interference in the signal. The BER also
increases from 0.08% at SF7 to 0.46% at SF12. Overall,
increasing SF enhances the range and reliability of
communication in poor signal conditions but reduces data
transmission efficiency and speed.

B. Compressive Sensing Testing
Here are the results of the compressive sensing test results.
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Implementing Compressive Sensing techniques using the
OMP algorithm on data collected from DHT11, MQ7, and
MAX30102 sensors. The processes of measurement,
compression, and signal reconstruction are carried out
systematically and efficiently. The reconstruction results show
that the OMP algorithm can reconstruct the original signal with
adequate accuracy, allowing for savings in data storage and
transmission, as well as improving the overall performance of
the sensor system. The following RMSE (Root Mean Square
Error) and MAPE (Mean Absolute Percentage Error) values are
presented.

Table 3 RMSE and MAPE Value for Various Measurement
Matrices

Humidity 4.84 4.7 4.05 3.8
MQ7 1.05 6.13 2.1 5.2
Temperature 1.63 5.6 3.7 4.8
Heartrate Board 2 5.12 5.86 4.2 5.17
Heartrate Board 3 5.43 5.5 3.6 4.8

The table summarizes the performance of various sensors in
terms of RMSE and MAPE. The MQ7 sensor, used for
measuring CO levels, shows the lowest RMSE (1.05) but has
the highest MAPE (6.13%), indicating that while the absolute
error is low, the percentage error relative to the measured values
is higher. The temperature sensor displays moderate RMSE
(1.63) and MAPE (5.6%), suggesting balanced accuracy. The
humidity sensor, with an RMSE of 4.84 and a MAPE of 4.7%,
indicates a relatively higher absolute error but maintains a
lower percentage error. The heart rate sensors (Board 2 and
Board 3) exhibit similar performance, with RMSE values of
5.12 and 5.43, and MAPE values of 5.86% and 5.5%,
respectively. Overall, the sensors demonstrate varying levels of
accuracy, with the MQ7 sensor showing the best absolute error
but the most significant percentage error.

We performed calculations to measure data compression
efficiency during the acquisition process. First, we set a
measurement rate of 5%. This measurement rate is calculated
using a formula that measures the percentage of output
coefficients from the acquisition process compared to the total
number of input samples. The result indicates that only 5% of
the input samples are required to represent the data in output
form, demonstrating high efficiency in the sampling process.

Measurement rate = g x 100 % (3)

C = samples from the acquisition process output
S = samples from the acquisition process input

Additionally, we conducted signal reconstruction analysis
using the OMP method. From this reconstruction process, we
achieved a highly significant compression ratio of 0.05. This
compression ratio means that the reconstructed signal only
requires 5% of the components present in the original signal to
represent the same information. This indicates that the original
signal contains a substantial amount of redundancy, which can
be eliminated without losing critical information.



, i Output Size
Compression Ratio = e

Input Size (4)

10T systems based on CS show significant reduction in data
volume. Comparison between traditional sampling methods
and CS shows that compressed data has an average size of 60—
70% smaller. Also, communication bandwidth usage is reduced
by up to 50%, even in poor transmission conditions such as
mines with signal obstructions or NLOS.

C. Application Testing

We develop a monitoring and prediction system for
hazardous conditions in mining environments by utilizing
various technologies, such as Firebase, Flask, and HTML Web
App. The web application developed using HTML, CSS, and
JavaScript allows users to view sensor data in real-time. Data
from the MQ7, DHT11, and MAX30102 sensors are visualized
in graphs and tables that are easy to understand. This
application is designed to facilitate users in monitoring
environmental conditions and making decisions based on the
available data.
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Figure 10 Web App Interface

The data retrieval speed from database was differently
tested using the syntax “time_taken = end_time - start_time”,
which calculates the time between the data request and data
reception. The test results showed that the average time to
retrieve data from Firebase is approximately 287 ms. This speed
is crucial for applications that rely on real-time sensor data,
ensuring that the system can respond to environmental changes
in a timely manner.

Table 4 Response Time Test Result

Compression rate MR for successful 50-60%
reconstruction
Latency Mean retrieval time 0.29 sec
Reconstruction MAPE 0.047
accuracy

V. CONCLUSION AND FUTURE WORK

The integration of loT technology with compressive
sensing has proven to be an innovative solution for safety
monitoring in underground mines. This technology overcomes
key challenges such as bandwidth limitations, device power
consumption, and extreme environmental conditions. By
utilizing CS, data from multiple sensors can be efficiently
compressed before being transmitted, reducing data
transmission requirements without sacrificing accuracy.

In LOS conditions, the SF significantly impacts
communication performance. At SF7, the average SNR 6.28
dB, and latency was 9.41 seconds. In contrast, SF12 showed
slightly lower SNR at 4.01 dB, and increased latency to 12.92

seconds. Increasing SF from 7 to 12 enhances communication
reliability but sacrifices data transmission efficiency and speed.
Overall, SF7 is more effective for applications requiring fast
data transmission and strong signals in NLOS scenarios.

The results indicate that the CS method with OMP
effectively reconstructs signals close to the original, though
performance varies by sensor type. Overall, CS demonstrates
great potential for enhancing the efficiency of 10T systems in
resource-constrained environments like underground mines.

To enhance system performance and reliability, the next
phase of research should implement mesh networking and
scheduling techniques. Mesh networking ensures scalability
and robustness, maintaining continuous data flow even if some
nodes fail. Together, these strategies will create a more
efficient, reliable, and scalable 10T system, ensuring timely and
efficient data transmission. The future implementation
challenges may include the use of ruggedized sensors for
environmental protection, adaptive sensing based on signal
dynamics, and pre-determined sensing matrices to avoid
repeated transmission of CS parameters.
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