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Abstract— This study addresses health and safety risks in the 

underground mining by developing an Internet of Things (IoT) 

Station using compressive sensing architecture to monitor vital 

parameters such as heart rate, body temperature, carbon 

monoxide (CO) levels, and environmental temperature in real-

time manner. Data transmission is facilitated through a LoRa 

wireless network utilizing a star multihop topology, which allows 

sensor modules to first send data to a central LoRa transceiver 

before relaying it to a main base station. The communication 

module extends coverage and enhances data reliability, making it 

suitable for challenging underground environments. Simulation 

and testing demonstrated effective communication up to 1.6 km in 

open areas and 1 km in closed areas, with stable data transmission. 

This multihop approach reduces accident risks and enhances 

safety and productivity by ensuring comprehensive monitoring 

across extended areas. The Compressive Sensing architecture 

improves bandwidth and energy efficiency by reducing the data 

volume by up to 50% without losing important information. In 

addition, the system employs thresholding to classify conditions 

into 'safe,' 'alert,' and 'danger' categories based on specific ranges 

for humidity, CO levels, temperature, and heart rate. 

Keywords — Internet of things, compressive sensing, real-time 

monitoring, LoRa network, mining health. 

I. INTRODUCTION  

The mining industry is one of the sectors with high potential 

risks related to the health and safety of workers. Therefore, 

innovation in technological development is needed to help 

identify and mitigate these risks. One potential solution is the 

use of IoT-based safety vests to monitor the health and safety 

of mining workers. These vests can anticipate accidents and 

injuries, monitor workers’ health, ensure traffic safety, and 

improve workers' quality of life. 

Factors such as toxic gas concentrations, extreme 

temperatures, and high humidity can threaten workers’ safety if 

not effectively monitored. Monitoring systems are an urgent 

need to mitigate these risks. The Internet of Things (IoT) offers 

an innovative approach through the collection, processing, and 

analysis of real-time mine environmental data, enabling faster 

and more accurate data-driven decision-making [1]. 

The development of IoT-based safety vests involves 

research and development costs for hardware and software. The 

potential economic benefits include increased productivity, 

reduced costs from workplace accidents, and savings through 

improved worker health monitoring. These vests also provide 

extra protection against physical risks in the mining 

environment and help prevent serious injuries or fatal accidents. 

The use of environmentally friendly materials and sustainable 

production processes is also important for the product's 

sustainability. 

In this study, we developed an IoT station that integrates 

Compressive Sensing (CS) architecture to monitor critical 

environmental parameters. The compressed data is transmitted 

via a LoRa (long range)-based wireless network, which has 

advantages in power efficiency and wide coverage [2]. This 

system is designed to improve monitoring efficiency while 

overcoming the limitations of IoT technology in challenging 

mining environments. Through the implementation of this 

solution, we hope to make a significant contribution to 

improving occupational safety in underground mines and 

support further development towards artificial intelligence-

based systems for automatic risk detection and mitigation. 

Several studies have been conducted on IoT-based mines 

monitoring. In [3], the authors explore the implementation of a 

monitoring system aimed at preventing thermal events in 

mining and landfill waste disposal sites. Data-driven insights 

enabled operators to take preventive measures, reducing the 

likelihood of thermal events. 

However, conventional safety systems in mines may be less 

responsive to real-time changes in situations. A more adaptive 

and proactive solution is needed to address the continuously 

evolving safety challenges. Mine workers may also be exposed 

to environmental conditions that can affect their health. Safety 

vests have become an integral part of worker protection across 

various industries. Designing safety vests equipped with IoT 

technology can be an innovative step to enhance safety and 

worker monitoring in the mining environment. 

II. STATE-OF-THE-ART 

A. Networking 

IoT is a concept that enables physical devices to connect 

with each other and the internet, collecting and sharing data in 

real-time. These devices, such as sensors or actuators, can 

interact with their surroundings and central systems, facilitating 

automatic monitoring and control. IoT applications in 

underground mining include monitoring hazardous gases such 

as methane and carbon monoxide; measurement of temperature, 

humidity, and structural stability; and tracking of worker 

location. 



LoRa is a low-power wireless communication protocol 

designed for long-distance communication, making it ideal for 

IoT applications. LoRa operates in unlicensed frequency 

spectrums and allows data transmission over several kilometers 

with minimal power consumption [4]. It is used in the 

LoRaWAN communication standard, which connects IoT 

devices to gateways and subsequently to the internet. It can be 

deployed as star or partial mesh topology. This central point 

acts as a communication controller, ensuring that a failure in 

one device does not affect the entire network. 

On the other hand, ESP-NOW is a wireless communication 

protocol developed by Espressif, allowing ESP32 or ESP8266 

devices to communicate without a Wi-Fi network stack. This 

protocol is efficient in power consumption, offers low latency, 

and provides a longer range compared to Wi-Fi. It can be 

implemented in a star topology, allowing edge devices to send 

data directly to a central node. To extend the range, ESP-NOW 

can be combined with LoRa, forming a partial mesh or tree 

topology that increases the communication range up to 5 km in 

rural areas and 2 km in urban areas. This evaluation of LoRa 

technology as an alternative communication protocol highlights 

its effectiveness in enhancing network range and reliability in 

low-power, long-distance applications. 

Spreading Factor (SF) in LoRa is a parameter that 

determines the number of bits sent per symbol [7]. SF values 

affect the range and data speed. Lower SF values (e.g., SF7) 

provide higher data speeds but shorter range, while higher SF 

values (e.g., SF12) offer a longer range but lower data speed. 

The choice of SF must be tailored to the specific needs of the 

application, balancing the need for longer range versus higher 

data speed. 

The combination of these technologies enables the 

development of efficient and reliable IoT systems for real-time 

monitoring of workers and environmental conditions in the 

mining industry. 

B. Compressive Sensing 

CS is a signal processing technique that enables 

simultaneous sampling and compression of data. The core 

principle of CS is that sparse signals in certain domains, such 

as frequency, can be represented with far fewer samples than 

required by conventional sampling theories like Nyquist-

Shannon [8]. This reduces the amount of data to be stored or 

transmitted without losing critical information. In IoT 

applications, particularly in resource-constrained environments 

like underground mines, CS helps save bandwidth and power, 

as well as real-time analysis. By integrating IoT technology, CS 

can be an effective solution for health and safety monitoring in 

underground mines, where extreme working environments 

require reliable and resource-efficient monitoring systems. 

However, the implementation of IoT in underground mines 

faces several challenges, including limited communication 

bandwidth, high power consumption of devices, and difficulties 

in managing the big data generated by sensors [5] [6]. This is 

where compressive sensing becomes relevant, as it allows for 

resource savings while maintaining the data accuracy required 

to monitor environmental conditions and worker health. CS in 

our scheme consists of three main stages: 

1. Compressed sampling: Data is captured in a transform 

domain with a random measurement matrix. The volume 

of data collected is much smaller compared to traditional 

sampling methods. 

2. Data Transmission: Compressed data requires less 

bandwidth, thus saving power and transmitting faster. 

3. Signal Reconstruction: Data received at the server is 

processed using algorithms such as basis pursuit or 

orthogonal matching pursuit (OMP). The original signal is 

reconstructed for further analysis. 

 

In the context of CS, Fast Fourier Transform (FFT) 

transforms signals from the time domain to the frequency 

domain, where they can be more sparsely represented [5]. This 

frequency representation is then compressed using CS. FFT 

enables faster and more efficient signal processing, making it 

essential for analyzing large and complex datasets. In 

underground mining health monitoring systems, FFT allows for 

the quick identification of significant changes, such as 

hazardous gas levels or sudden shifts in workers' heart rates. 

x(f) = FFT(x(t))          (1) 

x(f)  ∶ signal in frequency domain 

x(t)  ∶ signal in the time domain 

 

Gaussian and Bernoulli processes also play a role within CS 

frameworks, particularly in modeling and predicting sensor 

behavior. A Gaussian distribution is often used for its properties 

of simplicity and flexibility in modeling real-world data, 

making it a valuable tool for analyzing noise characteristics and 

variability in sensor signals. In this study, Gaussian noise 

models can be applied to simulate realistic conditions where 

sensor readings might be corrupted by environmental factors. 

By accounting for Gaussian noise, the accuracy and robustness 

of CS in processing health monitoring data are enhanced, 

making it possible to detect anomalies with greater reliability. 

A random Gaussian matrix has entries sampled from a Gaussian 

distribution: 

Φ𝑖𝑗 ∼ 𝒩 (0,
1

𝑀
) 

Where 𝒩 (0,
1

𝑀
) is a normal distribution with mean 0 and 

variance 1/M. 

On the other hand, a random Bernoulli matrix is a type of 

measurement matrix widely used in CS, where each element is 

independently sampled from a Bernoulli distribution. 

Typically, entries are either +1/M or +1/M with equal 

probability (0.5). Random Bernoulli matrices are particularly 

suitable for resource-constrained environments due to their low 

storage requirements and fast matrix-vector multiplications. 

OMP is a commonly used signal reconstruction algorithm. 

It reconstructs the original signal from compressed samples by 

selecting the atoms from a basis that best matches the observed 

signal [6]. OMP is known for its simplicity and strong 

performance in reconstructing sparse signals. In this study, 

OMP is used to reconstruct data from compressed sensor 

signals, ensuring that the integrity of health monitoring data is 

maintained. Data reconstruction in OMP involves matching 

between the observed signal and a sparse representation in the 

form: 

𝑦 = 𝚽𝑥 + 𝒆   (2) 

where y is the observation vector (measured signal) with 

dimension of m,  is the basis matrix or dictionary, x is the 



sparse coefficient vector (dimension of n), and e is the noise 

vector or measurement error. 

We can find the least squares solution using the selected 

atoms: 

𝑥𝑆𝑘+1
= arg min

𝑧
‖𝑦 − 𝚽𝑆𝑘+1

𝒛‖
2
 (3) 

 

Then calculate the new residual: 

𝑟𝑘+1 = 𝑦 − 𝚽𝑆𝑘+1
𝐱𝑆𝑘+1

    (4) 

 

r𝑘+1 is the residual at iteration k + 1, S is matrix 

constructed on the selected columns, and xS is coefficients of 

the signal representation.  

 

C. Thresholding 

We applied thresholding as a processing technique used to 

categorize data into specific groups [7]. In this monitoring 

system, the thresholding function is employed to classify sensor 

data into safe, alert, or danger categories. This technique 

enables the system to issue warnings or trigger automated 

actions in response to detected environmental conditions, 

enhancing the responsiveness to potential hazards in mining 

environments. By employing adaptive thresholding, the system 

can also adjust its sensitivity to varying conditions, providing 

more accurate and timely alerts based on real-time data 

fluctuations. This approach further reduces the likelihood of 

accidents by allowing for proactive safety measures. 

 

Figure 1. Sensor Value Thresholding 

III. METHOD   

Given the requirements which involve preventing and 
minimizing risks in underground mining, such as harmful 
temperatures and humidity levels, the risk of exposure to 
toxic gases like carbon monoxide, and the need for heart rate 
monitoring, the device is designed to monitor these 
underground conditions effectively. Utilizing methods like 
FFT and Gaussian or Bernoulli projection, the data is 
compressed and then reconstructed using OMP. This 
approach ensures that critical information regarding 
environmental conditions and health parameters is 
accurately captured and relayed.  

A. Networking 

The following figure depicts an IoT system with a star 

topology where some ESP32 connects to sensors sending data 

to LoRa transceiver that acts as a gateway, which then sends the 

data to the database for further storage and analysis. The system 

workflow is as follows: (1) Data is collected by sensors and 

compressed at the IoT node; (2) The compressed data is 

transmitted via a gateway to a server or cloud; (3) The server 

performs signal reconstruction and analysis to detect anomalies 

or hazardous conditions; and (4) Critical information is sent 

back to the mine operator for decision making. 
 

 

Figure 2. Overall System Flowchart 

 

Figure 3. Network Topology 

The image depicts the architecture of an IoT-based health 

monitoring system for underground mining, utilizing various 

components such as sensors, ESP32, LoRa transceiver, and data 

storage. ESP32 collects data from the sensors and sends it to the 

nearest LoRa transceiver. The data from the first LoRa 

transceiver is then transmitted to a second LoRa node, which 

may function as a gateway or base station. Firebase stores this 

data, making it accessible for real-time monitoring, analysis, 

and further actions if necessary. 

In this research, the process begins with data collection from 

various sensors, including the MQ7, DHT11, and MAX30102, 

which respectively detect carbon monoxide concentration, 

measure temperature and humidity, and monitor heart rate. The 

collected data is then transmitted via a LoRa network to the 

database.  

B. Compressive Sensing 

Compressive Sensing enables efficient data collection by 

reducing the number of required samples. This can overcome 

bandwidth limitations and optimize resource utilization. 

Compression algorithm development involves 2 main stages. 

Firstly, the selection of sparsifying matrix: FFT is  used in this 

study. Secondly, data projection in IoT nodes: simple random 

matrices such as Gaussian or Bernoulli matrices are used to 

ensure compression can be performed with minimal resources. 

The compression level is adjusted based on the sensitivity of 

the data (e.g., heart rate data has higher priority than humidity). 

The data acquisition method on the transmitter side using 

FFT allows IoT devices equipped with sensors such as DHT 



(for measuring temperature and humidity), MAX30102 (for 

monitoring health parameters like heart rate and blood oxygen 

levels), and MQ7 (for detecting carbon monoxide 

concentration) to continuously collect data. This raw data is 

then transformed using FFT to identify the dominant frequency 

coefficients. The FFT makes the data easier to analyze in terms 

of its coefficients, which can be very useful for detecting 

patterns and features that may not be visible in the time domain. 

After the transformation, the data is transmitted to the data 

processing center through the IoT network. 

 

Figure 4. Compressive Sensing Flowchart 

The data reconstruction method used on the receiver side is 

OMP. It is an efficient approach to integrating and managing 

data from various sensors. The data is then transmitted to the 

processing center through the IoT network. The OMP algorithm 

helps optimally identify patterns and anomalies in the data, 

enabling more accurate and real-time analysis. This analysis is 

used to make better and more responsive decisions in response 

to changes in environmental and health conditions, as well as to 

improve the overall efficiency and reliability of the IoT system. 

C. Application 

This research uses a prototype-based development method 

to design and build an application for monitoring and predicting 

hazardous conditions in mining environments. The research 

process was conducted in several stages, including system 

design, technology implementation, and application testing. 

The system design stage involves identifying the 

requirements for monitoring the mining environment, including 

determining the types of sensors to be used, selecting the data 

processing devices, and choosing the appropriate 

communication technology such as ESP32 and LoRa 

Transceiver. Additionally, this stage includes designing the 

system architecture that integrates the sensors, Firebase as the 

data storage solution, and the Flask framework as the web 

interface. 

In the implementation stage, sensors are connected to the 

ESP32 and LoRa Transceiver to facilitate data transmission. 

The real-time database is then configured to store and 

synchronize the sensor data in real-time. Furthermore, a user 

interface is developed using HTML to display the sensor data 

in an interactive dashboard, with Flask serving as the backend 

framework. 

IV. RESULTS AND DISCUSSION 

A. Network Testing 

This research conducted two tests with 1.6 km for LOS 

(Line of Sight). The first test was carried out from an elevated 

area to a lower elevation, simulating real-world conditions 

where LOS is maintained across varying terrains. The lower 

elevation helped evaluate the transmission performance in 

conditions where the receiver is at a lower altitude compared to 

the transmitter. 

The second test, NLOS (Non-Line of Sight), was conducted 

in a forested area known for its dense vegetation and rugged 

terrain. Specifically, the transmitter was placed inside 

subterranean structures, simulating underground mining 

environments, while the receiver was located outside the cave 

at 1 km. This setup was chosen to replicate the challenging 

conditions of mining sites, where signal propagation is affected 

by physical obstructions and materials with high attenuation 

properties, such as rock and soil. 

For the LOS test, the experiment was conducted over 1.6 

km, maintaining a clear LOS to assess the maximum 

transmission range and signal quality. The selection of a 

location with varying elevation and open spaces provided 

realistic insights into signal behavior in both urban and natural 

environments. 

Mine health and environmental monitoring involves 

measuring various parameters, i.e. hazardous gases like the 

concentration of carbon monoxide (CO) to prevent fire or 

explosion, environmental conditions such as temperature and 

humidity to detect significant environmental changes, and 

worker health such as heart rate, blood oxygen, and physical 

activity to ensure worker safety and health. 

Table 1 LoRa NLOS Test Result 

 
The Spreading Factor (SF) in a LoRa network significantly 

impacts various aspects of communication performance. When 

the SF is increased from SF7 to SF12, several notable changes 

occur. First, throughput drastically decreases from 164.84 bps 

at SF7 to 42.26 bps at SF12. Second, latency increases from 

9.41 seconds at SF7 to 12.92 seconds at SF12. However, the Bit 

Error Rate (BER) decreases from 0.9% at SF7 to 0.1% at SF12, 

indicating that the bit error rate is reduced. Additionally, the 

Signal-to-Noise Ratio (SNR) decreases from 6.28 dB to 4.01 

dB. Overall, increasing SF improves communication reliability 

in poor signal conditions but at the expense of data transmission 

efficiency and speed. 

For the NLOS test, we conducted the experiment in the 

caves located in Bandung, Indonesia. In this test, we performed 

two measurements, one with SF 7 and the other with SF 12. The 

average measurement results are as follows. 

Table 2 LoRa LOS Test Result 1  

 

Max Min Average

SF7 1.6 -46 -114 -89,6 6.28 164.84 9.41 0.9

SF12 1.6 -37 -126 -90,5 4.01 42.26 12.92 0.1

SNR 

(dB)

Throughput 

(bps) 

Latency 

(s) 

BER 

(%) 

RSSI (dBm)Spreading 

Factor 

Distance 

(Km)



 The change from SF7 to SF12 has several significant 

impacts. Increasing the SF from 7 to 12 results in lower 

throughput, dropping from 36.83 bps to 5.58 bps. Additionally, 

latency nearly doubles, increasing from 18.07 seconds at SF7 

to 34.5 seconds at SF12. The SNR drops from 6.73 dB to 1.22 

dB, indicating more interference in the signal. The BER also 

increases from 0.08% at SF7 to 0.46% at SF12. Overall, 

increasing SF enhances the range and reliability of 

communication in poor signal conditions but reduces data 

transmission efficiency and speed. 

B. Compressive Sensing Testing 

Here are the results of the compressive sensing test results. 

 

 

Figure 5 Test Results of Compressive Sensing Temperature 

 

Figure 6 Test Results of Compressive Sensing Humidity 

 

Figure 7 Test Results of Compressive Sensing CO 

Concentration 

 

Figure 8 Test Results of Compressive Sensing Board2 Heart 

rate 

 

Figure 9 Test Results of Compressive Sensing Board3 Heart 

rate 

Implementing Compressive Sensing techniques using the 

OMP algorithm on data collected from DHT11, MQ7, and 

MAX30102 sensors. The processes of measurement, 

compression, and signal reconstruction are carried out 

systematically and efficiently. The reconstruction results show 

that the OMP algorithm can reconstruct the original signal with 

adequate accuracy, allowing for savings in data storage and 

transmission, as well as improving the overall performance of 

the sensor system. The following RMSE (Root Mean Square 

Error) and MAPE (Mean Absolute Percentage Error) values are 

presented.  

Table 3 RMSE and MAPE Value for Various Measurement 

Matrices 

Sensor Random Gaussian Random Bernoulli 

RMSE MAPE (%) RMSE MAPE (%) 

Humidity 4.84 4.7 4.05 3.8 

MQ7 1.05 6.13 2.1 5.2 

Temperature 1.63 5.6 3.7 4.8 

Heartrate Board 2 5.12 5.86 4.2 5.17 

Heartrate Board 3 5.43 5.5 3.6 4.8 

 

The table summarizes the performance of various sensors in 

terms of RMSE and MAPE. The MQ7 sensor, used for 

measuring CO levels, shows the lowest RMSE (1.05) but has 

the highest MAPE (6.13%), indicating that while the absolute 

error is low, the percentage error relative to the measured values 

is higher. The temperature sensor displays moderate RMSE 

(1.63) and MAPE (5.6%), suggesting balanced accuracy. The 

humidity sensor, with an RMSE of 4.84 and a MAPE of 4.7%, 

indicates a relatively higher absolute error but maintains a 

lower percentage error. The heart rate sensors (Board 2 and 

Board 3) exhibit similar performance, with RMSE values of 

5.12 and 5.43, and MAPE values of 5.86% and 5.5%, 

respectively. Overall, the sensors demonstrate varying levels of 

accuracy, with the MQ7 sensor showing the best absolute error 

but the most significant percentage error. 

We performed calculations to measure data compression 

efficiency during the acquisition process. First, we set a 

measurement rate of 5%. This measurement rate is calculated 

using a formula that measures the percentage of output 

coefficients from the acquisition process compared to the total 

number of input samples. The result indicates that only 5% of 

the input samples are required to represent the data in output 

form, demonstrating high efficiency in the sampling process. 

 

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒 =
C

S
 𝑥 100 %  (3) 

C =  samples from the acquisition process output 
          𝑆 = samples from the acquisition process input
 
       Additionally, we conducted signal reconstruction analysis 
using the OMP method. From this reconstruction process, we 
achieved a highly significant compression ratio of 0.05. This 
compression ratio means that the reconstructed signal only 
requires 5% of the components present in the original signal to 
represent the same information. This indicates that the original 
signal contains a substantial amount of redundancy, which can 
be eliminated without losing critical information. 



𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 =
𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑧𝑒

𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑧𝑒
 (4) 

 

IoT systems based on CS show significant reduction in data 

volume. Comparison between traditional sampling methods 

and CS shows that compressed data has an average size of 60–

70% smaller. Also, communication bandwidth usage is reduced 

by up to 50%, even in poor transmission conditions such as 

mines with signal obstructions or NLOS. 

C. Application Testing 

We develop a monitoring and prediction system for 

hazardous conditions in mining environments by utilizing 

various technologies, such as Firebase, Flask, and HTML Web 

App. The web application developed using HTML, CSS, and 

JavaScript allows users to view sensor data in real-time. Data 

from the MQ7, DHT11, and MAX30102 sensors are visualized 

in graphs and tables that are easy to understand. This 

application is designed to facilitate users in monitoring 

environmental conditions and making decisions based on the 

available data. 

 

Figure 10 Web App Interface 

The data retrieval speed from database was differently 

tested using the syntax “time_taken = end_time - start_time”, 

which calculates the time between the data request and data 

reception. The test results showed that the average time to 

retrieve data from Firebase is approximately 287 ms. This speed 

is crucial for applications that rely on real-time sensor data, 

ensuring that the system can respond to environmental changes 

in a timely manner. 

Table 4 Response Time Test Result 

Parameter Definition Test Results 

Compression rate MR for successful 

reconstruction 

50-60% 

Latency Mean retrieval time 0.29 sec 

Reconstruction 

accuracy 

MAPE 0.047 

V. CONCLUSION AND FUTURE WORK 

The integration of IoT technology with compressive 

sensing has proven to be an innovative solution for safety 

monitoring in underground mines. This technology overcomes 

key challenges such as bandwidth limitations, device power 

consumption, and extreme environmental conditions. By 

utilizing CS, data from multiple sensors can be efficiently 

compressed before being transmitted, reducing data 

transmission requirements without sacrificing accuracy. 

In LOS conditions, the SF significantly impacts 

communication performance. At SF7, the average SNR 6.28 

dB, and latency was 9.41 seconds. In contrast, SF12 showed 

slightly lower SNR at 4.01 dB, and increased latency to 12.92 

seconds. Increasing SF from 7 to 12 enhances communication 

reliability but sacrifices data transmission efficiency and speed. 

Overall, SF7 is more effective for applications requiring fast 

data transmission and strong signals in NLOS scenarios. 

The results indicate that the CS method with OMP 

effectively reconstructs signals close to the original, though 

performance varies by sensor type. Overall, CS demonstrates 

great potential for enhancing the efficiency of IoT systems in 

resource-constrained environments like underground mines.  

To enhance system performance and reliability, the next 

phase of research should implement mesh networking and 

scheduling techniques. Mesh networking ensures scalability 

and robustness, maintaining continuous data flow even if some 

nodes fail. Together, these strategies will create a more 

efficient, reliable, and scalable IoT system, ensuring timely and 

efficient data transmission. The future implementation 

challenges may include the use of ruggedized sensors for 

environmental protection, adaptive sensing based on signal 

dynamics, and pre-determined sensing matrices to avoid 

repeated transmission of CS parameters. 
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