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Abstract— In the manufacturing industry, the environment
for collecting sensor data has expanded through Industry 4.0,
but labeling is difficult, and there is relatively little faulty data,
making it challenging to apply conventional supervised
learning-based anomaly detection methods. Specifically,
anomalies that occur in sensor data with cyclic patterns are
difficult to detect with traditional methods. This study proposes
an unsupervised anomaly detection approach using contrastive
learning to address these challenges. The method segments
sensor data based on cyclic patterns, which are identified
through autocorrelation coefficients. Fast Fourier transform
(FFT) is then applied to focus on low-frequency bands where
anomalies frequently occur. The model learns normal and
abnormal behaviors by comparing similar and dissimilar data
segments without relying on labeled data. Experimental results
show that cyclic pattern-based anomaly detection is effective for
anomaly detection in manufacturing environments and could be
useful for real-time monitoring.
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I. INTRODUCTION

The manufacturing industry is undergoing significant
transformation through the implementation of Industry 4.0,
which drives digital transformation (DX) with advanced
technologies such as smart factories, the Internet of Things
(IoT), Artificial Intelligence (AI), and big data analytics.
These advancements are facilitating automation and
enhancing operational efficiency, with a strong emphasis on
real-time data collection from various sensors embedded in
production systems [1]. Such sensor data, including critical
information like power, current, and energy consumption, is
collected in time-series format and plays a key role in
monitoring machine health, identifying operational anomalies,
and improving overall process efficiency.

Among the various applications of time-series data,
anomaly detection is crucial for predictive maintenance, as it
enables the identification of potential equipment failures
before they lead to system downtime [2]. Time-series data is
inherently variable, and detecting abnormal patterns or signs
of impending failures is essential for effective decision-
making in manufacturing environments. Timely anomaly
detection helps manufacturers minimize downtime, reduce
maintenance costs, and maintain consistent product quality

[3].
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Despite its critical importance, anomaly detection in
manufacturing faces several challenges that must be addressed
to fully leverage its potential benefits. While normal data is
abundant, labeled anomaly data is severely limited, making it
difficult to accurately detect and classify anomalies.
Manufacturing processes often exhibit repetitive patterns and
noisy data, which complicates the task of distinguishing
between normal fluctuations and actual anomalies.
Additionally, labeling data is not only costly but also labor-
intensive, making it challenging to apply in real-world
environments. Moreover, aside from experimental data,
anomaly data is significantly scarce in practice. Therefore,
developing advanced anomaly detection methods based on
unsupervised learning that can operate effectively in
environments with limited or no labeled data is essential.

While methods like sliding windows and fast Fourier
transform (FFT) have been widely used for feature extraction,
they face significant limitations in capturing the intricate
periodic behaviors and complex interactions typical in
manufacturing systems. These limitations highlight the need
for an alternative approach, such as pattern-based learning,
which can better represent the unique characteristics of
manufacturing data. One of the key challenges is the difficulty
of accurately capturing periodicity and variability in the data
[4]. To address these limitations, pattern-based learning offers
a promising approach to better represent the unique
characteristics of manufacturing data.

This paper proposes a novel anomaly detection method
focused on pattern-based learning. The proposed method aims
to minimize information loss, reduce computational costs, and
more effectively capture the periodic characteristics of
manufacturing processes. A key innovation of this approach is
the utilization of contrastive learning, which enables
unsupervised learning in the absence of labeled data. This
allows the method to effectively detect anomalies even in
environments where labeled anomaly data is scarce.

As shown in Figure 1, the sensor data collected from
equipment under normal operation (a) contrasts with the data
obtained just before failure (b), where abnormal behavior
starts to emerge. These patterns suggest that, as the equipment
nears failure, the operational patterns change, and abnormal
data is increasingly observed. Identifying these abnormal
patterns in advance is crucial for implementing predictive
maintenance. By capturing these anomalies early,
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(a) Normal State

(b) Abnormal State

Fig. 1 Time-series data of equipment

maintenance actions can be taken to prevent failures and avoid
unplanned downtime.

The ability to detect abnormal data patterns before
equipment failure is critical for maintaining and optimizing
manufacturing systems. Predictive maintenance not only
prevents system failures but also ensures production quality
and efficiency. Since sensor data inherently reflects machinery
operations, recurring patterns in the data can provide valuable
insights into the status and behavior of equipment. By
effectively learning these patterns, abnormalities can be
detected early, enabling timely interventions that prevent
unplanned breakdowns and reduce operational downtime. To
achieve this, cyclic pattern-based analysis is essential. By
segmenting time-series data into cycles, early warning signs
of equipment anomalies can be identified, ensuring that
equipment remains in optimal working condition and
productivity is maximized.

To address these challenges, the proposed method
introduces the following key contributions:

] Cyclic Pattern-based Learning: Moving beyond
traditional sliding window methods, the data is
segmented into cycles based on repeating patterns.
This better captures the periodic characteristics of
manufacturing processes.

] Minimized Information Loss: The combination of
FFT processing and contrastive learning minimizes
information loss and efficiently handles data with

varying cycle lengths.
] Contrastive Learning: This approach learns
meaningful representations of normal data,

enabling robust unsupervised anomaly detection
with limited labeled data.

The proposed methodology enables unsupervised learning
even in the absence of labeled data, making it highly effective
in environments with limited labeled examples. The
integration of contrastive learning and FFT-based feature
extraction allows for more accurate and efficient anomaly
detection in complex and dynamic manufacturing
environments. In particular, contrastive learning is especially
useful when labeled data is scarce, providing a robust solution
for anomaly detection in real-world manufacturing processes.
This paper aims to address the challenges of anomaly
detection in manufacturing by introducing a novel method that
combines cyclic pattern-based learning, FFT processing, and
contrastive learning. This approach ensures accurate anomaly
detection in complex and dynamic manufacturing
environments, even when labeled data is scarce. This paper
introduces a novel anomaly detection method that combines
cyclic pattern-based learning, FFT processing, and contrastive
learning to address the challenges of detecting anomalies in
manufacturing environments.

II. METHODOLOGY

The framework of the proposed methodology is
illustrated in Fig. 2.

A. Problem Definition

In this study, the sensor data collected for anomaly
detection is univariate time series data, represented as X =
[x1, %5, ..., x7] € RT, where T denotes the total length of the
time series. Anomaly detection in this context aims to identify
abnormal behavior by learning from the patterns of normal
operating conditions. Since the data does not contain labels for
anomalies, this paper focuses on unsupervised anomaly
detection using cyclic pattern-based segmentation and
contrastive learning. The exact time when the anomaly
occurred is unknown, and the data collection interrupted due
to an equipment anomaly. Therefore, the initial part of the data
is assumed to be normal, and the latter part is assumed to be
anomalous. This assumption enables the application of
unsupervised learning methods. The goal is to detect
deviations in the system’s behavior by leveraging the inherent
periodicity in the time series and optimizing representations of
the data using a vector space approach.

B. Cycle Segmentation using Autocorrelation

To capture the periodic patterns in the time series data,
autocorrelation is employed to identify the periodicity [5].
Autocorrelation measures the similarity between a time series
and its lagged version, helping to identify repetitive cycles in
the data. The cycle boundaries are then determined based on
the significant peaks in the autocorrelation function. The
autocorrelation formula is defined as follows:

T—k,. _ _
ACF (k) = Bt Dot l) (1)

Where ACF (k) is the autocorrelation at lag k, x, is
represents the time-series data at time ¢, p is the mean of the
data, T is the length of the time series.

By examining the autocorrelation function, the time series
is divided into meaningful cycles, where similar patterns
repeat over time.

C. FFT Processing for Cycle Segmentation

Once the data is segmented into cycles, ttttt is applied to
convert the time-domain signals into the frequency domain.
FFT is particularly useful in detecting anomalies in low-
frequency bands, as equipment anomalies often manifest in
specific frequency ranges. The length of the cycle [ is adjusted
based on the frequency characteristics of the data. The FFT
formula is given by follows:

{-Vz_ol xte—iZTL'ft/N (2)

X(f) =
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Fig. 2 Proposed Framework

Where X (f) is the frequency-domain representation, X, is
the time-series data at time t, N is the number of data points,
f is the frequency.

By applying FFT to each segmented cycle, the frequency
components are extracted, with particular focus on low-
frequency components that correspond to equipment failures
or anomalies.

D. Contrastive Learning for Feature Extraction

After obtaining the frequency-domain representation via
FFT, contrastive learning [6] is used to extract discriminative
features. Contrastive learning enables the model to distinguish
between normal and anomalous cycles without relying on
labeled data [7].

In typical contrastive learning, data augmentation is
commonly performed to create positive and negative pairs.
However, in Ts2vec [8], augmentation is not applied. Instead,
overlapping windows are treated as positive pairs, meaning
that adjacent cycles in time are paired together as positive
examples for the contrastive learning process.

This approach constructs positive pairs by minimizing the
distance between similar samples (e.g., normal cycles that are
adjacent in time) and negative pairs by maximizing the
distance between dissimilar samples (e.g., anomalous cycles
or non-adjacent cycles). The model learns to map adjacent
data to similar representations and distant data to separate
representations. Cosine similarity is used to measure the
similarity between two vectors, where higher values indicate
similarity and lower values indicate dissimilarity.

The cosine similarity between two vectors x and y is
defined as follows:

_ xy
SCY) = Ll (3)

The contrastive loss function can be defined as follows:

1 1
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Where y is the label (0 for adjacent, 1 for non-adjacent), S
is the cosine similarity between the feature vectors of the two

samples, and m is the margin that defines the minimum
distance for non-adjacent pairs.

This step allows the model to learn representations that
effectively capture both normal and anomalous behaviors,
even in the absence of explicit labels.

E. Anomaly Detection

Finally, the features (latent vectors) extracted from the
contrastive learning step are used for anomaly detection [9]. In
contrastive learning, time-adjacent data are learned to have
similar embeddings, while time-distant data are learned to be
separated. It can be assumed that the data showing anomalies
is farther from the initial normal pattern and closer to the
anomalous patterns. The point of failure may occur when there
is a sharp increase in the embedding difference between the
normal and anomalous patterns, and if the model is trained
correctly, it should be able to detect these sharp changes.
Additionally, when anomalous data appears, multiple
anomalous patterns may tend to cluster in similar directions in
the embedding space. The model learns these anomalous
patterns and can infer the point of failure. If the model has been
trained well, time-adjacent normal samples should be mapped
to close embeddings, and anomalous cases should be learned
to be sufficiently far from the normal pattern.

The anomaly detection process starts with the assumption
that the initial normal pattern, learned through contrastive
learning, represents the typical behavior of the system. After
training is completed, the learned representations of new test
samples are compared with this normal pattern. The anomaly
score is calculated by measuring the distance between the
feature vector of the test sample and the initial normal
representation.

The anomaly score (score) for each test sample is
calculated as the Euclidean distance between the test sample’s
feature vector X, and the learned feature representation of the
initial normal pattern X,:

Score = [|x; — %l ®)

After the anomaly score (score) is calculated, the threshold
is set based on the distribution of the dataset assumed to be
normal, which helps in distinguishing between normal and
anomalous data. If the anomaly scores of normal samples
mostly fall within a certain range, the threshold is set within



TABLE L

PILOT EXPERIMENTAL RESULTS

RAW Cycle
DATASET Precision Recall F1-Score Precision Recall F1-Score
ECG5000 0.868 0.994 0.927 0.893 0.912 0.902
ECGFiveDays 0.923 0.755 0.831 0.837 0.832 0.834

that range. Any anomaly score that exceeds the threshold is
classified as anomalous, while scores below the threshold are
classified as normal.

III. EXPERIMENTS

A. Dataset

In this study, we aim to develop a cyclic pattern-based
anomaly detection model for manufacturing processes. Since
no benchmark datasets exist for manufacturing data that are
both labeled and exhibit periodicity, a key characteristic of
manufacturing processes, we selected ECG datasets for the
experiments. These datasets were chosen due to their labeled
nature and periodic characteristics, which resemble the
periodic patterns found in manufacturing processes.

The ECGS5000 dataset, derived from the MIT-BIH
Arrhythmia Database, contains 5000 ECG signals in time-
series format, labeled into five classes: one normal class and
four abnormal classes. Similarly, the ECGFiveDays dataset,
provided by the UCR Time Series Classification Archive,
consists of 884 samples, labeled into two classes: normal and
abnormal. Both datasets exhibit periodic patterns in heart
rhythms, making them suitable for evaluating the proposed
cyclic pattern-based anomaly detection methodology.

By using these ECG datasets, which share similar periodic
characteristics with manufacturing processes, we can
effectively assess the model’s ability to detect anomalies
based on cyclical behavior in data.

B. Evaluation metric

The performance of anomaly prediction was evaluated
using three metrics: Precision, Recall, and F1-Score. These
metrics were calculated using the following equations, as
shown in the formulas:

Precision is calculated as:

Precision = —— 6)
TP+FP
Recall is calculated as:
Recall = —= 7
TP+FN

F1-Score is calculated as:

Precisi Recall
F1 — Score = 2 X Tecision X Reca, (8)

Precision + Recall

C. Result

A pilot experiment was conducted to verify the feasibility
of cyclic pattern-based anomaly detection. In this experiment,
segments separated based on the cyclic pattern-based
approach were used to train an autoencoder and reconstruct

the data. The evaluation was performed using dynamic time
warping (DTW)-based labeled values, and the performance
metrics (Precision, Recall, F1-score) were calculated based
on the formulas outlined in section B: evaluation metrics. The
results, as shown in table I, demonstrate that the performance
achieved with this method is comparable to models trained
with labeled data. Specifically, for the ECG5000 dataset, the
cyclic pattern-based approach achieved 0.893 precision,
0.912 recall, and 0.902 Fl-score, which is similar to the
performance of the raw method. Similarly, for the
ECGFiveDays dataset, the cyclic pattern-based approach
achieved 0.837 precision, 0.832 recall, and 0.834 Fl-score,
showing significant improvement over the raw method. These
results confirm that cyclic pattern-based anomaly detection is
indeed feasible.

IV. CONCULSION

This study presents a novel methodology for cyclic
pattern-based anomaly detection in manufacturing processes.
In real industrial environments, sensor data often exhibits
variability due to external environmental changes and
equipment anomalies, making accurate anomaly detection a
critical challenge. To address this, the study proposes
segmenting the data into cycles and accurately detecting
recurring patterns through autocorrelation. The features
extracted during this process are then effectively learned using
contrastive learning, aiding in the detection of abnormal
patterns.

The proposed methodology provides an effective solution
for real-world environments where anomaly data is
imbalanced and labeled data is scarce. While experiments
were conducted using ECG data, further experiments with
real-world manufacturing datasets are necessary to evaluate
the model’s applicability in more practical scenarios. Future
work will focus on applying cyclic pattern-based anomaly
detection to manufacturing processes, allowing for the
tracking of anomalies occurring during the production of
products or components. By linking these insights with quality
data, it will be possible to improve both process efficiency and
final product quality.

Future work will focus on applying cyclic pattern-based
anomaly detection to manufacturing processes, allowing for
the tracking of anomalies occurring during the production of
products or components. In this context, soft contrastive
techniques will be applied in the pair construction process,
enabling more flexible definitions of positive pairs and
negative pairs [10]. This will help improve the model's ability
to detect anomalies more effectively. By linking these insights
with quality data, it will be possible to enhance both process
efficiency and final product quality.

Additionally, the computational complexity of the model
will be evaluated, with a focus on analyzing the efficiency of



the cyclic pattern-based anomaly detection method in real-
world environments. In such environments, where the scale of
data and detection speed are crucial, a detailed assessment of
the model’s computational cost will ensure its feasibility for
large-scale deployment. This will help establish the model’s
accuracy and efficiency for practical applications in
manufacturing processes.
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