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Abstract— In the manufacturing industry, the environment 

for collecting sensor data has expanded through Industry 4.0, 

but labeling is difficult, and there is relatively little faulty data, 

making it challenging to apply conventional supervised 

learning-based anomaly detection methods. Specifically, 

anomalies that occur in sensor data with cyclic patterns are 

difficult to detect with traditional methods. This study proposes 

an unsupervised anomaly detection approach using contrastive 

learning to address these challenges. The method segments 

sensor data based on cyclic patterns, which are identified 

through autocorrelation coefficients. Fast Fourier transform 

(FFT) is then applied to focus on low-frequency bands where 

anomalies frequently occur. The model learns normal and 

abnormal behaviors by comparing similar and dissimilar data 

segments without relying on labeled data. Experimental results 

show that cyclic pattern-based anomaly detection is effective for 

anomaly detection in manufacturing environments and could be 

useful for real-time monitoring. 
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I. INTRODUCTION 

The manufacturing industry is undergoing significant 
transformation through the implementation of Industry 4.0, 
which drives digital transformation (DX) with advanced 
technologies such as smart factories, the Internet of Things 
(IoT), Artificial Intelligence (AI), and big data analytics. 
These advancements are facilitating automation and 
enhancing operational efficiency, with a strong emphasis on 
real-time data collection from various sensors embedded in 
production systems [1]. Such sensor data, including critical 
information like power, current, and energy consumption, is 
collected in time-series format and plays a key role in 
monitoring machine health, identifying operational anomalies, 
and improving overall process efficiency. 

Among the various applications of time-series data, 
anomaly detection is crucial for predictive maintenance, as it 
enables the identification of potential equipment failures 
before they lead to system downtime [2]. Time-series data is 
inherently variable, and detecting abnormal patterns or signs 
of impending failures is essential for effective decision-
making in manufacturing environments. Timely anomaly 
detection helps manufacturers minimize downtime, reduce 
maintenance costs, and maintain consistent product quality 
[3]. 

Despite its critical importance, anomaly detection in 
manufacturing faces several challenges that must be addressed 
to fully leverage its potential benefits. While normal data is 
abundant, labeled anomaly data is severely limited, making it 
difficult to accurately detect and classify anomalies. 
Manufacturing processes often exhibit repetitive patterns and 
noisy data, which complicates the task of distinguishing 
between normal fluctuations and actual anomalies. 
Additionally, labeling data is not only costly but also labor-
intensive, making it challenging to apply in real-world 
environments. Moreover, aside from experimental data, 
anomaly data is significantly scarce in practice. Therefore, 
developing advanced anomaly detection methods based on 
unsupervised learning that can operate effectively in 
environments with limited or no labeled data is essential. 

While methods like sliding windows and fast Fourier 
transform (FFT) have been widely used for feature extraction, 
they face significant limitations in capturing the intricate 
periodic behaviors and complex interactions typical in 
manufacturing systems. These limitations highlight the need 
for an alternative approach, such as pattern-based learning, 
which can better represent the unique characteristics of 
manufacturing data. One of the key challenges is the difficulty 
of accurately capturing periodicity and variability in the data 
[4]. To address these limitations, pattern-based learning offers 
a promising approach to better represent the unique 
characteristics of manufacturing data. 

This paper proposes a novel anomaly detection method 
focused on pattern-based learning. The proposed method aims 
to minimize information loss, reduce computational costs, and 
more effectively capture the periodic characteristics of 
manufacturing processes. A key innovation of this approach is 
the utilization of contrastive learning, which enables 
unsupervised learning in the absence of labeled data. This 
allows the method to effectively detect anomalies even in 
environments where labeled anomaly data is scarce. 

As shown in Figure 1, the sensor data collected from 
equipment under normal operation (a) contrasts with the data 
obtained just before failure (b), where abnormal behavior 
starts to emerge. These patterns suggest that, as the equipment 
nears failure, the operational patterns change, and abnormal 
data is increasingly observed. Identifying these abnormal 
patterns in advance is crucial for implementing predictive 
maintenance. By capturing these anomalies early, 
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maintenance actions can be taken to prevent failures and avoid 
unplanned downtime. 

The ability to detect abnormal data patterns before 
equipment failure is critical for maintaining and optimizing 
manufacturing systems. Predictive maintenance not only 
prevents system failures but also ensures production quality 
and efficiency. Since sensor data inherently reflects machinery 
operations, recurring patterns in the data can provide valuable 
insights into the status and behavior of equipment. By 
effectively learning these patterns, abnormalities can be 
detected early, enabling timely interventions that prevent 
unplanned breakdowns and reduce operational downtime. To 
achieve this, cyclic pattern-based analysis is essential. By 
segmenting time-series data into cycles, early warning signs 
of equipment anomalies can be identified, ensuring that 
equipment remains in optimal working condition and 
productivity is maximized. 

To address these challenges, the proposed method 
introduces the following key contributions: 

 Cyclic Pattern-based Learning: Moving beyond 
traditional sliding window methods, the data is 
segmented into cycles based on repeating patterns. 
This better captures the periodic characteristics of 
manufacturing processes. 

 Minimized Information Loss: The combination of 
FFT processing and contrastive learning minimizes 
information loss and efficiently handles data with 
varying cycle lengths. 

 Contrastive Learning: This approach learns 
meaningful representations of normal data, 
enabling robust unsupervised anomaly detection 
with limited labeled data. 

The proposed methodology enables unsupervised learning 
even in the absence of labeled data, making it highly effective 
in environments with limited labeled examples. The 
integration of contrastive learning and FFT-based feature 
extraction allows for more accurate and efficient anomaly 
detection in complex and dynamic manufacturing 
environments. In particular, contrastive learning is especially 
useful when labeled data is scarce, providing a robust solution 
for anomaly detection in real-world manufacturing processes. 
This paper aims to address the challenges of anomaly 
detection in manufacturing by introducing a novel method that 
combines cyclic pattern-based learning, FFT processing, and 
contrastive learning. This approach ensures accurate anomaly 
detection in complex and dynamic manufacturing 
environments, even when labeled data is scarce. This paper 
introduces a novel anomaly detection method that combines 
cyclic pattern-based learning, FFT processing, and contrastive 
learning to address the challenges of detecting anomalies in 
manufacturing environments. 

II. METHODOLOGY 

The framework of the proposed methodology is 

illustrated in Fig. 2. 

A. Problem Definition 

In this study, the sensor data collected for anomaly 
detection is univariate time series data, represented as � �
���, ��, … , �	
 ∈ ℝ	, where 
 denotes the total length of the 
time series. Anomaly detection in this context aims to identify 
abnormal behavior by learning from the patterns of normal 
operating conditions. Since the data does not contain labels for 
anomalies, this paper focuses on unsupervised anomaly 
detection using cyclic pattern-based segmentation and 
contrastive learning. The exact time when the anomaly 
occurred is unknown, and the data collection interrupted due 
to an equipment anomaly. Therefore, the initial part of the data 
is assumed to be normal, and the latter part is assumed to be 
anomalous. This assumption enables the application of 
unsupervised learning methods. The goal is to detect 
deviations in the system’s behavior by leveraging the inherent 
periodicity in the time series and optimizing representations of 
the data using a vector space approach. 

B. Cycle Segmentation using Autocorrelation 

To capture the periodic patterns in the time series data, 
autocorrelation is employed to identify the periodicity [5]. 
Autocorrelation measures the similarity between a time series 
and its lagged version, helping to identify repetitive cycles in 
the data. The cycle boundaries are then determined based on 
the significant peaks in the autocorrelation function. The 
autocorrelation formula is defined as follows: 

 ������ �  
∑ ��� � �������� �����
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 (1)  

Where ������  is the autocorrelation at lag � , �!  is 
represents the time-series data at time ", # is the mean of the 
data, 
 is the length of the time series. 

By examining the autocorrelation function, the time series 
is divided into meaningful cycles, where similar patterns 
repeat over time. 

C. FFT Processing for Cycle Segmentation 

Once the data is segmented into cycles, ttttt is applied to 
convert the time-domain signals into the frequency domain. 
FFT is particularly useful in detecting anomalies in low-
frequency bands, as equipment anomalies often manifest in 
specific frequency ranges. The length of the cycle $ is adjusted 
based on the frequency characteristics of the data. The FFT 
formula is given by follows: 

 %�&� �  ∑ �!'�(�)*!/,,��
!-.  (2)  
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Where %�&� is the frequency-domain representation, �! is 
the time-series data at time ", / is the number of data points, 
& is the frequency. 

By applying FFT to each segmented cycle, the frequency 
components are extracted, with particular focus on low-
frequency components that correspond to equipment failures 
or anomalies. 

D. Contrastive Learning for Feature Extraction 

After obtaining the frequency-domain representation via 
FFT, contrastive learning [6] is used to extract discriminative 
features. Contrastive learning enables the model to distinguish 
between normal and anomalous cycles without relying on 
labeled data [7]. 

In typical contrastive learning, data augmentation is 
commonly performed to create positive and negative pairs. 
However, in Ts2vec [8], augmentation is not applied. Instead, 
overlapping windows are treated as positive pairs, meaning 
that adjacent cycles in time are paired together as positive 
examples for the contrastive learning process. 

This approach constructs positive pairs by minimizing the 
distance between similar samples (e.g., normal cycles that are 
adjacent in time) and negative pairs by maximizing the 
distance between dissimilar samples (e.g., anomalous cycles 
or non-adjacent cycles). The model learns to map adjacent 
data to similar representations and distant data to separate 
representations. Cosine similarity is used to measure the 
similarity between two vectors, where higher values indicate 
similarity and lower values indicate dissimilarity. 

The cosine similarity between two vectors x and y is 
defined as follows: 

 0��, 1� �  
� ∙3

‖�‖‖3‖
 (3)  

The contrastive loss function can be defined as follows: 
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Where y is the label (0 for adjacent, 1 for non-adjacent), S 
is the cosine similarity between the feature vectors of the two 

samples, and m is the margin that defines the minimum 
distance for non-adjacent pairs. 

This step allows the model to learn representations that 
effectively capture both normal and anomalous behaviors, 
even in the absence of explicit labels. 

E. Anomaly Detection 

Finally, the features (latent vectors) extracted from the 
contrastive learning step are used for anomaly detection [9]. In 
contrastive learning, time-adjacent data are learned to have 
similar embeddings, while time-distant data are learned to be 
separated. It can be assumed that the data showing anomalies 
is farther from the initial normal pattern and closer to the 
anomalous patterns. The point of failure may occur when there 
is a sharp increase in the embedding difference between the 
normal and anomalous patterns, and if the model is trained 
correctly, it should be able to detect these sharp changes. 
Additionally, when anomalous data appears, multiple 
anomalous patterns may tend to cluster in similar directions in 
the embedding space. The model learns these anomalous 
patterns and can infer the point of failure. If the model has been 
trained well, time-adjacent normal samples should be mapped 
to close embeddings, and anomalous cases should be learned 
to be sufficiently far from the normal pattern. 

The anomaly detection process starts with the assumption 
that the initial normal pattern, learned through contrastive 
learning, represents the typical behavior of the system. After 
training is completed, the learned representations of new test 
samples are compared with this normal pattern. The anomaly 
score is calculated by measuring the distance between the 
feature vector of the test sample and the initial normal 
representation. 

The anomaly score (score) for each test sample is 
calculated as the Euclidean distance between the test sample’s 
feature vector  �F! and the learned feature representation of the 
initial normal pattern �F.: 

 0GHI' �  ‖�! ?  �F.‖ (5)   

After the anomaly score (score) is calculated, the threshold 
is set based on the distribution of the dataset assumed to be 
normal, which helps in distinguishing between normal and 
anomalous data. If the anomaly scores of normal samples 
mostly fall within a certain range, the threshold is set within 
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that range. Any anomaly score that exceeds the threshold is 
classified as anomalous, while scores below the threshold are 
classified as normal. 

III. EXPERIMENTS 

A. Dataset 

In this study, we aim to develop a cyclic pattern-based 
anomaly detection model for manufacturing processes. Since 
no benchmark datasets exist for manufacturing data that are 
both labeled and exhibit periodicity, a key characteristic of 
manufacturing processes, we selected ECG datasets for the 
experiments. These datasets were chosen due to their labeled 
nature and periodic characteristics, which resemble the 
periodic patterns found in manufacturing processes. 

The ECG5000 dataset, derived from the MIT-BIH 
Arrhythmia Database, contains 5000 ECG signals in time-
series format, labeled into five classes: one normal class and 
four abnormal classes. Similarly, the ECGFiveDays dataset, 
provided by the UCR Time Series Classification Archive, 
consists of 884 samples, labeled into two classes: normal and 
abnormal. Both datasets exhibit periodic patterns in heart 
rhythms, making them suitable for evaluating the proposed 
cyclic pattern-based anomaly detection methodology. 

By using these ECG datasets, which share similar periodic 
characteristics with manufacturing processes, we can 
effectively assess the model’s ability to detect anomalies 
based on cyclical behavior in data. 

 

B. Evaluation metric 

The performance of anomaly prediction was evaluated 
using three metrics: Precision, Recall, and F1-Score. These 
metrics were calculated using the following equations, as 
shown in the formulas: 

Precision is calculated as: 

 JI'GKLKHM �  
	N

	NOPN
 (6) 

Recall is calculated as: 

 Q'GR$$ �   
	N

	NOP,
 (7) 

F1-Score is calculated as: 

 �1 ? 0GHI' �  2 ×
N9=6(;(78 × U=6:VV

N9=6(;(78 O U=6:VV
 (8) 

C. Result 

A pilot experiment was conducted to verify the feasibility 

of cyclic pattern-based anomaly detection. In this experiment, 

segments separated based on the cyclic pattern-based 

approach were used to train an autoencoder and reconstruct 

the data. The evaluation was performed using dynamic time 

warping (DTW)-based labeled values, and the performance 

metrics (Precision, Recall, F1-score) were calculated based 

on the formulas outlined in section B: evaluation metrics. The 

results, as shown in table I, demonstrate that the performance 

achieved with this method is comparable to models trained 

with labeled data. Specifically, for the ECG5000 dataset, the 

cyclic pattern-based approach achieved 0.893 precision, 

0.912 recall, and 0.902 F1-score, which is similar to the 

performance of the raw method. Similarly, for the 

ECGFiveDays dataset, the cyclic pattern-based approach 

achieved 0.837 precision, 0.832 recall, and 0.834 F1-score, 

showing significant improvement over the raw method. These 

results confirm that cyclic pattern-based anomaly detection is 

indeed feasible. 

 

IV. CONCULSION 

This study presents a novel methodology for cyclic 
pattern-based anomaly detection in manufacturing processes. 
In real industrial environments, sensor data often exhibits 
variability due to external environmental changes and 
equipment anomalies, making accurate anomaly detection a 
critical challenge. To address this, the study proposes 
segmenting the data into cycles and accurately detecting 
recurring patterns through autocorrelation. The features 
extracted during this process are then effectively learned using 
contrastive learning, aiding in the detection of abnormal 
patterns. 

The proposed methodology provides an effective solution 
for real-world environments where anomaly data is 
imbalanced and labeled data is scarce. While experiments 
were conducted using ECG data, further experiments with 
real-world manufacturing datasets are necessary to evaluate 
the model’s applicability in more practical scenarios. Future 
work will focus on applying cyclic pattern-based anomaly 
detection to manufacturing processes, allowing for the 
tracking of anomalies occurring during the production of 
products or components. By linking these insights with quality 
data, it will be possible to improve both process efficiency and 
final product quality. 

Future work will focus on applying cyclic pattern-based 
anomaly detection to manufacturing processes, allowing for 
the tracking of anomalies occurring during the production of 
products or components. In this context, soft contrastive 
techniques will be applied in the pair construction process, 
enabling more flexible definitions of positive pairs and 
negative pairs [10]. This will help improve the model's ability 
to detect anomalies more effectively. By linking these insights 
with quality data, it will be possible to enhance both process 
efficiency and final product quality. 

Additionally, the computational complexity of the model 
will be evaluated, with a focus on analyzing the efficiency of 

TABLE I.  PILOT EXPERIMENTAL RESULTS 

 RAW Cycle 

DATASET Precision Recall F1-Score Precision Recall F1-Score 

ECG5000 0.868 0.994 0.927 0.893 0.912 0.902 

ECGFiveDays 0.923 0.755 0.831 0.837 0.832 0.834 

 



the cyclic pattern-based anomaly detection method in real-
world environments. In such environments, where the scale of 
data and detection speed are crucial, a detailed assessment of 
the model’s computational cost will ensure its feasibility for 
large-scale deployment. This will help establish the model’s 
accuracy and efficiency for practical applications in 
manufacturing processes. 
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