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Abstract— Network anomaly detection is a critical task for
maintaining network stability and security. However, existing
models often focus solely on achieving high predictive
performance, falling short in providing the interpretability and
reliability needed for practical applications. To address this
limitation, this study proposes a novel approach that combines
GraphSAGE and SHAP. GraphSAGE is designed to classify
various types of network anomalies effectively by leveraging
network data, while SHAP extracts and quantifies the
contributions of key features influencing the model’s
predictions. The experimental results demonstrate that the
proposed model achieved high accuracy and F1-score,
successfully identifying the most significant features for each
anomaly class. This study highlights that the integration of
GraphSAGE and SHAP enhances the interpretability and
practicality of network anomaly detection. By providing clear
explanations for the model’s predictions, this approach offers
actionable insights for network administrators, making it a
valuable tool for real-world network management and security
applications.
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l. INTRODUCTION

The rapid evolution of network environments and the
acceleration of digital transformation have underscored the
critical importance of network anomaly detection. Traditional
signature-based intrusion detection systems are increasingly
challenged by the sophistication and diversity of modern
cyber-attacks, making it difficult to effectively detect new and
unknown threats.[1]

In response, artificial intelligence (Al) techniques have
been employed to enhance network anomaly detection.
However, many Al-based models function as "black boxes,"
offering limited insight into their decision-making processes.
This opacity hampers trust and transparency, which are
essential for the practical deployment of these systems.[2]

To address this challenge, Explainable Artificial
Intelligence (XAI) has been introduced, aiming to make Al
models more interpretable and their decisions more
understandable. In the realm of network anomaly detection,
XAl facilitates the analysis of detected anomalies and the
identification of key contributing features, thereby enhancing
the interpretability of Al-driven security measures.[3]
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This study proposes a novel approach that integrates
GraphSAGE—a graph neural network framework capable of
learning node embeddings in large graphs—with SHAP
(SHapley Additive exPlanations), a method for interpreting
complex models. By combining these tools, the research aims
to develop a network anomaly detection system that not only
identifies anomalies but also provides clear explanations
regarding the features that most significantly influence each
detection.

Il. RELATED WORKS

A. Graph Neural Networks

Graph Neural Networks (GNNSs) are a groundbreaking
technology that extends deep learning to the non-Euclidean
domain of graph data structures. GNNSs are designed to learn
relationships and structural information in graph data by
iteratively aggregating and transforming information from
neighboring nodes, enabling the learning of expressive node
embeddings. This concept was first introduced by Gori et al.
in 2005. Their study proposed the first GNN structure to
process graph data, showcasing its potential for solving graph-
based problems.[4]

In the subsequent application stages of GNNs, the Graph
Convolutional Network (GCN) introduced by Kipf and
Welling in 2017 marked a significant advancement in GNN
technology. GCN employs a normalized Laplacian approach
to perform semi-supervised learning, enabling the efficient
and powerful learning of node embeddings. This model
demonstrated outstanding performance across various
domains, including social network analysis and molecular
modeling, establishing itself as a cornerstone in GNN
research.[5]

GraphSAGE, based on the inductive representation
learning framework of sampling and aggregation, was
proposed by Hamilton et al. in 2017. This model was designed
to learn relationships and structures in large-scale graphs.
Unlike traditional GNN models that require the entire graph
to be stored and trained, GraphSAGE introduces a
neighborhood sampling and aggregation approach to generate
embeddings. This enables the model to handle dynamic
changes in graphs and predict new nodes. GraphSAGE has
demonstrated its utility in various fields, including social
networks, biological networks, and recommendation systems,



positioning itself as a robust model for large-scale graph
processing.[6]

GNN research has further expanded to Graph Attention
Networks (GAT). Velickovic et al. (2018) introduced an
attention mechanism in GAT, effectively integrating
structural and attribute information of graph data. GAT
enables each node to aggregate information from its neighbors
based on their relative importance, making it particularly
useful in heterogeneous or dynamic graph environments. This
model has significantly improved performance across various
graph-based tasks, further enhancing the expressiveness of
GNNs.[7]

In addition, various Al models derived from GNNs, such
as M-GAT, GDN, and MST-GAT, have emerged. This study
aims to employ GraphSAGE for anomaly detection,
leveraging its capability to learn node relationships and adapt
to dynamic network data effectively.

B. Network Anomaly Detection

Network anomaly detection is an essential process for
identifying factors that degrade network performance and
addressing them promptly. Recently, Al technologies have
emerged as powerful tools for detecting anomalies in traffic,
latency, jitter, and packet loss. This section introduces Al
research related to traffic anomalies, network performance
metrics (latency, jitter, packet loss), and network attack
detection.

Network performance indicators such as latency and jitter
significantly impact user experience. Rusek et al. (2020)
RouteNet is a study that employs Graph Neural Networks
(GNNs) to model network latency and jitter. By leveraging a
graph-based approach, this study accurately predicts delays
and jitter within network paths, enabling network operators to
proactively detect and address potential performance
degradations.[8]

Fotiadou et al. (2021) introduced a novel framework for
detecting anomalies in network traffic using deep learning
techniques. By leveraging pfSense logs and Suricata intrusion
detection data, they proposed semi-supervised approaches
based on Long Short-Term Memory (LSTM) and
Convolutional Neural Networks (CNN). Their system
classifies network events into multi-class categories,
achieving high accuracy (97.27% for LSTM and 97.24% for
CNN) while addressing imbalanced dataset challenges
through class weighting and dropout layers. This approach
highlights the potential of combining real-world network logs
with advanced DL architectures to enhance intrusion detection
and network anomaly classification.[9]

Ma et al. (2021) provide an in-depth analysis of the state-
of-the-art methods for detecting anomalies in graphs. The
survey categorizes techniques based on supervised,
unsupervised, and semi-supervised learning approaches,
highlighting their strengths and application scenarios. Notably,
the paper emphasizes the growing role of Graph Neural
Networks (GNNs) in anomaly detection tasks, where their
ability to learn rich node representations and relationships
makes them well-suited for identifying anomalous patterns in
complex network structures.[10]

C. Explainable AI(XAl)

Explainable Al (XAl) has emerged as a crucial field aimed
at addressing the "black-box" nature of deep learning models.
XAl techniques provide insights into model decisions,

ensuring transparency, interpretability, and trust in Al systems.
In network anomaly detection, XAl allows operators to
understand why a specific anomaly was flagged and what
features contributed most to the model's decision.

Ribeiro et al. (2016) proposed LIME (Local Interpretable
Model-agnostic Explanations) as a technique for explaining
the predictions of any machine learning model. LIME
generates locally faithful explanations by approximating the
model's decision boundary around specific data points. This
approach has been extended to network anomaly detection
tasks, particularly in understanding why certain traffic
patterns are flagged as suspicious. Through LIME, operators
can better interpret complex models and gain actionable
insights into network anomalies.[11]

Lundberg et al. (2017) introduced SHAP (Shapley
Additive Explanations), a unified framework for interpreting
predictions made by machine learning models. SHAP assigns
importance scores to individual input features, quantifying
their contributions to the model's output. This method has
been applied in various domains, including network anomaly
detection, where it helps identify the key factors influencing
anomalous patterns. By providing interpretable explanations,
SHAP enables network administrators to pinpoint root causes
effectively and act on them.[12]

Verma et al. (2020) provided an extensive review of
counterfactual explanations as a method for interpreting
machine learning models. Counterfactual explanations aim to
provide insights by answering "what-if" questions, describing
how minimal changes to input features could alter the model's
predictions. This technique emphasizes user-centric
interpretability by offering actionable feedback and has been
widely explored in decision-critical domains such as finance
and healthcare. They highlight the advantages of
counterfactual explanations in enhancing transparency and
trustworthiness of Al systems, particularly in scenarios where
understanding model predictions is essential.[13]

Ill. METHODOLOGY

This chapter describes the methodologies used in the study
of explainable network anomaly detection.
Before delving into the details of the methodology, we provide
a brief explanation of GraphSAGE and SHAP, which form the
foundation of our approach. Since these methods have been
introduced in the Related Works section, this section will
focus on their operational principles and how they are applied
in this study.

A. Background

GraphSAGE, proposed by Hamilton et al. (2017), is a
graph neural network framework designed for inductive
learning on graph-structured data. It generates node
embeddings by sampling and aggregating features from
neighboring nodes, typically utilizing edge information to
learn rich structural representations. However, inspired by
MST-GAT (2023), this study adapts GraphSAGE to focus
solely on node features without explicitly utilizing edge
connections. This adjustment allows the model to effectively
detect anomalies in high-dimensional network data, even in
scenarios where the graph structure is ambiguous or
undefined.[6][14]

By emphasizing node attributes, GraphSAGE in this study
is tailored to learn meaningful patterns from node-level
information, enabling it to generalize to unseen nodes and



handle dynamic or evolving network environments effectively.
This approach aligns well with the requirements of network
anomaly detection tasks, demonstrating the model's
adaptability in complex, real-world applications.

SHAP (SHapley Additive exPlanations), introduced by
Lundberg et al. (2017), is a unified framework for interpreting
predictions made by machine learning models. Built on the
principles of cooperative game theory, SHAP assigns
importance scores to individual input features, quantifying
their contributions to the model's output. These scores are
computed by considering all possible feature subsets, ensuring
a comprehensive and fair representation of each feature's
influence.[12]

In this study, SHAP is utilized to explain the predictions
of a GraphSAGE-based anomaly detection model. By
analyzing the SHAP values of node features, the model can
identify the most influential attributes contributing to the
detection of network anomalies. This insight not only
enhances the interpretability of the anomaly detection process
but also provides valuable information for understanding the
root causes of anomalies. SHAP’s ability to provide consistent,
additive explanations makes it particularly suitable for
applications in  network anomaly detection, where
understanding feature-level contributions is crucial for
effective troubleshooting and response.

B. Dataset

1) Dataset Composition

The dataset used in this study is designed for classifying
various normal and anomalous network behaviors based on
network traffic analysis. It contains a total of 35 features and
8 classes, representing normal traffic and a variety of network
anomalies. The dataset was constructed using a variety of
protocols and traffic patterns collected in network
environments.

Each column in the dataset represents a specific
measurement of network traffic, which includes features from
the IP layer, TCP layer, UDP layer, ICMP layer, and other
metrics such as transmitted/received bytes, unicast packets,
and discarded packets.

The class labels in the dataset indicate whether the traffic
is normal or anomalous, with the classes defined as follows:

e normal: Normal network traffic.

e tcp-syn: TCP SYN flooding attack, which overloads
the server by excessively creating TCP connections.

o slowloris: An attack where the client establishes a
connection and deliberately delays requests,
consuming server resources.

e udp-flood: A flooding attack leveraging the UDP
protocol to consume network bandwidth.

e icmp-echo: An attack that overwhelms the network by
sending excessive ICMP echo requests (ping).

o httpFlood: An attack that generates a large number of
HTTP requests to overload the web server.

o slowpost: An attack that sends HTTP request bodies at
an extremely slow rate, exhausting server resources.

e bruteForce: An attack attempting to bypass
authentication by making random guesses at login
credentials.

2) Dataset Preprocessing

The dataset exhibited significant class imbalance, with the
tcp-syn class containing 960 samples, the bruteForce class
containing 200 samples, and other classes ranging between
400 and 780 samples. Such class imbalance can lead to
overfitting on the majority class and poor performance on the
minority class in machine learning models.

To address this issue, the dataset was balanced by first
generating 200 additional samples for the bruteForce class
using a WGAN-based synthetic data generation method. After
augmentation, all classes were under-sampled to contain 400
samples each, ensuring a balanced dataset for model training
and evaluation.

3) Data Splitting

For model training, the dataset was split into training and
test sets with an 8:2 ratio. The splitting process employed a
random split rather than a stratified split. This choice was
made because the model used in this study (GraphSAGE) is
designed to learn patterns at the node level, and the dataset had
already been balanced across classes, eliminating the need for
stratified splitting.

This balanced and randomly split dataset ensures that the
model can learn effectively while avoiding bias toward
specific classes, thereby improving its generalizability.

C. Model Description

1) GraphSAGE

In this study, we adopted the core design of GraphSAGE
but focused on node-centric learning, considering the
characteristics of network data. While GraphSAGE typically
leverages edge information to learn relationships between
nodes, this study adapted the model to learn patterns among
node features without utilizing edge connections. This
adjustment enables the effective handling of high-dimensional
node features and allows for anomaly detection even in
environments where the graph structure is not explicitly
defined.

The model was constructed with a softmax output layer for
class predictions, and CrossEntropyLoss was employed to
address the multi-class classification problem. The Adam
optimizer was utilized for model optimization, and loss and
accuracy were recorded at each epoch to evaluate performance.

2) SHAP

In this study, SHAP (Shapley Additive Explanations) was
employed to interpret the model's predictions and quantify the
contributions of individual features. Among various SHAP
implementations, Kernel SHAP was selected and applied.
Kernel SHAP operates as a model-agnostic approach,
calculating SHAP values solely based on the input-output
relationship, making it independent of specific model
architectures.

The SHAP analysis process was structured as follows.
First, background data were extracted from the training dataset
and paired with the model's prediction function to calculate
the impact of each input feature using KernelExplainer.
Subsequently, feature importance was analyzed for each class
to identify the features contributing most significantly to the
predictions. Finally, the SHAP analysis results were



visualized to confirm the contribution of key features for each
class. This process allowed us to understand which features
predominantly influenced the predictions of the network
anomaly detection model.

IV. EXPERIMENTAL RESULTS

This chapter presents the results of the experiments
conducted to evaluate the proposed methodology for
explainable network anomaly detection. The experiments
were designed to assess two primary objectives:

e Model Performance: Evaluating the classification
accuracy, precision, recall, and F1-score of the
GraphSAGE-based anomaly detection model.

e Feature Interpretability:  Demonstrating  the
interpretability of the model's predictions using
SHAP to identify the most influential features
contributing to network anomaly detection.

Section a describes the performance evaluation metrics
and baseline results. Section b explores the interpretability
results obtained through SHAP analysis.

a) Model Performance Evaluation

The performance of the GraphSAGE-based network
anomaly detection model developed in this study was
evaluated using metrics such as accuracy, precision, recall,
and F1-score. Additionally, the changes in loss and accuracy
during the training and testing phases were visualized through
graphs to analyze the model's learning stability and
generalization capabilities.
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Fig. 1. Training and test loss and accuracy curves

Fig. 1. illustrates the training and testing loss and accuracy
curves over 200 epochs for the GraphSAGE-based network
anomaly detection model. The top graph shows the loss curves,
where both the training and testing losses steadily decrease,
indicating effective convergence of the model. The close
alignment between training and testing losses suggests
minimal overfitting and good generalization capabilities.

The bottom graph depicts the accuracy curves for training
and testing datasets. Both curves exhibit consistent
improvement, with the training accuracy slightly exceeding
the testing accuracy, which is typical in machine learning. The
testing accuracy stabilizes near the end of the training process,
demonstrating the model's strong performance and learning

stability. This analysis supports the model's reliability
network anomaly detection tasks.

n

TABLE I. OVERALL METRICS
Metrics
Precision Recall F1-Score Accuracy
Value 0.9439 0.9391 0.94 0.9391

Table | presents the overall performance metrics of the
model, summarizing the precision, recall, Fl-score, and

accuracy across all classes. These metrics provide a

comprehensive view of the model's effectiveness
distinguishing normal and anomalous network traffic.

TABLE Il. CLASS-WISE METRICS
Metrics
Precision Recall F1-Score
Normal 0.79 0.95 0.86
tcp-syn 0.97 0.93 0.95
Slowloris 0.91 0.89 0.90
udp-flood 0.98 0.99 0.98
icmp-echo 0.99 0.96 0.97
httpFlood 0.94 0.99 0.96
Slowpost 0.99 0.89 0.93
BruteForce 0.99 0.93 0.95

n

Table 11 further breaks down these metrics on a per-class
basis, offering insights into the model's performance for each
specific traffic type, including both normal and various attack
patterns. This class-wise analysis helps to identify the
strengths and weaknesses of the model in detecting individual
anomaly types, which is crucial for understanding its practical
applicability in real-world network environments.

Confusion Matrix

normal

True Labels

bruteForce slowpost httpFlood icmp-eche udp-flood slowloris  tcp-syn
' | ' ' ' .

0 ] 3 [} ] 3 [} 74

slowloris udp-flood kkmp-echo httpFlood slowpost bruteForce
Predicted Labels

normal tep-syn

Fig. 2. Confusion Matrix of the GraphSAGE-based model

Fig. 2. presents the confusion matrix generated from the
predictions of the GraphSAGE-based network anomaly
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detection model. Each row represents the true class, and each
column represents the predicted class. The diagonal elements
indicate the number of correctly classified samples for each

class, while off-diagonal elements represent misclassifications.

The matrix highlights the model's strong ability to distinguish
between different types of network traffic, with high accuracy
across most classes. Despite a few misclassifications observed
in classes like "normal" and “slowloris," the overall
performance demonstrates the model's effectiveness in
detecting both normal and anomalous traffic.

b) SHAP analysis

In this section, the SHAP (Shapley Additive Explanations)
analysis is presented to interpret the predictions of the
anomaly detection model. The primary goal of SHAP analysis
is to identify the key features that contribute most significantly
to the model's predictions. This interpretability is particularly
important in network anomaly detection, where understanding
the driving factors behind an anomaly can aid in diagnosing
and mitigating network issues.

The SHAP analysis results are visualized using summary
plots, which highlight the relative importance of each feature
across all predictions. For example, features related to packet
transmission rates or specific TCP characteristics might
emerge as critical factors for predicting anomalies in classes
such as Bruteforce or TCP-SYN attacks. These visualizations
provide an intuitive way to understand which features have the
greatest impact on the model's decision-making process.

The SHAP value graph illustrates the impact of each
feature on the model's predictions. The X-axis represents the
SHAP values (feature contributions), where values greater
than 0 indicate that the feature increases the likelihood of a
specific class prediction. The Y-axis lists the feature names,
and the color represents the magnitude of the feature values
(red indicates high values, while blue indicates low values).
This visualization enables an intuitive understanding of the
relationship between feature values and model predictions.

The SHAP values for all 8 classes were analyzed,
revealing the contribution of specific features to the model's
predictions for each class. However, including SHAP graphs
for all classes in the paper would result in visual complexity,
potentially hindering the reader's ability to grasp the core
insights. Therefore, this study focuses on the SHAP analysis
results for the BruteForce class as a representative example to
provide a detailed explanation of the model's interpretability
and feature importance analysis.
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Fig. 3. BruteForce Shap value graph

Fig. 3 illustrates the SHAP value visualization for the
BruteForce class. The top-ranked features, udpNoPorts and
ipOutDiscards, play a significant role in predicting BruteForce
attacks.

Firstly, udpNoPorts exhibits a negative SHAP value when
it has high feature values, indicating a reduced likelihood of
predicting BruteForce. This aligns with domain knowledge, as
high udpNoPorts values are more likely to reflect patterns
associated with UDP-based attacks, such as port scanning or
flood attacks. In contrast, BruteForce attacks are characterized
by TCP-based authentication attempts, meaning that higher
udpNoPorts values correlate less with BruteForce predictions.

Secondly, ipOutDiscards shows a positive SHAP value
when it has high feature values, increasing the likelihood of
predicting BruteForce. This can be attributed to the repetitive
authentication attempts in BruteForce attacks, which may lead
to network resource exhaustion and subsequent packet
discards. Such network congestion is a common characteristic
of BruteForce attacks, making this feature contribution
consistent with domain knowledge.

The insights derived from this analysis are not only
consistent with known characteristics of BruteForce attacks
but also provide actionable intelligence for network
administrators. Compared to other anomaly types, such as
UDP-based or HTTP-based floods, BruteForce attacks exhibit
a distinct reliance on TCP-related features, such as repetitive
packet discards and lower UDP-based traffic patterns. This
distinction highlights the model's ability to isolate BruteForce-
specific root causes, providing actionable insights into
anomaly mitigation strategies. By understanding which
features significantly impact the model's predictions,
administrators can focus on monitoring or mitigating factors
like TCP-based authentication patterns and resource
exhaustion due to repetitive attempts. Furthermore, linking
SHAP values to domain knowledge enhances the model's
trustworthiness for root cause analysis, making it a valuable
tool for identifying and addressing anomalies in real-world
network environments.



V. CONCLUSION

This study proposed a novel approach combining
GraphSAGE and SHAP (Shapley Additive Explanations) for
network anomaly detection and root cause analysis.
GraphSAGE effectively learned anomalous patterns from
high-dimensional features of network data through node-
centric learning, while SHAP was employed to interpret
model predictions and quantify the contributions of key
features. This approach not only improved predictive accuracy
but also provided interpretability for the results,
demonstrating its potential as a practical tool for network
management and security.

The experimental results showed that the proposed model
achieved high accuracy and F1-scores across various network
anomaly scenarios. Moreover, SHAP enabled the
identification of key features for each class, proving the
capability of performing explainable network anomaly
detection. This approach allows network administrators to
understand the basis of model predictions and devise
appropriate response strategies.

However, this study has several limitations. First, the
absence of edge information in GraphSAGE may have limited
the model's ability to capture spatial relationships inherent in
graph structures. Second, the SHAP analysis revealed feature
importance that, in some cases, did not fully align with domain
knowledge. This discrepancy may not stem from experimental
errors but rather from dataset bias or a lack of dataset
completeness. Future studies should aim to enhance dataset
diversity and quality to derive more reliable results.

Future research directions include several potential
expansions. First, incorporating edge information into
GraphSAGE to capture spatial relationships in graph
structures could be explored to better leverage the structural
properties of network data. Additionally, experiments with
other models derived from GNNs, such as GDN, MST-GAT,
or GAT, could further advance network anomaly detection by
reflecting spatiotemporal or graph-based characteristics.
Second, integrating various XAl techniques, such as LIME
(Local Interpretable Model-agnostic Explanations) or
Counterfactual Explanations, could enable more sophisticated
and multifaceted root cause analyses. Finally, validating the
proposed model’s performance in real-world network
environments and assessing its generalizability through
follow-up research would be crucial to bridging theoretical
findings with practical applications. These efforts are
expected to enhance the interpretability and efficacy of
network anomaly detection.

In summary, this study contributes to advancing
explainability in network anomaly detection and demonstrates
that the integration of GraphSAGE and SHAP can serve as an
effective tool for network management and security.
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