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Abstract— Network anomaly detection is a critical task for 

maintaining network stability and security. However, existing 

models often focus solely on achieving high predictive 

performance, falling short in providing the interpretability and 

reliability needed for practical applications. To address this 

limitation, this study proposes a novel approach that combines 

GraphSAGE and SHAP. GraphSAGE is designed to classify 

various types of network anomalies effectively by leveraging 

network data, while SHAP extracts and quantifies the 

contributions of key features influencing the model’s 

predictions. The experimental results demonstrate that the 

proposed model achieved high accuracy and F1-score, 

successfully identifying the most significant features for each 

anomaly class. This study highlights that the integration of 

GraphSAGE and SHAP enhances the interpretability and 

practicality of network anomaly detection. By providing clear 

explanations for the model’s predictions, this approach offers 

actionable insights for network administrators, making it a 

valuable tool for real-world network management and security 

applications. 
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I. INTRODUCTION 

The rapid evolution of network environments and the 
acceleration of digital transformation have underscored the 
critical importance of network anomaly detection. Traditional 
signature-based intrusion detection systems are increasingly 
challenged by the sophistication and diversity of modern 
cyber-attacks, making it difficult to effectively detect new and 
unknown threats.[1] 

In response, artificial intelligence (AI) techniques have 
been employed to enhance network anomaly detection. 
However, many AI-based models function as "black boxes," 
offering limited insight into their decision-making processes. 
This opacity hampers trust and transparency, which are 
essential for the practical deployment of these systems.[2] 

To address this challenge, Explainable Artificial 
Intelligence (XAI) has been introduced, aiming to make AI 
models more interpretable and their decisions more 
understandable. In the realm of network anomaly detection, 
XAI facilitates the analysis of detected anomalies and the 
identification of key contributing features, thereby enhancing 
the interpretability of AI-driven security measures.[3] 

This study proposes a novel approach that integrates 
GraphSAGE—a graph neural network framework capable of 
learning node embeddings in large graphs—with SHAP 
(SHapley Additive exPlanations), a method for interpreting 
complex models. By combining these tools, the research aims 
to develop a network anomaly detection system that not only 
identifies anomalies but also provides clear explanations 
regarding the features that most significantly influence each 
detection. 

II. RELATED WORKS 

A. Graph Neural Networks 

Graph Neural Networks (GNNs) are a groundbreaking 
technology that extends deep learning to the non-Euclidean 
domain of graph data structures. GNNs are designed to learn 
relationships and structural information in graph data by 
iteratively aggregating and transforming information from 
neighboring nodes, enabling the learning of expressive node 
embeddings. This concept was first introduced by Gori et al. 
in 2005. Their study proposed the first GNN structure to 
process graph data, showcasing its potential for solving graph-
based problems.[4] 

In the subsequent application stages of GNNs, the Graph 
Convolutional Network (GCN) introduced by Kipf and 
Welling in 2017 marked a significant advancement in GNN 
technology. GCN employs a normalized Laplacian approach 
to perform semi-supervised learning, enabling the efficient 
and powerful learning of node embeddings. This model 
demonstrated outstanding performance across various 
domains, including social network analysis and molecular 
modeling, establishing itself as a cornerstone in GNN 
research.[5] 

GraphSAGE, based on the inductive representation 
learning framework of sampling and aggregation, was 
proposed by Hamilton et al. in 2017. This model was designed 
to learn relationships and structures in large-scale graphs. 
Unlike traditional GNN models that require the entire graph 
to be stored and trained, GraphSAGE introduces a 
neighborhood sampling and aggregation approach to generate 
embeddings. This enables the model to handle dynamic 
changes in graphs and predict new nodes. GraphSAGE has 
demonstrated its utility in various fields, including social 
networks, biological networks, and recommendation systems, 



positioning itself as a robust model for large-scale graph 
processing.[6] 

GNN research has further expanded to Graph Attention 
Networks (GAT). Velickovic et al. (2018) introduced an 
attention mechanism in GAT, effectively integrating 
structural and attribute information of graph data. GAT 
enables each node to aggregate information from its neighbors 
based on their relative importance, making it particularly 
useful in heterogeneous or dynamic graph environments. This 
model has significantly improved performance across various 
graph-based tasks, further enhancing the expressiveness of 
GNNs.[7]  

In addition, various AI models derived from GNNs, such 
as M-GAT, GDN, and MST-GAT, have emerged. This study 
aims to employ GraphSAGE for anomaly detection, 
leveraging its capability to learn node relationships and adapt 
to dynamic network data effectively. 

B. Network Anomaly Detection 

Network anomaly detection is an essential process for 
identifying factors that degrade network performance and 
addressing them promptly. Recently, AI technologies have 
emerged as powerful tools for detecting anomalies in traffic, 
latency, jitter, and packet loss. This section introduces AI 
research related to traffic anomalies, network performance 
metrics (latency, jitter, packet loss), and network attack 
detection. 

Network performance indicators such as latency and jitter 
significantly impact user experience. Rusek et al. (2020) 
RouteNet is a study that employs Graph Neural Networks 
(GNNs) to model network latency and jitter. By leveraging a 
graph-based approach, this study accurately predicts delays 
and jitter within network paths, enabling network operators to 
proactively detect and address potential performance 
degradations.[8] 

Fotiadou et al. (2021) introduced a novel framework for 
detecting anomalies in network traffic using deep learning 
techniques. By leveraging pfSense logs and Suricata intrusion 
detection data, they proposed semi-supervised approaches 
based on Long Short-Term Memory (LSTM) and 
Convolutional Neural Networks (CNN). Their system 
classifies network events into multi-class categories, 
achieving high accuracy (97.27% for LSTM and 97.24% for 
CNN) while addressing imbalanced dataset challenges 
through class weighting and dropout layers. This approach 
highlights the potential of combining real-world network logs 
with advanced DL architectures to enhance intrusion detection 
and network anomaly classification.[9] 

Ma et al. (2021) provide an in-depth analysis of the state-
of-the-art methods for detecting anomalies in graphs. The 
survey categorizes techniques based on supervised, 
unsupervised, and semi-supervised learning approaches, 
highlighting their strengths and application scenarios. Notably, 
the paper emphasizes the growing role of Graph Neural 
Networks (GNNs) in anomaly detection tasks, where their 
ability to learn rich node representations and relationships 
makes them well-suited for identifying anomalous patterns in 
complex network structures.[10] 

C. Explainable AI(XAI) 

Explainable AI (XAI) has emerged as a crucial field aimed 
at addressing the "black-box" nature of deep learning models. 
XAI techniques provide insights into model decisions, 

ensuring transparency, interpretability, and trust in AI systems. 
In network anomaly detection, XAI allows operators to 
understand why a specific anomaly was flagged and what 
features contributed most to the model's decision. 

Ribeiro et al. (2016) proposed LIME (Local Interpretable 
Model-agnostic Explanations) as a technique for explaining 
the predictions of any machine learning model. LIME 
generates locally faithful explanations by approximating the 
model's decision boundary around specific data points. This 
approach has been extended to network anomaly detection 
tasks, particularly in understanding why certain traffic 
patterns are flagged as suspicious. Through LIME, operators 
can better interpret complex models and gain actionable 
insights into network anomalies.[11] 

Lundberg et al. (2017) introduced SHAP (Shapley 
Additive Explanations), a unified framework for interpreting 
predictions made by machine learning models. SHAP assigns 
importance scores to individual input features, quantifying 
their contributions to the model's output. This method has 
been applied in various domains, including network anomaly 
detection, where it helps identify the key factors influencing 
anomalous patterns. By providing interpretable explanations, 
SHAP enables network administrators to pinpoint root causes 
effectively and act on them.[12] 

Verma et al. (2020) provided an extensive review of 
counterfactual explanations as a method for interpreting 
machine learning models. Counterfactual explanations aim to 
provide insights by answering "what-if" questions, describing 
how minimal changes to input features could alter the model's 
predictions. This technique emphasizes user-centric 
interpretability by offering actionable feedback and has been 
widely explored in decision-critical domains such as finance 
and healthcare. They highlight the advantages of 
counterfactual explanations in enhancing transparency and 
trustworthiness of AI systems, particularly in scenarios where 
understanding model predictions is essential.[13] 

III. METHODOLOGY 

This chapter describes the methodologies used in the study 
of explainable network anomaly detection. 
Before delving into the details of the methodology, we provide 
a brief explanation of GraphSAGE and SHAP, which form the 
foundation of our approach. Since these methods have been 
introduced in the Related Works section, this section will 
focus on their operational principles and how they are applied 
in this study. 

A. Background 

GraphSAGE, proposed by Hamilton et al. (2017), is a 
graph neural network framework designed for inductive 
learning on graph-structured data. It generates node 
embeddings by sampling and aggregating features from 
neighboring nodes, typically utilizing edge information to 
learn rich structural representations. However, inspired by 
MST-GAT (2023), this study adapts GraphSAGE to focus 
solely on node features without explicitly utilizing edge 
connections. This adjustment allows the model to effectively 
detect anomalies in high-dimensional network data, even in 
scenarios where the graph structure is ambiguous or 
undefined.[6][14] 

By emphasizing node attributes, GraphSAGE in this study 
is tailored to learn meaningful patterns from node-level 
information, enabling it to generalize to unseen nodes and 



handle dynamic or evolving network environments effectively. 
This approach aligns well with the requirements of network 
anomaly detection tasks, demonstrating the model's 
adaptability in complex, real-world applications. 

SHAP (SHapley Additive exPlanations), introduced by 
Lundberg et al. (2017), is a unified framework for interpreting 
predictions made by machine learning models. Built on the 
principles of cooperative game theory, SHAP assigns 
importance scores to individual input features, quantifying 
their contributions to the model's output. These scores are 
computed by considering all possible feature subsets, ensuring 
a comprehensive and fair representation of each feature's 
influence.[12] 

In this study, SHAP is utilized to explain the predictions 
of a GraphSAGE-based anomaly detection model. By 
analyzing the SHAP values of node features, the model can 
identify the most influential attributes contributing to the 
detection of network anomalies. This insight not only 
enhances the interpretability of the anomaly detection process 
but also provides valuable information for understanding the 
root causes of anomalies. SHAP’s ability to provide consistent, 
additive explanations makes it particularly suitable for 
applications in network anomaly detection, where 
understanding feature-level contributions is crucial for 
effective troubleshooting and response. 

B. Dataset 

1) Dataset Composition 
The dataset used in this study is designed for classifying 

various normal and anomalous network behaviors based on 
network traffic analysis. It contains a total of 35 features and 
8 classes, representing normal traffic and a variety of network 
anomalies. The dataset was constructed using a variety of 
protocols and traffic patterns collected in network 
environments. 

Each column in the dataset represents a specific 
measurement of network traffic, which includes features from 
the IP layer, TCP layer, UDP layer, ICMP layer, and other 
metrics such as transmitted/received bytes, unicast packets, 
and discarded packets. 

The class labels in the dataset indicate whether the traffic 
is normal or anomalous, with the classes defined as follows: 

 normal: Normal network traffic. 

 tcp-syn: TCP SYN flooding attack, which overloads 
the server by excessively creating TCP connections. 

 slowloris: An attack where the client establishes a 
connection and deliberately delays requests, 
consuming server resources. 

 udp-flood: A flooding attack leveraging the UDP 
protocol to consume network bandwidth. 

 icmp-echo: An attack that overwhelms the network by 
sending excessive ICMP echo requests (ping). 

 httpFlood: An attack that generates a large number of 
HTTP requests to overload the web server. 

 slowpost: An attack that sends HTTP request bodies at 
an extremely slow rate, exhausting server resources. 

 bruteForce: An attack attempting to bypass 
authentication by making random guesses at login 
credentials. 

2) Dataset Preprocessing 
The dataset exhibited significant class imbalance, with the 

tcp-syn class containing 960 samples, the bruteForce class 
containing 200 samples, and other classes ranging between 
400 and 780 samples. Such class imbalance can lead to 
overfitting on the majority class and poor performance on the 
minority class in machine learning models. 

To address this issue, the dataset was balanced by first 
generating 200 additional samples for the bruteForce class 
using a WGAN-based synthetic data generation method. After 
augmentation, all classes were under-sampled to contain 400 
samples each, ensuring a balanced dataset for model training 
and evaluation. 

3) Data Splitting 
For model training, the dataset was split into training and 

test sets with an 8:2 ratio. The splitting process employed a 
random split rather than a stratified split. This choice was 
made because the model used in this study (GraphSAGE) is 
designed to learn patterns at the node level, and the dataset had 
already been balanced across classes, eliminating the need for 
stratified splitting. 

This balanced and randomly split dataset ensures that the 
model can learn effectively while avoiding bias toward 
specific classes, thereby improving its generalizability. 

C. Model Description 

1) GraphSAGE 
In this study, we adopted the core design of GraphSAGE 

but focused on node-centric learning, considering the 
characteristics of network data. While GraphSAGE typically 
leverages edge information to learn relationships between 
nodes, this study adapted the model to learn patterns among 
node features without utilizing edge connections. This 
adjustment enables the effective handling of high-dimensional 
node features and allows for anomaly detection even in 
environments where the graph structure is not explicitly 
defined. 

The model was constructed with a softmax output layer for 
class predictions, and CrossEntropyLoss was employed to 
address the multi-class classification problem. The Adam 
optimizer was utilized for model optimization, and loss and 
accuracy were recorded at each epoch to evaluate performance. 

2) SHAP 
In this study, SHAP (Shapley Additive Explanations) was 

employed to interpret the model's predictions and quantify the 
contributions of individual features. Among various SHAP 
implementations, Kernel SHAP was selected and applied. 
Kernel SHAP operates as a model-agnostic approach, 
calculating SHAP values solely based on the input-output 
relationship, making it independent of specific model 
architectures. 

The SHAP analysis process was structured as follows. 
First, background data were extracted from the training dataset 
and paired with the model's prediction function to calculate 
the impact of each input feature using KernelExplainer. 
Subsequently, feature importance was analyzed for each class 
to identify the features contributing most significantly to the 
predictions. Finally, the SHAP analysis results were 



visualized to confirm the contribution of key features for each 
class. This process allowed us to understand which features 
predominantly influenced the predictions of the network 
anomaly detection model. 

IV. EXPERIMENTAL RESULTS 

This chapter presents the results of the experiments 
conducted to evaluate the proposed methodology for 
explainable network anomaly detection. The experiments 
were designed to assess two primary objectives: 

 Model Performance: Evaluating the classification 
accuracy, precision, recall, and F1-score of the 
GraphSAGE-based anomaly detection model. 

 Feature Interpretability: Demonstrating the 
interpretability of the model's predictions using 
SHAP to identify the most influential features 
contributing to network anomaly detection. 

Section a describes the performance evaluation metrics 
and baseline results. Section b explores the interpretability 
results obtained through SHAP analysis. 

a) Model Performance Evaluation 

The performance of the GraphSAGE-based network 
anomaly detection model developed in this study was 
evaluated using metrics such as accuracy, precision, recall, 
and F1-score. Additionally, the changes in loss and accuracy 
during the training and testing phases were visualized through 
graphs to analyze the model's learning stability and 
generalization capabilities. 

 

Fig. 1. Training and test loss and accuracy curves 

Fig. 1. illustrates the training and testing loss and accuracy 
curves over 200 epochs for the GraphSAGE-based network 
anomaly detection model. The top graph shows the loss curves, 
where both the training and testing losses steadily decrease, 
indicating effective convergence of the model. The close 
alignment between training and testing losses suggests 
minimal overfitting and good generalization capabilities. 

The bottom graph depicts the accuracy curves for training 
and testing datasets. Both curves exhibit consistent 
improvement, with the training accuracy slightly exceeding 
the testing accuracy, which is typical in machine learning. The 
testing accuracy stabilizes near the end of the training process, 
demonstrating the model's strong performance and learning 

stability. This analysis supports the model's reliability in 
network anomaly detection tasks. 

TABLE I.  OVERALL METRICS 

 
Metrics 

Precision Recall F1-Score Accuracy 

Value 0.9439 0.9391 0.94 0.9391 
 

Table I presents the overall performance metrics of the 
model, summarizing the precision, recall, F1-score, and 
accuracy across all classes. These metrics provide a 
comprehensive view of the model's effectiveness in 
distinguishing normal and anomalous network traffic. 

TABLE II.  CLASS-WISE METRICS 

 
Metrics 

Precision Recall F1-Score 

Normal 0.79 0.95 0.86 

tcp-syn 0.97 0.93 0.95 

Slowloris 0.91 0.89 0.90 

udp-flood 0.98 0.99 0.98 

icmp-echo 0.99 0.96 0.97 

httpFlood 0.94 0.99 0.96 

Slowpost 0.99 0.89 0.93 

BruteForce 0.99 0.93 0.95 
 

Table II further breaks down these metrics on a per-class 
basis, offering insights into the model's performance for each 
specific traffic type, including both normal and various attack 
patterns. This class-wise analysis helps to identify the 
strengths and weaknesses of the model in detecting individual 
anomaly types, which is crucial for understanding its practical 
applicability in real-world network environments. 

 

 

Fig. 2. Confusion Matrix of the GraphSAGE-based model 

Fig. 2. presents the confusion matrix generated from the 
predictions of the GraphSAGE-based network anomaly 



detection model. Each row represents the true class, and each 
column represents the predicted class. The diagonal elements 
indicate the number of correctly classified samples for each 
class, while off-diagonal elements represent misclassifications. 
The matrix highlights the model's strong ability to distinguish 
between different types of network traffic, with high accuracy 
across most classes. Despite a few misclassifications observed 
in classes like "normal" and "slowloris," the overall 
performance demonstrates the model's effectiveness in 
detecting both normal and anomalous traffic. 

 

b) SHAP analysis 

In this section, the SHAP (Shapley Additive Explanations) 
analysis is presented to interpret the predictions of the 
anomaly detection model. The primary goal of SHAP analysis 
is to identify the key features that contribute most significantly 
to the model's predictions. This interpretability is particularly 
important in network anomaly detection, where understanding 
the driving factors behind an anomaly can aid in diagnosing 
and mitigating network issues. 

The SHAP analysis results are visualized using summary 
plots, which highlight the relative importance of each feature 
across all predictions. For example, features related to packet 
transmission rates or specific TCP characteristics might 
emerge as critical factors for predicting anomalies in classes 
such as Bruteforce or TCP-SYN attacks. These visualizations 
provide an intuitive way to understand which features have the 
greatest impact on the model's decision-making process. 

The SHAP value graph illustrates the impact of each 
feature on the model's predictions. The X-axis represents the 
SHAP values (feature contributions), where values greater 
than 0 indicate that the feature increases the likelihood of a 
specific class prediction. The Y-axis lists the feature names, 
and the color represents the magnitude of the feature values 
(red indicates high values, while blue indicates low values). 
This visualization enables an intuitive understanding of the 
relationship between feature values and model predictions. 

The SHAP values for all 8 classes were analyzed, 
revealing the contribution of specific features to the model's 
predictions for each class. However, including SHAP graphs 
for all classes in the paper would result in visual complexity, 
potentially hindering the reader's ability to grasp the core 
insights. Therefore, this study focuses on the SHAP analysis 
results for the BruteForce class as a representative example to 
provide a detailed explanation of the model's interpretability 
and feature importance analysis.  

 

Fig. 3. BruteForce Shap value graph 

Fig. 3 illustrates the SHAP value visualization for the 
BruteForce class. The top-ranked features, udpNoPorts and 
ipOutDiscards, play a significant role in predicting BruteForce 
attacks. 

Firstly, udpNoPorts exhibits a negative SHAP value when 
it has high feature values, indicating a reduced likelihood of 
predicting BruteForce. This aligns with domain knowledge, as 
high udpNoPorts values are more likely to reflect patterns 
associated with UDP-based attacks, such as port scanning or 
flood attacks. In contrast, BruteForce attacks are characterized 
by TCP-based authentication attempts, meaning that higher 
udpNoPorts values correlate less with BruteForce predictions. 

Secondly, ipOutDiscards shows a positive SHAP value 
when it has high feature values, increasing the likelihood of 
predicting BruteForce. This can be attributed to the repetitive 
authentication attempts in BruteForce attacks, which may lead 
to network resource exhaustion and subsequent packet 
discards. Such network congestion is a common characteristic 
of BruteForce attacks, making this feature contribution 
consistent with domain knowledge. 

The insights derived from this analysis are not only 
consistent with known characteristics of BruteForce attacks 
but also provide actionable intelligence for network 
administrators. Compared to other anomaly types, such as 
UDP-based or HTTP-based floods, BruteForce attacks exhibit 
a distinct reliance on TCP-related features, such as repetitive 
packet discards and lower UDP-based traffic patterns. This 
distinction highlights the model's ability to isolate BruteForce-
specific root causes, providing actionable insights into 
anomaly mitigation strategies. By understanding which 
features significantly impact the model's predictions, 
administrators can focus on monitoring or mitigating factors 
like TCP-based authentication patterns and resource 
exhaustion due to repetitive attempts. Furthermore, linking 
SHAP values to domain knowledge enhances the model's 
trustworthiness for root cause analysis, making it a valuable 
tool for identifying and addressing anomalies in real-world 
network environments. 



V. CONCLUSION 

This study proposed a novel approach combining 
GraphSAGE and SHAP (Shapley Additive Explanations) for 
network anomaly detection and root cause analysis. 
GraphSAGE effectively learned anomalous patterns from 
high-dimensional features of network data through node-
centric learning, while SHAP was employed to interpret 
model predictions and quantify the contributions of key 
features. This approach not only improved predictive accuracy 
but also provided interpretability for the results, 
demonstrating its potential as a practical tool for network 
management and security. 

The experimental results showed that the proposed model 
achieved high accuracy and F1-scores across various network 
anomaly scenarios. Moreover, SHAP enabled the 
identification of key features for each class, proving the 
capability of performing explainable network anomaly 
detection. This approach allows network administrators to 
understand the basis of model predictions and devise 
appropriate response strategies. 

However, this study has several limitations. First, the 
absence of edge information in GraphSAGE may have limited 
the model's ability to capture spatial relationships inherent in 
graph structures. Second, the SHAP analysis revealed feature 
importance that, in some cases, did not fully align with domain 
knowledge. This discrepancy may not stem from experimental 
errors but rather from dataset bias or a lack of dataset 
completeness. Future studies should aim to enhance dataset 
diversity and quality to derive more reliable results. 

Future research directions include several potential 
expansions. First, incorporating edge information into 
GraphSAGE to capture spatial relationships in graph 
structures could be explored to better leverage the structural 
properties of network data. Additionally, experiments with 
other models derived from GNNs, such as GDN, MST-GAT, 
or GAT, could further advance network anomaly detection by 
reflecting spatiotemporal or graph-based characteristics. 
Second, integrating various XAI techniques, such as LIME 
(Local Interpretable Model-agnostic Explanations) or 
Counterfactual Explanations, could enable more sophisticated 
and multifaceted root cause analyses. Finally, validating the 
proposed model’s performance in real-world network 
environments and assessing its generalizability through 
follow-up research would be crucial to bridging theoretical 
findings with practical applications. These efforts are 
expected to enhance the interpretability and efficacy of 
network anomaly detection. 

In summary, this study contributes to advancing 
explainability in network anomaly detection and demonstrates 
that the integration of GraphSAGE and SHAP can serve as an 
effective tool for network management and security.  
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