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Abstract—In complex manufacturing processes, multiple
sensors have been installed on the machine, enabling the data-
driven Remaining Useful Life (RUL) prediction. Timely RUL
predictions reduce costs, minimize idle time, and prevent cas-
cading failures in interconnected systems. While high-perfor-
mance deep learning models have improved RUL prediction ac-
curacy, domain shifts caused by changes in equipment or oper-
ating environments often lead to prediction failures. Domain ad-
aptation techniques have been introduced to address this issue,
yet they often struggle to align the degradation patterns embed-
ded in run-to-failure data when extracting domain-invariant
features. This study presents a novel approach that decomposes
time-series sensor data into trend and periodic components, ex-
tracts adapted representations for each, and effectively aligns
them to improve cross-domain RUL prediction performance.
Our proposed method demonstrates superior RUL prediction
performance across 12 cross-domain scenarios of the C-MAPSS
dataset compared to four baseline models. Notably, our ap-
proach proves to be robust and effective in accurately predicting
RUL, even in scenarios with significant distributional differ-
ences between domains.

Keywords—Domain adaptation, remaining useful life (RUL)
prediction, prognostics and health management (PHM), trans-
fer learning, time-series decomposition

1. INTRODUCTION

Prognostics and Health Management (PHM) has emerged
as an essential field for optimizing equipment operation and
maintenance. The primary objective of PHM is to facilitate
predictive maintenance by forecasting the future condition of
equipment based on its current operational state [1]. In
particular, the prediction of Remaining Useful Life (RUL),
which is defined as the time remaining from the current point
until failure, is the most extensively studied domain within
predictive maintenance. Accurate RUL prediction can
effectively minimize lead time, reduce unexpected downtime,
and optimize maintenance costs [2]. However, predicting
RUL under complex and dynamically changing operating
conditions remains a challenging task because RUL is
influenced by numerous operational conditions.

Recently, data driven methods, which do not require
domain-specific expertise, have demonstrated promising
performance in RUL prediction across various industrial
environments. Recurrent neural network (RNN) architectures,
including Long Short-Term Memory (LSTM) networks [4]
and Gated Recurrent Units (GRU) [5], have been effectively
applied for RUL prediction capturing temporal dependencies
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in sequential sensor data analysis. Transformer-based models
have also been employed for their capability to handle
complex sequence-to-sequence relationships, with applications
such as lithium-ion battery RUL prediction showcasing their
strengths in modeling both short-term and long-term
dependencies [6]. Despite these efforts, when the target
equipment for model application differs or there are
discrepancies between the training and testing sensor data
environments, models may fail to accurately predict RUL.
These challenges are commonly known as domain shift
problems.

Domain adaptation methods address domain shift prob-
lems by aligning knowledge from existing domains with un-
seen domains for effective RUL prediction. For instance,
domain-adversarial approaches leveraging LSTM architec-
tures have been used to align feature spaces across domains,
capturing temporal dependencies [7]. Additionally, contrastive
adversarial domain adaptation techniques have been
employed to reduce domain discrepancies with InfoNCE loss
[8]. However, these approaches cannot consider trend and
periodic pattern of degradation and rely on unstable
adversarial training, limiting effectiveness in extracting
domain-invariant representations for RUL prediction from
degraded time-series sensor data.

To address these challenges, we propose the decomposed
degradation pattern alignment method. Specifically, we lever-
age the domain-invariant nature of the trend degradation pat-
tern’s inter-sensor associative structure to enhance RUL pre-
diction. Additionally, we capture intervals where periodic pat-
terns are distorted, reflecting the degraded state of the system.
The decomposition method for time series is inspired by the
Moving Average approach used in Autoformer [9], while the
extraction of inter-variable associative structures is motivated
by the Sparse Associative Structure Alignment (SASA)
framework [10].

The key contributions of the method are as follows:

e Decomposing the equipment’s degradation state into
trend degradation and periodic pattern distortion en-
ables more accurate RUL prediction.

e Aligning degradation trend features across domains
enhances the effectiveness of domain adaptation.

e Achieved superior RUL prediction performance
across 12 cross-domain scenarios in the C-MAPSS
dataset, demonstrating robust prediction capability
even in cases with significant domain distribution
differences.
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Fig. 1. Overview of our model

II. METHODOLOGY

In this section, we present the proposed methodology,
which is divided into two parts: degradation pattern extrac-
tion and alignment followed by RUL prediction. The overall
framework of the model can be found in Fig. 1.

A. Problem Definition

The sensor data collected for RUL prediction X =
[x1, ., xp_q, x7] € RN*T is multivariate time series data
where N denotes the number of sensor variables, and T repre-
sents the total length of the time series. Since the model re-
quires fixed-size time series inputs for training, the sliding
window method is employed to transform the data into fixed-
size samples X = [X;_y41, --» X¢—1, X¢] where w is the win-
dow size. The RUL at the final time point t of the window is
set as y € R. We denote the labeled source domain data as
Ds = {Xs, ¥s} and the unlabeled target domain data as Dy =
{xr}. The purpose of this study is to accurately predict y; by
aligning the features extracted during training on Xg with X;.

B. Decomposed Degradation Pattern Alignment

1) Time-series decomposition: Model captures equipment
degradation by decomposing time-series sensor data into
trend and seasonal components. The trend component reflects
the overall change in sensor values over time, while the
seasonal data represents periodic patterns after removing the
trend. If degradation originates from the same underlying
cause, the trend in sensor values is expected to exhibit similar
behavior. Furthermore, abnormal operation caused by
degradation may distort the periodic patterns observed during
normal operation. By decomposing the data and extracting
representations for each component, the degradation state of
the equipment can be effectively identified, enabling more
accurate predictions of the RUL.

The decomposition process is based on the Series Decom-
position Block from the Autoformer [9]. To extract the trend
component, padding is added to the beginning of the time-
series data, followed by the application of a Moving Average

method. Padding is used to preserve the length of the time
series. Subsequently, the seasonal component is obtained by
subtracting the extracted trend component from the original
time series. It is as follows:

{xtr = AvgPool(Padding(x)) 1)
Xse = X — X¢r

where X, and x5, € RV*T denotes the trend component and
seasonal component, respectively.

2) Trend degradation aware module: This module is
designed for the purpose of capturing the gradual sensor
degradation trend over time. Using x;, as input, candidate
segments are generated by gradually increasing the time span
from the end of the time series by 7 intervals, which can be
flexibly adjusted. Additionally, nt is set to be equal to w as
follows:

Ry = [Xp—ga1itr oo Xekra1:tr o0 Xe—nrattler
= [Xeors1itr ooor Xemkra1:tr oo Xe—wr1:t e (2)

Candidate segments are generated for each sensor indi-
vidually because, even under the same degradation condition,
the starting point of degradation may vary for each sensor.
Subsequently, a 1D Convolution neural network (1D-CNN)
block with an identical structure is applied to each sensor seg-
ment to extract local representations hy, as follows:

hy = f(%t—krs1:00) 3)

where 0 denotes the parameter of 1D-CNN block. We can
obtain h = {h,, ..., hy, ..., h,,} by applying to each segment.
Finally, the representations of each segment are processed us-
ing self-attention to obtain the importance weights of seg-
ments for each sensor as follows:
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in which W¢, WK WV are trainable projection parameters
and \/_h is the scaling factor.

3) Periodic pattern distortion aware module: Periodic
patterns embedded in sensor signals can be distorted under
abnormal operating conditions. Seasonal component window
X, 1s divided into multiple patches of size p, represented as
follows:

Xse = [xl:p'xp+1:2p "-'x(M—l)p+1:Mp]se

= [pl;pz;--'ﬁpM] (5)
where p; is i-th patch and M is the number of patches. Sub-
sequently, cosine similarity s = sim(p;, p;) = %

il 1Py

computed for each combination of patches. Under normal op-
erating conditions, cosine similarity remains high and con-
sistent, but under abnormal conditions, it becomes distorted
and decreases.

4) Sensor associative structure alignment: Using the
weights calculated through Trend degradation aware module,
the associative structure between sensors is derived. To
account for changes in a specific sensor’s trend, variations in
other sensors exhibit a certain time delay. Furthermore, to
emphasize strong inter-sensor relationships and suppress
weaker relationships, the sparsemax function was
employed. Therefore, the associative structure between ith
sensor and jth sensor, considering time delay, is defined as
follows:

i.nl
eg.:||2i|-ﬁ2fn
k
eV ={el, e, .. el .. e}
B ={B".B" ..BY,...B"} 6)
= sparsemax({e'!,e?,...,eY, ...,eN})

The sensor associative structure 8 reﬂects the trend deg-
radation pattern. Finally, the sensor associative structures
from the source and target domains are aligned using the
Maximum Mean Discrepancy (MMD) loss function, which
can be expressed as follows:

Lymp =

—ypi-—3p O

[xs] [xT]

C. RUL Prediction

The sensor associative structure f8, reflecting the trend
degradation pattern, and representing periodic pattern distor-
tion s, are concatenated to form the final feature U =
concat(B,s). The final feature U is passed through Multi-
layer perceptron (MLP) regressor to generate the RUL predic-
tion value, expressed as follows:

Jprea = MLP(U;0Y) 8

where Y denotes the parameters of the MLP regressor. The
regression loss function is defined using Mean Squared Error
(MSE) as follows:

Lpy, = Z(j}pred - Ytrue) 9

During training, the MMD loss function, and the regres-
sion loss function are jointly optimized. The final training loss
L function is expressed as follows:

L=Lpy, +V - Lymp (10)

where y denotes hyper-parameter as scaling factor.

III. EXPERIMENTS

A. Dataset

We utilized the C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) benchmark dataset [12] to
evaluate the domain adaptation performance of our proposed
model. As summarized in Table I, the dataset consists of four
subsets: FD001, FD002, FD003, and FD004, which differ in
terms of working conditions, fault types, and number of en-
gines. Specifically, FD0OO1 and FD002 were collected under
High-Pressure Compressor (HPC) degradation scenarios,
while FD003 and FD004 include data from both HPC degra-
dation and Fan degradation scenarios. The sensor data col-
lected for modeling damage propagation consists of measure-
ments from 21 sensors, including temperature, pressure, and
speed. Each of the four subsets exhibits distinct variations in
sensor data, resulting in differing distributions across the sub-
sets.

TABLE I
DESCRIPTION OF C-MAPSS DATASET
Dataset FDO001 FD002 FD003 FD004
# Training engine units 100 260 100 249
# Testing engine units 100 259 100 248
# Operating conditions 1 6 1 6
# Fault modes 1 1 2 2

B. Baselines

We compared the performance of three domain adaptation
for RUL prediction models, ADA-RUL [11], LSTM-DANN
[7], and CADA [8], along with the model SASA [10] that mo-
tivated our methodology. Since the SASA is designed for gen-
eral time series domain adaptation tasks, we modified the pre-
dictor component into an RUL regressor to adapt it for our
experiments. All experiments were conducted five times using
different random seeds, and the average performance over
these runs was reported.



TABLE I

RESULTS OF EXPERIMENTS

Metric RMSE Score

Method LDiTI\I;?\; ADARUL CADA SASA Proposed LDiTI\I;/II\; ADARUL CADA SASA Proposed
RS 36.96 2110 19.62 1849 16.90 135,053 4551 2174 1765 1,201
FDO001->FD003 41.08 31.07 38.82 1837 17.95 18,621 5.880 10,571 1.492 947
FDOOI>FD004 43.26 36.59 31.19 20.01 18.11 20,538 17,037 11,629 2.485 2,379
FDO002->FD001 2952 17.85 13.95 14.42 13.13 15,745 705 344 463 318
FD002->FD003 38.89 32.68 34.09 23.00 19.77 66,547 16,089 5,663 1442 1,013
FD002->FD004 32.90 3252 3539 2117 22.90 60,778 23299 19.876 2,835 3311
FDO003->FD001 2551 3472 20.67 2028 21.00 7,095 30817 1901 1,939 1,664
FDO03>FD002 43.99 3751 2107 21.28 21.04 94,730 160,628 18,389 4,847 6.023
FD003->FD004 4361 26.97 21.82 20.81 17.73 137,642 9842 3,868 3.407 2,109
FDO04->FD001 27.80 38.14 22.44 19.59 19.25 19,200 71217 11,164 1,334 1387
FDO04->FD002 2628 36.41 18.63 12.78 17.60 37.869 50,331 4,583 3338 3235
FDO004->FD003 31.03 23.08 14.57 14.97 13.75 13,636 1662 967 734 393

C. Evaluation metric

To evaluate the performance of RUL prediction, we use
two metrics: Root Mean Squared Error (RMSE) and Score.
RMSE measures the difference between the predicted RUL
and the actual RUL and is calculated using the following equa-

tion:
RMSE = ’—1 = (A' - ')2 (11)
N i=1 .VL yl

where J; and y; denotes the predicted RUL and true RUL, re-
spectively. RMSE metric squares the differences, which
means that it equally weights overestimation and underesti-
mation, providing an indication of how close the predictions
are to the actual values. In contrast, the Score metric was in-
troduced in the PHMOS Data Challenge [12] and is defined as
follows:

v (5 f

voe\ 13 , i (P; < y;
Score = =1 . (YL YL)
Yi~Yi

( ) (12)
22ig)
évzle 10 ) lf(YLZYL)
The Score metric assigns different penalties to early and
late RUL predictions. From a maintenance perspective, early
predictions may lead to unnecessary costs, while late predic-
tions can result in critical issues such as machine failure or
operator safety risks. Therefore, higher penalties are imposed
on late predictions.

D. Result and analysis

Table I summarizes the domain adaptation results of the
proposed method compared to comparison models. The eval-
uation was conducted across 12 scenarios, involving domain
adaptation between the four subsets, FD001, FD002, FD003,
and FD004, as source and target domains. The bolded num-
bers represent the highest performance, while the underlined
numbers indicate the second-best performance.

The results demonstrate that domain adaptation perfor-
mance is relatively higher between domains with the same
fault type (i.e., FD001, FD002 and FD003, FD004) compared
to domains with different fault types. Notably, the proposed
method exhibits robust performance even in scenarios with
significant distribution differences between source and target
domains, outperforming the baseline models. This superior
performance can be attributed to the decomposition of sensor
data, which allows the model to capture and align domain-in-
variant trend degradation effectively. Additionally, the
method captures domain-specific seasonal degradation, which

further enhances its ability to detect abnormal states, resulting
in more accurate RUL predictions.

IV. CONCLUSION

In this paper, we propose a novel domain adaptation ap-
proach for RUL prediction by capturing decomposed degra-
dation patterns and aligning sensor associative structures be-
tween the source and target domains. This approach effec-
tively captures the domain-invariant relationships between
sensors in trend degradation patterns and incorporates the im-
pact of periodic pattern distortion in abnormal state, thereby
contributing to improved RUL prediction performance. Our
approach is validated on the C-MAPSS dataset across 12 do-
main adaptation scenarios, demonstrating superior RUL pre-
diction performance. Notably, it exhibits robust results even
in cases with significant domain distribution discrepancies.

In future work, we consider three potential improvements.
First, we explore methods for aligning periodic pattern distor-
tions across domains under abnormal operating conditions.
While the trends in sensor value changes due to performance
degradation may be similar across domains, the distorted pe-
riodic patterns can vary significantly. This aspect is particu-
larly critical for equipment dominated by vibration data, such
as bearings, where extracting domain-invariant representa-
tions is essential. Second, we extend domain adaptation exper-
iments in scenarios involving multiple fault types. For exam-
ple, the N-CMAPSS dataset includes six fault types, and we
leverage this dataset for additional experiments to evaluate the
robustness and generalizability of our approach. Lastly, we in-
corporate recent domain adaptation models for RUL predic-
tion as baselines to validate timeliness. Examples include SEA
[13], which aligns sensor correlations via graph structures, and
MC-DANN [14], which aligns differentiated subspaces across
domains.
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