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Abstract—In complex manufacturing processes, multiple 

sensors have been installed on the machine, enabling the data-

driven Remaining Useful Life (RUL) prediction. Timely RUL 

predictions reduce costs, minimize idle time, and prevent cas-

cading failures in interconnected systems. While high-perfor-

mance deep learning models have improved RUL prediction ac-

curacy, domain shifts caused by changes in equipment or oper-

ating environments often lead to prediction failures. Domain ad-

aptation techniques have been introduced to address this issue, 

yet they often struggle to align the degradation patterns embed-

ded in run-to-failure data when extracting domain-invariant 

features. This study presents a novel approach that decomposes 

time-series sensor data into trend and periodic components, ex-

tracts adapted representations for each, and effectively aligns 

them to improve cross-domain RUL prediction performance. 

Our proposed method demonstrates superior RUL prediction 

performance across 12 cross-domain scenarios of the C-MAPSS 

dataset compared to four baseline models. Notably, our ap-

proach proves to be robust and effective in accurately predicting 

RUL, even in scenarios with significant distributional differ-

ences between domains. 

Keywords—Domain adaptation, remaining useful life (RUL) 

prediction, prognostics and health management (PHM), trans-

fer learning, time-series decomposition 

I. INTRODUCTION 

Prognostics and Health Management (PHM) has emerged 
as an essential field for optimizing equipment operation and 
maintenance. The primary objective of PHM is to facilitate 
predictive maintenance by forecasting the future condition of 
equipment based on its current operational state [1]. In 
particular, the prediction of Remaining Useful Life (RUL), 
which is defined as the time remaining from the current point 
until failure, is the most extensively studied domain within 
predictive maintenance. Accurate RUL prediction can 
effectively minimize lead time, reduce unexpected downtime, 
and optimize maintenance costs [2]. However, predicting 
RUL under complex and dynamically changing operating 
conditions remains a challenging task because RUL is 
influenced by numerous operational conditions. 

Recently, data driven methods, which do not require 
domain-specific expertise, have demonstrated promising 
performance in RUL prediction across various industrial 
environments. Recurrent neural network (RNN) architectures, 
including Long Short-Term Memory (LSTM) networks [4] 
and Gated Recurrent Units (GRU) [5], have been effectively 
applied for RUL prediction capturing temporal dependencies 

in sequential sensor data analysis. Transformer-based models 
have also been employed for their capability to handle 
complex sequence-to-sequence relationships, with applications 
such as lithium-ion battery RUL prediction showcasing their 
strengths in modeling both short-term and long-term 
dependencies [6]. Despite these efforts, when the target 
equipment for model application differs or there are 
discrepancies between the training and testing sensor data 
environments, models may fail to accurately predict RUL. 
These challenges are commonly known as domain shift 
problems. 

Domain adaptation methods address domain shift prob-
lems by aligning knowledge from existing domains with un-
seen domains for effective RUL prediction. For instance, 
domain-adversarial approaches leveraging LSTM architec-
tures have been used to align feature spaces across domains, 
capturing temporal dependencies [7]. Additionally, contrastive 
adversarial domain adaptation techniques have been 
employed to reduce domain discrepancies with InfoNCE loss 
[8]. However, these approaches cannot consider trend and 
periodic pattern of degradation and rely on unstable 
adversarial training, limiting effectiveness in extracting 
domain-invariant representations for RUL prediction from 
degraded time-series sensor data. 

To address these challenges, we propose the decomposed 
degradation pattern alignment method. Specifically, we lever-
age the domain-invariant nature of the trend degradation pat-
tern’s inter-sensor associative structure to enhance RUL pre-
diction. Additionally, we capture intervals where periodic pat-
terns are distorted, reflecting the degraded state of the system. 
The decomposition method for time series is inspired by the 
Moving Average approach used in Autoformer [9], while the 
extraction of inter-variable associative structures is motivated 
by the Sparse Associative Structure Alignment (SASA) 
framework [10]. 

The key contributions of the method are as follows: 

• Decomposing the equipment’s degradation state into 
trend degradation and periodic pattern distortion en-
ables more accurate RUL prediction. 

• Aligning degradation trend features across domains 
enhances the effectiveness of domain adaptation. 

• Achieved superior RUL prediction performance 
across 12 cross-domain scenarios in the C-MAPSS 
dataset, demonstrating robust prediction capability 
even in cases with significant domain distribution 
differences. 
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II. METHODOLOGY 

In this section, we present the proposed methodology, 

which is divided into two parts: degradation pattern extrac-

tion and alignment followed by RUL prediction. The overall 

framework of the model can be found in Fig. 1. 

A. Problem Definition 

The sensor data collected for RUL prediction � =���, … , ��	�, ��
 ∈ ℝ
×�  is multivariate time series data 
where � denotes the number of sensor variables, and � repre-
sents the total length of the time series. Since the model re-
quires fixed-size time series inputs for training, the sliding 
window method is employed to transform the data into fixed-
size samples � = ���	���, … , ��	�, ��
 where �  is the win-
dow size. The RUL at the final time point � of the window is 
set as � ∈ ℝ. We denote the labeled source domain data as �� = {��, ��} and the unlabeled target domain data as �� ={��}. The purpose of this study is to accurately predict ��  by 
aligning the features extracted during training on �� with ��. 
B. Decomposed Degradation Pattern Alignment 

1) Time-series decomposition: Model captures equipment 

degradation by decomposing time-series sensor data into 

trend and seasonal components. The trend component reflects 

the overall change in sensor values over time, while the 

seasonal data represents periodic patterns after removing the 

trend. If degradation originates from the same underlying 

cause, the trend in sensor values is expected to exhibit similar 

behavior. Furthermore, abnormal operation caused by 

degradation may distort the periodic patterns observed during 

normal operation. By decomposing the data and extracting 

representations for each component, the degradation state of 

the equipment can be effectively identified, enabling more 

accurate predictions of the RUL. 

The decomposition process is based on the Series Decom-

position Block from the Autoformer [9]. To extract the trend 

component, padding is added to the beginning of the time-

series data, followed by the application of a Moving Average  

 

 

 

method. Padding is used to preserve the length of the time 

series. Subsequently, the seasonal component is obtained by 

subtracting the extracted trend component from the original 

time series. It is as follows: 

 ���� = �� !""#$!%&&'( )�*+�,- = � − ���                                 (1) 

where ��� %(& �,- ∈ ℝ
×� denotes the trend component and 

seasonal component, respectively. 

2) Trend degradation aware module: This module is 

designed for the purpose of capturing the gradual sensor 

degradation trend over time. Using 0��  as input, candidate 

segments are generated by gradually increasing the time span 

from the end of the time series by 1 intervals, which can be 

flexibly adjusted. Additionally, (1 is set to be equal to � as 

follows: 

 �2�� = ���	3��:� , … , ��	53��:� , … , ��	63��:�
�� 

                        = ���	3��:� , … , ��	53��:� , … , ��	���:�
�� (2) 

Candidate segments are generated for each sensor indi-

vidually because, even under the same degradation condition, 

the starting point of degradation may vary for each sensor. 

Subsequently, a 1D Convolution neural network (1D-CNN) 

block with an identical structure is applied to each sensor seg-

ment to extract local representations 75 as follows: 

 75 = 8)��	53��:�; :*  (3) 

where : denotes the parameter of 1D-CNN block. We can 

obtain 7 = {7�, … , 75, … , 76} by applying to each segment. 

Finally, the representations of each segment are processed us-

ing self-attention to obtain the importance weights of seg-

ments for each sensor as follows: 

 

 

Fig. 1. Overview of our model 
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F = {G�, GH, … , G 5 , … , G6}                
   = I"8�J%�);�, ;H, … , ;5, … , ;6* (4) 

K = = G5
6

5E�
∙ )ℎ5 ∙ ?M*                       

in which ?@ , ?B , ?M  are trainable projection parameters 

and C&D is the scaling factor. 

3) Periodic pattern distortion aware module: Periodic 

patterns embedded in sensor signals can be distorted under 

abnormal operating conditions. Seasonal component window 0,- is divided into multiple patches of size N, represented as 

follows: 

 �2,- = O��:P, �P��:HP … , �)Q	�*P��:QPR,- 

  = �S�, SH, … , SQ
                         (5) 

where ST is '-th patch and U is the number of patches. Sub-

sequently, cosine similarity VTA = sim)ST, SA* = SZ ∙ S[||SZ||⋅||S[|| is 

computed for each combination of patches. Under normal op-

erating conditions, cosine similarity remains high and con-

sistent, but under abnormal conditions, it becomes distorted 

and decreases. 

4) Sensor associative structure alignment: Using the 

weights calculated through Trend degradation aware module, 

the associative structure between sensors is derived. To 

account for changes in a specific sensor’s trend, variations in 

other sensors exhibit a certain time delay. Furthermore, to 

emphasize strong inter-sensor relationships and suppress 

weaker relationships, the IN%^I_J%�  function was 

employed. Therefore, the associative structure between 'th 

sensor and `th sensor, considering time delay, is defined as 

follows: 

_5TA = KT ⋅ ℎ5A||KT|| ⋅ ||ℎ5A ||                                                   
aTA = b_�TA , _HTA , … , _5TA , … , _6TAc                                 

 dT = {dT�, dTH, … , dTA , … , dT
}                                 (6) 

  = IN%^I_J%�){aT�, aTH, … , aTA , … , aT
}* 

The sensor associative structure d reflects the trend deg-

radation pattern. Finally, the sensor associative structures 

from the source and target domains are aligned using the 

Maximum Mean Discrepancy (MMD) loss function, which 

can be expressed as follows: 

 ℒQQf = ∑ h �|�i| ∑ d�6 − �|�j| ∑ d�6h
6E�  (7) 

C. RUL Prediction 

The sensor associative structure d , reflecting the trend 
degradation pattern, and representing periodic pattern distor-
tion V , are concatenated to form the final feature k =l"(l%�)d, V*. The final feature k is passed through Multi-
layer perceptron (MLP) regressor to generate the RUL predic-
tion value, expressed as follows: 

 �mP�-n = Uo!)k; pq* (8) 

where pq denotes the parameters of the MLP regressor. The 
regression loss function is defined using Mean Squared Error 
(MSE) as follows: 

 ℒrqs = ∑$�mP�-n − ���t-+ (9) 

 During training, the MMD loss function, and the regres-
sion loss function are jointly optimized. The final training loss  ℒ function is expressed as follows: 

 ℒ = ℒrqs + v ∙ ℒQQf (10) 

where v denotes hyper-parameter as scaling factor. 

III. EXPERIMENTS 

A. Dataset 

We utilized the C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) benchmark dataset [12] to 
evaluate the domain adaptation performance of our proposed 
model. As summarized in Table Ⅰ, the dataset consists of four 
subsets: FD001, FD002, FD003, and FD004, which differ in 
terms of working conditions, fault types, and number of en-
gines. Specifically, FD001 and FD002 were collected under 
High-Pressure Compressor (HPC) degradation scenarios, 
while FD003 and FD004 include data from both HPC degra-
dation and Fan degradation scenarios. The sensor data col-
lected for modeling damage propagation consists of measure-
ments from 21 sensors, including temperature, pressure, and 
speed. Each of the four subsets exhibits distinct variations in 
sensor data, resulting in differing distributions across the sub-
sets. 

B. Baselines 

 We compared the performance of three domain adaptation 
for RUL prediction models, ADA-RUL [11], LSTM-DANN 
[7], and CADA [8], along with the model SASA [10] that mo-
tivated our methodology. Since the SASA is designed for gen-
eral time series domain adaptation tasks, we modified the pre-
dictor component into an RUL regressor to adapt it for our 
experiments. All experiments were conducted five times using 
different random seeds, and the average performance over 
these runs was reported. 

TABLE Ⅰ 

DESCRIPTION OF C-MAPSS DATASET 

Dataset FD001 FD002 FD003 FD004 

# Training engine units 100 260 100 249 

# Testing engine units 100 259 100 248 

# Operating conditions 1 6 1 6 

# Fault modes 1 1 2 2 

 



C. Evaluation metric 

To evaluate the performance of RUL prediction, we use 
two metrics: Root Mean Squared Error (RMSE) and Score. 
RMSE measures the difference between the predicted RUL 
and the actual RUL and is calculated using the following equa-
tion: 

 wUxy =  z�
 ∑ )�mT − �T*H
TE�  (11) 

where �mT and �T denotes the predicted RUL and true RUL, re-
spectively. RMSE metric squares the differences, which 
means that it equally weights overestimation and underesti-
mation, providing an indication of how close the predictions 
are to the actual values. In contrast, the Score metric was in-
troduced in the PHM08 Data Challenge [12] and is defined as 
follows: 

 xl"^_ =  {∑ _|}Z~}�Z�� 	��
TE� , if )�mT < �T*
∑ _|}�Z~}Z�� 	��
TE� , if )�mT ≥ �T* (12) 

The Score metric assigns different penalties to early and 
late RUL predictions. From a maintenance perspective, early 
predictions may lead to unnecessary costs, while late predic-
tions can result in critical issues such as machine failure or 
operator safety risks. Therefore, higher penalties are imposed 
on late predictions. 

D. Result and analysis 

Table Ⅱ summarizes the domain adaptation results of the 
proposed method compared to comparison models. The eval-
uation was conducted across 12 scenarios, involving domain 
adaptation between the four subsets, FD001, FD002, FD003, 
and FD004, as source and target domains. The bolded num-
bers represent the highest performance, while the underlined 
numbers indicate the second-best performance. 

The results demonstrate that domain adaptation perfor-
mance is relatively higher between domains with the same 
fault type (i.e., FD001, FD002 and FD003, FD004) compared 
to domains with different fault types. Notably, the proposed 
method exhibits robust performance even in scenarios with 
significant distribution differences between source and target 
domains, outperforming the baseline models. This superior 
performance can be attributed to the decomposition of sensor 
data, which allows the model to capture and align domain-in-
variant trend degradation effectively. Additionally, the 
method captures domain-specific seasonal degradation, which 

further enhances its ability to detect abnormal states, resulting 
in more accurate RUL predictions. 

IV. CONCLUSION 

In this paper, we propose a novel domain adaptation ap-
proach for RUL prediction by capturing decomposed degra-
dation patterns and aligning sensor associative structures be-
tween the source and target domains. This approach effec-
tively captures the domain-invariant relationships between 
sensors in trend degradation patterns and incorporates the im-
pact of periodic pattern distortion in abnormal state, thereby 
contributing to improved RUL prediction performance. Our 
approach is validated on the C-MAPSS dataset across 12 do-
main adaptation scenarios, demonstrating superior RUL pre-
diction performance. Notably, it exhibits robust results even 
in cases with significant domain distribution discrepancies. 

In future work, we consider three potential improvements. 
First, we explore methods for aligning periodic pattern distor-
tions across domains under abnormal operating conditions. 
While the trends in sensor value changes due to performance 
degradation may be similar across domains, the distorted pe-
riodic patterns can vary significantly. This aspect is particu-
larly critical for equipment dominated by vibration data, such 
as bearings, where extracting domain-invariant representa-
tions is essential. Second, we extend domain adaptation exper-
iments in scenarios involving multiple fault types. For exam-
ple, the N-CMAPSS dataset includes six fault types, and we 
leverage this dataset for additional experiments to evaluate the 
robustness and generalizability of our approach. Lastly, we in-
corporate recent domain adaptation models for RUL predic-
tion as baselines to validate timeliness. Examples include SEA 
[13], which aligns sensor correlations via graph structures, and 
MC-DANN [14], which aligns differentiated subspaces across 
domains. 
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