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Abstract—This study introduces a novel architecture designed
to enhance the performance and cost-efficiency of Large Lan-
guage Models (LLMs) in autonomous ship communication sys-
tems. Autonomous ships require high accuracy and rapid re-
sponse, yet their operational constraints—limited computational
resources and lack of internet connectivity—pose significant
challenges for traditional LLMs. To address these issues, we
integrate Retrieval-Augmented Generation (RAG) with Decision
Trees. This integration improves the efficiency of RAG’s data
retrieval and processing, significantly reduces the computational
overhead of LLMs, and enhances response accuracy. Evaluations
using 200 hours of real-world maritime communication data
demonstrate that the proposed system outperforms existing meth-
ods in speed and accuracy under resource-constrained conditions.
This research advances the practical application and reliability
of LLMs in autonomous ship communication, providing a strong
foundation for improving automation and ensuring safety in the
maritime industry.

Index Terms—LLM, RAG, Decision Tree, Communication
System, Autonomous ship,

I. INTRODUCTION

Recent advancements in LLMs have demonstrated remark-
able achievements in the field of natural language processing.
The high performance and flexibility of LLMs have the
potential to assist or replace human operators across various
industrial domains [1]. Similarly, the maritime industry has
begun exploring the adoption of LLM systems, particularly
for autonomous ships.

Autonomous ships, which can perceive their surroundings,
plan routes, and avoid hazards with minimal human inter-
vention, are emerging as a cornerstone of next-generation
maritime. According to the International Maritime Organi-
zation’s (IMO) MASS (Maritime Autonomous Surface Ship)
trial guidelines, autonomous ship technology is classified
into four levels based on the degree of human involvement.
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At Level 1, all operational decisions are made by humans
onboard, with automated systems providing support through
route suggestions and situational awareness. Level 2 allows
ships to support significant aspects of autonomous operation,
but critical decisions, such as communication and accident
response, remain under human control. Level 3 envisions
operations where human involvement on the bridge is entirely
optional under normal conditions, although remote monitor-
ing and control are required to handle abnormal situations.
Level 4 represents full autonomy, where ships can operate
independently in all scenarios without human intervention.
At present, autonomous ship technology is confined to Level
2. To elevate their operational capability to Level 3, compa-
nies worldwide are actively conducting research in various
areas. Among these, the development of automated VHF
radio communication systems for autonomous ships has been
frequently highlighted as a pivotal technology for advancing
their operational autonomy [2]—[5].

Integrating LLMs into the maritime domain poses signifi-
cant challenges. Chief among these are issues related to the
unique spatial characteristics of the maritime environment,
including the high costs of deployment, hallucination errors,
and the generation of unstructured responses with unnecessary
information. At sea, internet access is unreliable, and man-
aging physical resources is difficult. As such, systems like
the Global Maritime Distress and Safety System (GMDSS),
critical for autonomous ships, must operate without internet
connectivity, and this includes communication devices. Addi-
tionally, onboard computer systems rely on industrial-grade
hardware designed for durability and reliability, but these
systems generally have lower CPU and GPU performance
compared to computers used in land-based research. Reliable
and standalone LLM systems require substantial computa-



tional resources to ensure accurate performance. In the case
of VHF radio communication, which is essential for safe
navigation, route adjustments, and collision avoidance, quick
and reliable responses are critical. However, building an LLM
system capable of meeting these demands can cost tens of
thousands to millions of dollars, even on land. Reducing the
cost by scaling down computational resources may lead to
increased hallucination issues, which in turn can compromise
system reliability. To mitigate hallucinations, LLMs often
include excessive information in their responses, exacerbating
the problem of unstructured responses.

In summary, the automation of VHF radio communication
for autonomous ships, a system is required that can function
reliably without internet access, deliver fast and accurate
responses, generate well-structured responses, and operate
efficiently with minimal computational resources at a low
cost. Such systems are expected to integrate components
like communication interfaces, STT (Speech-to-Text), TTS
(Text-to-Speech), and LLMs. However, LLMs face significant
challenges due to their resource demands and the constraints of
the maritime domain. One promising approach to addressing
these challenges is RAG, which combines LLMs with informa-
tion retrieval systems. RAG enhances reliability by providing
domain-specific information before the response generation
process, thus improving the accuracy and relevance of LLM
outputs. This approach has demonstrated its capability to
mitigate issues such as hallucination and high costs in various
applications, suggesting that it holds promise for addressing
similar challenges in the maritime domain.

However, the maritime domain differs fundamentally from
other domains due to its unique spatial constraints. While RAG
can alleviate some issues, such as hallucinations and cost, it
does not inherently ensure structurally appropriate responses.
Unstructured responses often occur when LLMs include ex-
cessive information in their outputs to avoid hallucinations.
This issue is particularly pronounced in smaller LLMs, which
are often necessary for resource-constrained environments like
autonomous ships. Smaller models are more likely to generate
unstructured responses due to their limited capacity to balance
response accuracy and computational efficiency. These limita-
tions in computational resources could potentially be mitigated
through fine-tuning. However, the maritime domain poses
additional challenges. For example, VHF radio communication
data is often restricted due to security concerns, making it
difficult to obtain sufficient data for effective fine-tuning. Even
if such data were available, the small size of models suitable
for deployment on autonomous ships limits the benefits of fine-
tuning. Currently, among LLMs that meet the requirements of
the autonomous ship domain, the Llama 3.1 model with 8B
parameters is one of the few options.

Therefore, in this study, we propose a novel architecture
that combines RAG with Decision Trees to enhance RAG’s
performance and prevent unstructured responses. Decision
Tree-based language models represent one of the most tra-
ditional forms of language modeling. While they lack the
ability to generate responses autonomously, they excel at

selecting predefined responses, making them highly applicable
in various industrial domains. The responses from Decision
Trees can be guided and enforced by their designers, making
them particularly effective for state-specific information re-
sponses. In contrast to LLMs, which are probabilistic language
models that generate responses by predicting context-based
continuations, Decision Tree-based language models rely on
selecting predefined responses for given inputs, functioning
more as response systems rather than generators. This char-
acteristic ensures that Decision Tree-based models do not
produce unstructured responses. The following sections will
explain and compare the operational mechanisms of RAG
and Decision Trees. Interestingly, RAG’s information retrieval
process shares similarities with the response selection process
of Decision Trees, suggesting that their integration is both
logical and effective. By combining RAG with Decision Trees,
the resulting system can retrieve information necessary for
generating responses while the response selection process is
guided by predefined rules set by the designer. This allows
the system to actively participate in response construction of
LLMs, blending the attributes of a response system and a sen-
tence generator. Consequently, the integrated model addresses
the issue of unstructured responses effectively. And the low
computational cost and high accuracy of Decision Trees will
ensure fast response times and high precision, even when used
with smaller LLM models. Conversely, RAG and LLM will
support the response diversity of Decision Trees. Ultimately,
the research outcomes introduced in this study will provide
core technologies for automating VHF radio communication
systems in the domain of autonomous ships.

II. THEORETICAL BACKGROUND
A. LLM:response generation principle

An LLM is one of the most significant innovations in natural
language processing, capable of learning from vast amounts
of text data to understand and generate patterns, contexts,
and relationships between words. LLMs operate based on
the Transformer architecture and Self-Attention mechanisms
[6], [7]. The Transformer structure processes input data in
parallel while learning relationships between words, thereby
efficiently preserving contextual information. This process
consists of two stages: Pre-training and Fine-tuning. In the
Pre-training stage, the model learns general language patterns
using an unsupervised learning approach, while the Fine-
tuning stage involves additional training with domain-specific
knowledge, such as translating environmental inputs or per-
forming question-and-answer tasks [8].

The operational principle of an LLM involves analyzing in-
put sentences and sequentially predicting the most likely word
tokens to generate a response. This method ensures linguistic
continuity, making the model appear capable of human-level
language generation based on its training data. However, such
functionality requires training on extensive datasets, resulting
in large model sizes and significant computational resource
consumption. Additionally, when presented with input that
has low relevance to the data learned during the pre-training



stage, LLMs are prone to generating incorrect or unsupported
answers, a phenomenon known as hallucination.

B. RAG:response generation principle for LLM

RAG is a technology designed to expand the limited
knowledge of LLMs by combining their language generation
capabilities with information retrieval techniques to enhance
the quality of responses. The operational principle of RAG
consists of two main stages. The first stage is the retrieval
phase, where relevant information is searched from an external
database based on the input question [9]. Techniques like
DPR (Dense Passage Retriever) are used in this process,
transforming both the question and the documents stored in
the database into vectors for similarity comparison [10]. For
languages like Korean, Japanese, and English, embedding
techniques such as morphological analysis and one-hot encod-
ing are commonly employed to convert sentences into vectors.
In essence, this process involves comparing the regions in
the multidimensional space pointed to by respective sets of
morphemes. The second is the generation phase, where the
LLM generates a response based on the retrieved information.
During this process, RAG uses the retrieved information as
context, and the LLM creates sentences based on this context.
The context refers to all vector groups within the predefined
context length range specified by the designer, originating from
the region indicated by the question vector. Depending on the
question, multiple contexts can be selected, and their inclusion
can be mutually exclusive based on the design.

The primary role of RAG is to expand and complement
the knowledge of LLMs. RAG enables LLMs to retrieve
and utilize information from external knowledge databases,
supplementing what the LLM has internally learned [11]. This
capability allows RAG to provide updates or domain-specific
data that LLMs cannot independently access. Additionally,
whereas LLMs operate solely on their fixed training data, RAG
can retrieve information from databases or the web in real-
time, making it suitable for dynamic queries. As a result, with
the support of RAG, LLMs can utilize external knowledge
sources without the need to create larger, more complex
models. Instead of developing an enormous LLM containing
all possible knowledge, combining a core language model with
RAG allows the construction of smaller, yet powerful sys-
tems. This demonstrates that RAG can simultaneously achieve
lightweight models and improved reliability. Furthermore, as
RAG enables LLMs to use retrieved information, it provides
clear justifications for responses and mitigates the issue of
hallucinated responses.

However, as mentioned earlier, the maritime domain is
unique compared to other domains due to its spatial and oper-
ational constraints. The maritime environment is characterized
by limited internet access and challenges in resource supply
and management. Consequently, all onboard systems must
operate offline, relying on durable and reliable industrial-grade
computers for computing resources. These constraints neces-
sitate the use of minimized LLM models, such as the Llama
3.1 8B model, which has a size of approximately 34.07GB.

Even with RAG, such models may not completely resolve
hallucination issues. Similarly, fine-tuning is unlikely to yield
significant improvements due to the limited computational
resources available to these smaller models. Moreover, since
the computational cost of response generation rests entirely on
the LLM, the issue of unstructured responses will persist.

Nevertheless, RAG remains a highly effective solution
for enhancing LLM performance. With advancements in its
components, RAG’s capabilities continue to improve. Key
developments include the evolution of DPR, which enables
efficient and accurate information retrieval, the extension of
multimodal capabilities to retrieve and generate not only text
but also other data types such as images and videos, and
the optimization of knowledge databases. The Decision Tree-
based architecture proposed in this paper also contributes to
this progress. By integrating Decision Trees with RAG, the
architecture allows RAG to select intended contexts through
a Decision Tree-optimized database and directly participate in
the construction of LLM responses. This approach addresses
the issue of unstructured responses and ensures more reliable
and trustworthy responses.

C. Decision Tree:response generation principle for Single-
Turn Interaction

The Decision Tree is a rule-based structural approach that
uses a tree-like data structure to navigate predefined paths
based on the given input and determine the appropriate re-
sponse. The operation of a Decision Tree is straightforward:
input data starts at the root node of the tree, and at each node,
specified conditions (if-else) are evaluated to move down to
the subsequent nodes. Ultimately, the process reaches a leaf
node, where the response defined at that node is returned.
For example, the tree might check whether the user’s input
contains specific keywords and select a corresponding path
based on the result. This approach allows developers to define
clear rules, ensuring high reliability and predictability in
structured dialogues or tasks. In this study, the Decision Tree
is applied to single-turn interaction systems, similar to those
supported by general LLMs. Single-turn interaction refers to
a conversational model where a clear and concise response
is provided for a single user input without continuing the
conversation. This model is particularly useful in environments
where immediate and rapid responses are required. Applying
a Decision Tree to single-turn interactions ensures that each
step and response in the dialogue can be explicitly defined,
guaranteeing high reliability. However, this approach lacks
flexibility, making it challenging to handle unexpected inputs
or dynamically incorporate new information.

This response selection method is highly similar to that of
RAG. Each node in a single-turn interaction Decision Tree
represents morphemes that may be included in the question.
In other words, when a question traverses the entire Decision
Tree and reaches a leaf node, it indicates that all relevant
morphemes have been compared and analyzed for response
selection. This process closely resembles RAG’s morpheme
vector comparison and analysis. The key difference lies in how



weights are assigned: while RAG assigns equal weight to all
vector components and compares similarity probabilistically,
the Decision Tree halts further comparisons if the condition
fails at an upper node. This characteristic highlights the
Decision Tree’s lack of flexibility compared to RAG but also
implies that morphemes in upper nodes are more significant,
reflecting the hierarchical dependency of a sentence’s struc-
ture. If Decision Tree and RAG were combined—allowing
RAG to assign different weights to each vector component and
Decision Tree to gain flexibility in response selection—their
respective shortcomings could be mitigated. Such a system
would enable the creation of a more precise and effective
response generation framework.

III. METHOD
A. The relationship between Decision Tree and RAG

This study aims to enhance the performance of LLMs by
integrating Decision Tree with RAG. Before explaining the
methodology, this study will first examine the relationship
between Decision Tree and RAG based on the operational
process of RAG.

To discuss this, it is essential first to understand the re-
sponse selection mechanism of RAG in detail. RAG begins
its process by structurally preparing training data and an
external knowledge base during the initial system setup. Var-
ious knowledge sources, such as documents, databases, web
materials, research papers, and dictionaries, are collected and
divided into appropriately sized text passages as defined by the
designer. For languages like Korean, Japanese, and English,
this process can involve morphological analysis algorithms.
The system then converts these segmented text passages into
vectors (embeddings) and stores them in a multidimensional
space. For example, a document containing the sentence
”Please avoid the ship port-to-port” might be processed using a
morphological analysis algorithm, splitting it into components
such as please,” “avoid,” ’the,” “ship,” “port,” ’to,” ’port,’
and so on. These components are then transformed into
vectors and stored in the multidimensional space. When a
user input is received, the system compares and analyzes
the input vector with the pre-stored vectors using the same
principles. Similarity algorithms such as cosine similarity or
Euclidean distance measurements are commonly employed for
this comparison.

Assuming that Vector P = (p1,po,ps,...,pn) and
Vector Q = (¢1,92,43,---,¢n) exist in a multidimensional
space (p; and g; are embedding integers of morphemes.):
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The vector search process of RAG closely resembles the
node selection process of a Decision Tree chatbot. While
Decision Tree chatbots can be designed in various forms

depending on the developer’s approach, in single-turn interac-
tions like those handled by LLMs, the most common method
involves checking whether the user’s input contains specific
morphemes through conditional statements. Such Decision
Trees are typically configured to achieve higher accuracy
by assigning nodes with morphemes of varying importance
at each depth level, based on real conversation records or
empirical evidence. When a user provides input, the input is
segmented into morphemes, and the Decision Tree is traversed.
At each depth level, the presence of morphemes is checked
repeatedly until the final response is determined.

Hard
restructed

2 Context is returned

answer

Input AABBCCFFHC

Embedding [var4, var2, var3, ...]
vector
Vector
database

> [var8, var3, var5, ...]
[var4, var2, var3, ...]
[var6, var9, var11, ...]

Doc2: Context-2 \

= [var : Doc3: Context-2

[varE [var9, var6, vars, ...]

var [var11, var2, var4, ...] H

[var6, var2, var®, ...]

Doc2: Context-1

[var4, var2, var3, ...]
[var26, var11, var7, ...] —
[var10, var6, var18, ...]

Fig. 1: RAG that refer to common documents

Simple
restructed

Selected vector

answer

Input AABBCCFFHC

Embedding [var4, var2, var3, ...]
vector
Vector
database

Decis™—~ ™~ =

Decision Tree Depth-1

Var 4,

Decision Tree
Depth-2: var 2,

Decis’~~ ™~

Decsion Tree
Depth-3: var 3, ...

Decision Tree Depth-1

Decs|

If only one input,
Also one vector selected

var 5, and
Decsion Tree Depth-2

Fig. 2: RAG that refer to Decision Tree documents

The critical difference between RAG and a Decision Tree
lies in the prioritization of morphemes during the vector
selection process. In a Decision Tree, each morpheme has
a distinct priority, whereas RAG uses vectors composed of
morpheme sets with uniform priority. RAG ensures flexibility
in response selection by matching the user’s input vector to the
most similar document vector stored in the multidimensional



space. However, if the multidimensional space contains mul-
tiple vectors with similar morphemes but different meanings,
or if the vector dimensions are insufficient, RAG may fail to
guarantee accuracy.

Furthermore, while a Decision Tree directly uses the data
stored in the leaf node as the response, RAG selects surround-
ing documents based on the embedded input vector within
the context length and assists the LLM in reconstructing the
response. While this operation of RAG can partially mitigate
issues such as LLM hallucination and computational costs, it
does not directly participate in the response generation process.
As a result, when the computational resources of the LLM are
insufficient, RAG cannot fully guarantee the reliability of the
responses.

The issue of computational resources for LLMs becomes
even more pronounced in scenarios where extremely small
models, such as those required in the domain addressed in
this study, must be used. If the domain has very limited
data, making fine-tuning impossible, and is also closed off,
leaving the LLM with little to no knowledge related to the
expected responses for user inputs, the information provided
by RAG could potentially create confusion. This is due to the
inherent characteristic of LLMs to "answer comprehensively.”
Specifically, LLMs operate by interpreting inputs based on
context, but when presented with entirely unfamiliar contexts
or methods of interpretation, and without any information
falling within the range of comprehensive response generation,
probabilistic selection might lead the LLM to distrust and dis-
regard the information retrieved by RAG. This could, in turn,
result in new hallucinations or contribute to the generation of
unstructured responses.

Therefore, this study proposes a novel architecture where
RAG references a Decision Tree as its source of informa-
tion. Traditional RAGs, which refer to general documents or
databases, convert all sentences or content within a specific
information set into vectors with equal priority, selecting
the context region corresponding to the input vector as the
reference document for generating a response. In contrast,
when RAG references a Decision Tree, each sentence or piece
of content corresponds to individual morphemes related to
specific inputs or responses. As a result, the selected context
region comprises a set of morphemes. In the former case, the
LLM generates a response that probabilistically incorporates
the selected context region, while in the latter case, the LLM
can directly use the final node of the Decision Tree—pointed
to by the selected morpheme set—as the response. This final
node represents a response guided by the designer for the
given input. Thus, the LLM transitions from functioning solely
as a sentence generator to also possessing the properties of
a response system. Consequently, when RAG references a
Decision Tree, the information selected as the context region
and provided to the LLM is significantly reduced, lowering the
computational cost for the LLM. This allows RAG to more
effectively address the hallucination and computational cost
issues associated with LLMs, enabling even extremely small-
scale models to maintain reliability. Furthermore, the issue of

unstructured responses is also resolved.

B. Data Processing and Decision Tree Design

This study reflects the characteristics of the target domain
in designing the Decision Tree by processing and establishing
design criteria based on the features of Korean sentence
structures and maritime communication data. The research
involved converting 200 hours of VHF radio communication
records from coastal vessels operating in South Korea into text.
These records were analyzed and classified into 103 primary
categories by maritime navigation experts. This classification
was conducted to accurately reflect common communication
patterns and critical communication information required dur-
ing maritime operations.

During the data processing phase, text data was analyzed at
the morpheme level using the Kkma morpheme analyzer from
the KoNLPy library. The text was segmented into components
such as subject (S), modifier (M1), adverbial phrase (M2),
predicate (P), and object (O) based on the standard word
order in Korean. Semantic priorities were assigned within each
sentence. For instance, in maritime communication, the clear
identification of the sender and receiver is critical, which is
why the subject was set as the top node in the Decision Tree
[12].

In the design of the Decision Tree, hierarchical semantic
feature descriptions were applied to construct the structure
of the nodes [13], [14]. Each node was composed of mor-
pheme units, with essential components of Korean sentences
distinguished from supplementary information and assigned to
higher-level and lower-level nodes, respectively. Specifically,
each element was evaluated for its substantive meaning and
relational meaning through semantic feature analysis. Substan-
tive meaning refers to the critical elements that determine
the core meaning of a sentence, while relational meaning
supports these substantive elements. Since Korean sentences
are interpreted around predicates, substantive and relational
elements play a crucial role in guiding the interpretation of
the predicate.

The structure of the designed Decision Tree is shown
in Figure 3. This design aims to maximize the accuracy
of system responses in the maritime navigation domain. In
particular, the criteria for node traversal are based on the
importance and relevance of sentence components, optimizing
the analysis of user input to deliver accurate responses. The
study also accounted for variability in sentence patterns to
design a structure that can flexibly handle communication
errors or irregular inputs. This flexibility is achieved through
elements such as endings or particles commonly used in the
Korean language. As a result, the Decision Tree effectively
processes complex sentence structures and provides highly
accurate responses. In conclusion, the RAG referencing the
Decision Tree as a preprocessing document plays a crucial
role in automating VHF radio communication for ships by
generating reliable responses with minimal computational re-
sources.
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C. Overall System Configuration

The final system design incorporates a Decision Tree, RAG,
and LLM. At a high level, the principle of determining output
based on user input remains the same as the conventional
RAG-based LLM system. However, the type of data stored
and the format in which context is returned after RAG
translates and creates vectors from reference documents has
been modified. Unlike the conventional architecture where the
LLM needed to reconstruct responses within the context range
provided by RAG, the updated architecture determines the
response group during the RAG process itself. This allows
the LLM to provide clear and efficient responses. The LLM’s
role is simply integrating the pre-determined response group
using simple connectors, such as conjunctions.

While integrating the Decision Tree with RAG might appear
to limit the LLM’s flexibility in responses, the RAG does
not select a context if there is no relevant information in the
vector space for the given input. Additionally, the Decision
Tree contains only the essential semantic components required
for each conversation type, minimizing the risk of selecting
incorrect contexts due to excessive documents. Even though
the Decision Tree fixes RAG’s response types, the LLM
retains the flexibility to support free-form conversations for
unexpected conversational flows, as long as the Decision Tree
has not explicitly addressed them. This flexibility can also
be maintained in intended conversational flows, depending on
how the Decision Tree’s prompts are configured during RAG’s
design phase. As a result, the Decision Tree, RAG, and LLM
complement one another, preserving their respective strengths
while addressing each other’s weaknesses.

RESULT

The desktop system used to obtain the results in this study
comprised an AMD Ryzen 7 9700X processor, a GeForce
RTX 4080 SUPER 16GB graphics card, and four DDRS5
PC5-44800 32GB memory modules. This setup represents a
typical workstation used for office and research purposes. The
dataset utilized in the research consisted of 200 hours of actual
radio communication dialogue recorded during maritime ves-
sel operations. When converted into text, the actual dialogue
exchanges, excluding silent intervals, amounted to fewer than
1,000 instances. This reflects the typical characteristics of
domains with limited data frequency and restricted public
availability due to security concerns. Thus, the dataset was
highly suitable for validating the research goal of achieving
high performance with constrained data and resources.

Evaluating the performance of LLMs is inherently complex
and challenging to define. Sentence interpretation can vary
depending on individual perspectives, making it difficult to
establish clear evaluation criteria. Traditional metrics like
Translated Error Rate (TER) or Character Error Rate (CER)
are often used to assess language model performance but are
not suitable for LLM research. Specifically, in this study,
where the RAG system utilizes a Decision Tree to retrieve
response groups stored in the leaf nodes, these metrics are
not reliable. Instead, the most commonly used evaluation
method for such studies is human evaluation, particularly by
domain experts. While this approach does not standardize
answers into fixed rules, resulting in longer evaluation periods
and potentially varying levels of reliability depending on the
individual evaluator, it remains the most trustworthy method
currently available. In this study, five experts actively working
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in the field of maritime navigation research participated in the
evaluation to calculate accuracy rates. If two or more of the
five experts raised objections to a response, it was deemed
incorrect. The criteria for correctness included whether the
response adequately addressed the input, the structural appro-
priateness of the response for the domain, and the ease of
understanding the contextual meaning. The evaluations were
primarily conducted alongside simulation monitoring, though
some were performed onboard autonomous ships operating
in the test navigation zones of Geoje Island waters. The
results showed an accuracy rate of 80% to 90% based on the
lightweight Llama 3.1 8B model (approximately 7.6GB). De-
tailed evaluations of resource consumption, execution speed,
and accuracy for each model are provided in Figure 4.

IV. CONCLUSION

This study proposed and validated a novel architecture that
combines Decision Tree and RAG to enhance the performance
of a domain-specific LLM for autonomous ships. This archi-
tecture is designed to ensure high accuracy and structured
responses in domains where only minimal LLMs can be
used due to the unique spatial constraints of the maritime
environment, which lacks internet support and access to high-
performance computing resources. The study demonstrated
that the Decision Tree-based RAG system can provide accurate
answers even when using small-scale LLMs.

The proposed architecture was designed based on 200 hours
of voice data recorded in actual ship operating environments,
and its performance was evaluated by experts actively working
in the field. This process demonstrated that the system is
practical and applicable in real-world environments.

Ultimately, this study proposes a method to develop LLMs
into more effective and reliable tools within the domain of
autonomous ships. It decisively addresses the high-cost issues
of LLMs that previous research has struggled to resolve, while
ensuring practical applicability and reliability in real-world
environments through structured responses.
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