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Abstract—Conventional video streaming techniques in security
surveillance systems often utilize uniform bit rate strategies,
leading to suboptimal resource allocation. We propose a novel
streaming system that dynamically assigns variable bit rates
to regions of interest (ROIs) within surveillance frames. By
intelligently enhancing the quality of critical areas while reducing
the quality of peripheral areas, the system significantly reduces
network transmission and storage costs without compromising
ROI clarity. The proposed system leverages a deep learning-
based ROI detection module to effectively identify regions de-
manding intensive monitoring. An adaptive encoding scheme
then assigns lower quantization parameters to ROIs, yielding
higher quality, while applying higher quantization to non-ROIs
to conserve bitrate. A dynamic quality enhancement module is
integrated, significantly improving the quality of both foreground
and background regions, thereby enhancing recognizability for
surveillance personnel or machine analysis. A key innovation
is a caching mechanism that exploits the high redundancy in
surveilled background scenes across frames. By reusing enhanced
background blocks from preceding frames, the caching mecha-
nism accelerates the quality enhancement module with negligible
quality loss. Extensive experiments validate the framework’s
superior rate-distortion performance. The proposed system’s
improved quality, optimized resource usage, and reduced storage
make it a promising solution for advancing video coding in
security and surveillance domains.

I. INTRODUCTION

Video surveillance systems are experiencing rapid growth,
with the market projected to expand by 9.4% globally from
2022 to 2027, reaching an estimated $76.4 billion, driven by
increasing camera deployment for security applications [1].
However, the surging volume of video data presents critical
challenges in efficient streaming and storage as system scale
expands. Effective surveillance requires high-quality capture
of specific regions of interest (ROIs), such as entry and
exit points, to enhance recognition accuracy for both hu-
man monitors and machine vision algorithms. Yet, uniformly
capturing non-ROI areas at high quality leads to excessive
storage consumption, necessitating adaptive bitrate allocation
for optimal system performance.

Video compression techniques leveraging Region of Inter-
est (ROI) can be broadly classified into two methodologies:
pre-processing and embedded encoding. The pre-processing
approach employs non-uniform blurring in non-ROI regions,
effectively minimizing irrelevant information and consequently
reducing the volume of data requiring compression. Itti [2]
utilized this technique by tracking prominent targets within
videos and blurring non-ROI areas to achieve compression.

The identification of these salient targets relied on sophisti-
cated models of visual attention, crafted through bio-inspired
methods and information theory principles.

In contrast, embedded encoding focuses on selectively en-
hancing the visual quality of specific regions by dynamically
adapting encoding parameters, such as quantization settings.
Zhu et al. [3] integrated human visual attention mechanisms
with a perceptually-prioritized video compression scheme. By
fusing spatial and temporal saliency maps, their approach en-
ables region-specific adjustments to compression parameters,
allocating higher bitrates to visually sensitive areas while con-
serving resources in less critical regions. Another application
was proposed in [4], where saliency was considered as an
important feature for object detection and identification in
security surveillance.

Choi et al. [5] enhanced the YOLO9000 object detector
with deep neural networks, introducing saliency maps for bit
rate allocation, prioritizing object detection over traditional
PSNR enhancement. Similarly, Galteri et al. [6] introduced
a self-regulating video encoding method, utilizing a Bayesian
framework for saliency estimation, optimizing encoder speed.

Super-resolution imaging presents another approach for on-
line services, offering a solution to the bandwidth constraints
inherent in video streaming. By strategically transmitting low-
resolution videos, bandwidth usage is minimized, while the
resolution is subsequently enhanced on the client side. NAS
framework [7] leverages this concept, using client resources
and super-resolution networks to optimize video quality while
conserving bandwidth. Similarly, LiveNAS [8] provides a real-
time framework that enhances live streams by dynamically
adjusting server resources for better quality. Dejavu [9] takes
a different approach, focusing on video conferencing. It delib-
erately transmits at lower quality to ensure responsive network
performance, then exploits the visual consistency in video calls
to upscale frame quality. Addressing the energy demands of
super-resolution on mobile devices, NEMO [10] selectively
applies enhancements to specific frames, striking a balance
between optimal quality and device resource management.

In this paper, we introduce a novel system that dynamically
allocates variable bit rates to different regions of interest
(ROIs), enhancing the quality of critical areas while mini-
mizing transmission and storage costs. The system features
an ROI detection module that identifies regions requiring
intensive monitoring, and employs adaptive encoding pa-
rameters to achieve discernible quality differentiation across



Fig. 1: Overview of the proposed ROI-based video streaming
system architecture. The client-side IP camera captures video
frames and performs ROI detection and adaptive encoding.
The server-side NVR receives the encoded video stream
along with block profile metadata, enabling dynamic quality
enhancement and caching for efficient playback and storage.

various regions. A dynamic quality enhancement module fur-
ther elevates the quality of both foreground and background
regions, improving recognizability for surveillance personnel
and machine analysis. A distinctive contribution of this sys-
tem lies in its caching mechanism, which capitalizes on the
high redundancy inherent in background scenes to accelerate
the processing speed of the dynamic quality enhancement
module. To evaluate compression efficiency, the traditional
Peak Signal-to-Noise Ratio (PSNR) method, which calculates
pixel differences assuming equal weight for all pixels, proves
inadequate for assessing the quality compression efficiency of
systems prioritizing ROI areas. Consequently, we adopt the
Weighted PSNR (WPSNR) method [11], specifically tailored
for evaluating the performance of such systems.

The remainder of this paper is structured as follows: Section
II presents the proposed methods, followed by the simulation
results in Section III, and the conclusion in Section IV.

II. METHODOLOGY

The proposed ROI-based streaming framework builds upon
a foundational surveillance system architecture, divided into
client and server components as illustrated in Fig. 1. The
client side, comprising IP cameras, leverages the Hi3559 V100
SOC hardware chip for core system operations. Captured
frames are directed to the ROI (Region of Interest) detection
module and the adaptive encoder module. The ROI detection
module is responsible for identifying user-defined target areas,
with the resultant detections relayed to the integrated ROI
module. This module’s primary function is to amalgamate the
dynamic regions encapsulating the target of interest, subse-
quently generating a comprehensive ROI map. The adaptive
encoder modulates the quantization parameter (QP) in accor-
dance with the spatial distribution of ROI positions within
the ROI map, followed by hardware encoding of the frames.

Concurrently, the block comparison module exploits the ROI
map to assess inter-frame block similarity, yielding a block
profile that encodes both ROI positions and block similarity
metrics. The multimedia packaging component then transmits
the encoded streams and block profiles to the remote Network
Video Recorder (NVR) on the server side.

Upon reception at the server side, the multimedia unpack-
aging module extracts the encoded frames and block profiles
from the incoming streams or recorded files. The dynamic
quality enhancement module uses the information embedded
in the block profiles to elevate the quality of the decoded
frames. Furthermore, these enhanced frames are cached in
a buffer, facilitating the reuse of blocks across frames. This
innovative caching mechanism significantly reduces the execu-
tion time of the dynamic quality enhancement module, thereby
improving system performance significantly.

The details of the important components are described in
the following.

A. ROI Detection

The ROI detection module employs a deep learning CNN
architecture specifically designed for real-time object detec-
tion. This module accurately identifies the positions and types
of targets that are of critical importance to surveillance per-
sonnel. To accommodate the demanding frame rates of video
streams while maintaining real-time detection performance,
the YOLOv5 architecture with its efficient single-stage design
is utilized.

B. Integrated ROI

The integrated ROI module is a novel component that ag-
gregates the output from the ROI detection stage. This module
is engineered to leverage the capabilities of the Hi3559 V100
hardware, which sets ROI-related parameters at the granularity
of Group of Pictures (GOP) units. The ROI integration process
entails collecting ROI data from all frames within a GOP
and performing a union operation on these regions. This
union effectively captures the motion trajectory of the target
throughout the GOP, providing a comprehensive representation
of the ROI’s spatial extent. To ensure all critical components
of the target are identified, object tracking algorithms can be
employed to compute the motion path of each detected entity.
The system incorporates the Simple Online and Realtime
Tracking (SORT) algorithm [12], renowned for its simplicity
and compatibility with real-time frame rates. SORT assigns an
independent linear constant velocity model to each detected
object, enabling robust tracking performance.

C. Adaptive Encoding

The adaptive encoding mechanism on the IPCam side
utilizes an adaptive quantization parameter (QP) strategy. The
integrated ROI module categorizes ROIs as the foreground,
signifying regions containing targets of interest. These ROIs
are assigned lower QP values to allocate more bits and
preserve finer details, resulting in enhanced visual quality.
Conversely, non-target regions, classified as the background,



receive higher QP values to reduce the bitrate without com-
promising the overall perception of the scene.

The QP values assigned to the foreground are typically 4 to
16 smaller than those assigned to the background. However,
an excessive disparity in QP values can lead to perceptible
artifacts at the boundary between the foreground and back-
ground regions. These artifacts can inadvertently draw the
viewer’s attention away from the intended target, diminishing
the effectiveness of the surveillance system. Furthermore,
the reduced bitrate in the background regions may introduce
compression-related distortions. To mitigate these issues, the
proposed framework incorporates a dynamic quality enhance-
ment module. This module intelligently enhances the quality
of the background regions, minimizing boundary artifacts and
attenuating compression-induced distortions. By maintaining
a balance between the foreground and background quality, the
dynamic quality enhancement module ensures that the target
remains the primary focus while providing a seamless viewing
experience.

D. Dynamic Quality Enhancement

To effectively enhance the quality of both foreground and
background regions, the NVR employs two separate super-
resolution models based on the EDSR architecture [13]. The
received block table from the client is utilized to distinguish
between foreground and background areas. Each model is
trained independently with unique network parameters to
optimize performance for its respective region type. The SR2
model is specifically designed to further boost the quality
of the already higher-fidelity foreground, ensuring critical
details remain sharp and recognizable. Conversely, the SR1
model focuses on alleviating compression artifacts that are
more prevalent in the background due to the reduced bitrate
allocation. By tailoring the super-resolution process to the
distinct characteristics of foreground and background, the
dynamic quality enhancement module achieves a balanced and
visually pleasing output.

E. Block Comparison and Caching

To expedite the super-resolution processing and improve
overall system efficiency, a block comparison and caching
mechanism is integrated alongside the dynamic quality en-
hancement module. The primary objective of this mechanism
is to construct a block table that records essential information,
including the positions of regions of interest (ROIs) and
the similarity metrics between corresponding blocks across
consecutive frames. By leveraging this data, the system can
efficiently differentiate between foreground and background
regions, eliminating the need for redundant processing. Fur-
thermore, the block table enables the identification of blocks
that can be reused from previous frames, effectively reducing
the number of computationally expensive super-resolution
operations required. This caching strategy significantly ac-
celerates the enhancement process without compromising the
final output quality.

Fig. 2: Systematic process for constructing the block similarity
table. This efficient two-stage approach, employing PSNR and
SSIM metrics, enables the identification of static background
regions for optimized caching and processing.

1) Caching mechanism: In practice, the computational
complexity of the super-resolution (SR) poses a significant
challenge to achieving real-time performance, particularly at
high frame rates. Suboptimal output frame rates can lead
to visual inconsistencies that negatively impact the user ex-
perience. However, a key insight is that in the majority of
security monitoring scenarios, background elements such as
walls, roadsides, and the sky exhibit high temporal redundancy,
remaining largely static across multiple frames. Leveraging
this characteristic, we introduce an innovative caching mech-
anism that reuses previously processed SR blocks, effectively
reducing the number of SR operations required and conse-
quently accelerating the image output rate.

The proposed caching mechanism is comprised of two
core components: the construction of the block table and
the determination of SR applicability for individual blocks.
As a preliminary step, frames are partitioned into fixed-size
blocks. Fig. 2 illustrates the block table construction process,
which is executed prior to encoding on the IP camera side.
The primary function of this table is to capture the similarity
between corresponding blocks in consecutive frames. The
process begins by assessing the frame type. For I-frames, only
the block type (foreground or background) is recorded. In
the case of P-frames, the block type is determined. Blocks
within the ROIs are classified as foreground (FG), while those
outside are considered background (BG). For background
blocks, their similarity to the corresponding block in the
previous frame is evaluated using a two-stage approach. First,
the peak signal-to-noise ratio (PSNR) is compared against a
predefined threshold. If the PSNR exceeds this threshold, the
block is labeled as similar. Otherwise, the structural similarity
index (SSIM) is computed. Blocks with an SSIM above a
certain threshold are classified as similar, while those below
are marked as dissimilar. By employing PSNR as an initial
filter, followed by the more computationally intensive SSIM



Fig. 3: Optimized data structure of the block similarity table.
The fields are strategically designed to capture essential infor-
mation while minimizing storage overhead.

for refined assessment, the system strikes a balance between
efficiency and accuracy.

After decoding on the network video recorder (NVR)
side, the dynamic quality enhancement module utilizes the
information provided in the block table to determine the
appropriate processing for each block. For background blocks
classified as similar, the corresponding block from the previous
frame is directly used, eliminating the need for redundant
SR processing. Dissimilar background blocks undergo SR1
(BG) processing, which is optimized for background regions.
Foreground blocks, on the other hand, are invariably subjected
to SR2 (FG) processing, ensuring the highest quality enhance-
ment for regions of interest. It is important to note that while I-
frames undergo full-frame SR, the block similarity assessment
is only applied to P-frames. Consequently, background blocks
in P-frames can either be sourced from the previous frame
or processed using SR1 (BG), depending on their similarity
classification.

2) Design of block table: The transmission of the block
table alongside video data to the NVR side increases network
bandwidth and storage demands. To address this challenge,
we propose an innovative recording method that effectively
reduces the size of the block table while preserving critical in-
formation. The key data captured in the optimized block table
includes the ROI coordinates and the positions of dissimilar
blocks, enabling efficient processing and caching.

Our approach leverages the Group of Pictures (GOP) struc-
ture as the fundamental unit for block table organization.
As illustrated in Fig. 3, the first field of the block table
utilizes 5 bits to record the number of ROIs, accommodating a
maximum of 31 ROIs per GOP. The second field captures the
ROI coordinates using 8 bits per coordinate, allowing for the
representation of up to 240 blocks. By recording the top-left
and bottom-right corners of each ROI, a total of 16 bits are
allocated to precisely delineate the ROI boundaries. The third
field of the block table is dedicated to indicating the number of
dissimilar blocks, which primarily correspond to background
blocks due to their inherent high similarity across frames.
To efficiently encode this information, 10 bits are employed,
supporting a maximum of 1023 dissimilar blocks per GOP.
The positions of these dissimilar blocks are recorded in the
fourth field, utilizing 8 bits per block. Finally, the fifth field
represents the frame index of the dissimilar blocks, capitalizing
on the fact that each GOP can contain a maximum of 29
P-frames. By allocating 5 bits to store the frame index, our
method ensures precise temporal localization of the dissimilar

Fig. 4: Representative surveillance video sequences utilized in
the experimental simulations, encompassing a diverse range
of indoor and outdoor scenarios to comprehensively evaluate
the proposed system’s performance across various real-world
conditions.

blocks.

III. EXPERIMENTS

The experimental samples encompass a diverse array of
surveillance scenes, capturing both indoor and outdoor en-
vironments, as illustrated in Fig. 4. The system leverages
hardware encoding utilizing the HiSilicon chip Hi3559 V100
for both traditional and ROI-based encoding paradigms. In
alignment with the methodologies employed in [7] and [9],
where a subset of training and testing images exhibit corre-
lations, a portion of the video frames from sequences A, B,
C, D, and the DIV2K dataset [14] are utilized to train the
EDSR model. Conversely, sequences E and F are deliberately
excluded from the training process to assess the system’s
performance on entirely unseen data. The threshold values for
determining block similarity are set to PSNR = 35 dB and
SSIM = 0.85.

Traditionally, the Peak Signal-to-Noise Ratio (PSNR) met-
ric has been widely employed for evaluating video quality,
treating each pixel difference with equal weight. However,
in the context of ROI coding, where adaptive quantization
parameters (QP) are strategically applied, the resulting quality
is inherently perceptually centered. To account for this discrep-
ancy and provide a more representative assessment, this paper
adopts the Weighted PSNR (WPSNR) metric, as proposed in
[15]. WPSNR assigns higher importance to the contribution of
ROI regions to the overall quality, while gradually decreasing
the weights of non-ROI areas based on their pixel distance
from the ROI’s position, following a normal distribution. This
approach enables a more nuanced and perceptually mean-
ingful evaluation of the system’s performance, aligning with
the primary objectives of ROI-based video compression in
surveillance applications.

A. Rate-Distortion Performance

To evaluate the performance of the proposed adaptive QP
encoding scheme, both with and without the dynamic quality
enhancement module, we conducted a comprehensive rate-
distortion analysis. This analysis compared our approach to



Fig. 5: Analysis of the rate-distortion performance.

the conventional HEVC encoding standard, providing valuable
insights into the effectiveness of our proposed techniques.

Fig. 5 illustrates the results of this analysis, clearly demon-
strating the superior performance of our adaptive QP encoding
method over traditional HEVC across all tested sequences.
The rate-distortion curves show a consistent improvement
in quality at equivalent bitrates, highlighting the benefits of
our ROI-centric bitrate allocation strategy. Furthermore, the
incorporation of the super-resolution (SR) module in our
dynamic quality enhancement pipeline yields even greater
performance gains. As depicted by the green curves in Fig.
5, the combination of adaptive QP encoding and SR pro-
cessing significantly elevates the rate-distortion performance,
surpassing both conventional HEVC and standalone adaptive
QP encoding.

B. Dynamic Quality Enhancement

The proposed dynamic quality enhancement module, which
incorporates super-resolution (SR) processing, effectively en-
hances the visual fidelity of both foreground and background
regions in the adaptive QP encoded video. To illustrate the
impact of this module, we present a comparative analysis
of the adaptive QP approach with and without the dynamic
quality enhancement, utilizing difference maps in conjunction
with heat maps for visual assessment.

Fig. 6 showcases the difference maps generated using se-
quence A. In Fig. 6(a), the adaptive QP encoding is applied
without SR processing, while Fig. 6(b) depicts the frame
after undergoing SR processing. Both processed frames are
compared against the original frame by computing their pixel-

Fig. 6: Visual assessment of the impact of super-resolution pro-
cessing in the dynamic quality enhancement module, utilizing
difference maps and heat maps to highlight the improvement.

Fig. 7: Subjective evaluation of the perceptual quality enhance-
ment achieved through the application of the super-resolution
technique.

wise differences. The results clearly demonstrate that the
incorporation of SR processing significantly improves the
quality at the boundaries between foreground and background
regions. This enhancement leads to a smoother visual transi-
tion, mitigating the risk of visual distraction that may arise
from stark quality disparities. Furthermore, Fig. 7 provides
a subjective evaluation of the quality improvement attained
through the application of super-resolution.

C. Cache Performance

To evaluate the impact of our caching mechanism on both
execution time and output quality in the dynamic quality
enhancement module, we conducted a comparative analysis
between scenarios with caching enabled and disabled, focusing



Fig. 8: Comparative analysis of the execution time through the
integration of the proposed caching mechanism.

Fig. 9: The impact of the caching mechanism on output quality.

specifically on the performance of the SR1 process for back-
ground regions. Fig. 8 illustrates the stark contrast in execution
times, revealing that the integration of our caching strategy
yields a significant 96.65% reduction in processing time. These
measurements were obtained using the Tesla V100-SXM2
GPU platform, underscoring the real-world applicability and
efficiency of our approach.

It is important to acknowledge that the caching mechanism’s
retrieval of blocks from preceding frames may result in a slight
degradation of output quality. As depicted in Fig. 9, the maxi-
mum observed decrease in WPSNR (Weighted Peak Signal-to-
Noise Ratio) after applying caching is a mere 0.169 dB. This
marginal compromise in quality is more than compensated for
by the substantial gains in processing efficiency. By sacrificing
an almost imperceptible amount of visual fidelity, our caching
system dramatically reduces the computational burden of the
SR1 process for background regions, ultimately enabling a
significant improvement in the overall output frame rate. This
strategic trade-off positions our dynamic quality enhancement
module as a compelling solution for real-time video streaming
applications, where the balance between quality and efficiency
is of utmost importance.

IV. CONCLUSION

We have developed an adaptive video streaming system
that optimizes bitrate allocation by prioritizing Regions of

Interest (ROIs). By strategically assigning higher bitrates to
critical regions while conserving resources in less pivotal
areas, our system achieves a remarkable synergy between
enhanced target clarity and reduced bandwidth and storage
requirements. To further elevate visual quality, we integrate
super-resolution techniques that refine both foreground and
background elements. Moreover, our system capitalizes on the
inherent redundancy in security footage backgrounds by incor-
porating an innovative caching mechanism, which significantly
bolsters processing efficiency. Extensive experimental results
validate the efficacy of our dynamic ROI video compression
framework, demonstrating substantial improvements in overall
video quality.
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