
Combining Reinforcement Learning and Heuristic
Optimization: A Model Based on a Deep

Q-Network and Graph Neural Networks for Graph
Coloring

SeokJin Kwon
School of Software

Kwangwoon University
Seoul, Republic of Korea
cleverlazjin@gmail.com

Yong-Hyuk Kim
School of Software

Kwangwoon University
Seoul, Republic of Korea

yhdfly@kw.ac.kr

Abstract—We present a hybrid approach combining Rein-
forcement Learning (RL) with the TabuCol, which is a version
of tabu search specifically designed for the Graph Coloring
Problem (GCP), enhanced by Graph Neural Networks (GNNs),
to tackle the GCP. Our model, referred to as RLTB, integrates
a Deep Q-Network architecture with multiple GNN layers to
select promising (node, color) pairs, guiding the RL agent
towards optimal solutions. Experimental evaluations on standard
DIMACS graph instances demonstrate that RLTB significantly
outperforms existing heuristic algorithms such as Tabucol and
a greedy algorithm, surpasses GNN methods from other papers,
and shows competitive performance against other outstanding
hybrid methods.

Index Terms—Graph Coloring Problem, Reinforcement Learn-
ing, Deep Q-Network, Graph Neural Networks, Tabu Search

I. INTRODUCTION

Many optimization problems can be represented as graph
problems, among which the Graph Coloring Problem (GCP)
is one of the most well-known. GCP involves coloring the
vertices of a graph such that no adjacent nodes share the
same color while minimizing the total number of colors used.
GCP has been extensively researched and applied in various
real-world fields, such as register allocation [1], frequency
assignment [2], and scheduling [3]. GCP is particularly sig-
nificant because it is an NP-hard problem, meaning it plays
a central role in computational complexity theory, especially
in the context of the P versus NP question. Since GCP is
NP-hard, no algorithm is known to solve it in polynomial
time, making it a key target for heuristic and approximation
methods.

In recent years, machine learning algorithms have seen
explosive development across various fields. Reinforcement
Learning (RL), in particular, has emerged as a powerful
tool for solving combinatorial optimization problems [4], [5].
Additionally, Graph Neural Networks (GNNs) [6], [7], which
are neural networks designed to handle graph-structured data,
have been developed and applied in many areas. Given that

GCP is inherently a graph problem, GNNs are particularly
well-suited for this task.

In this paper, we present a model that combines the rein-
forcement learning mechanism with the heuristic algorithm
called TabuCol [8]. We also integrate GNN structures to
enhance the performance of the RL agent. Our approach com-
bines RL and heuristic optimization to tackle GCP efficiently.

We conducted our experiments in two stages. First, we
compared our model with existing heuristic algorithms such as
the Greedy algorithm and TabuCol, as well as GNN methods
from [9], using relatively easy DIMACS graph instances [10],
[11]. In the second stage, we tested our model against other
hybrid methods on more challenging graphs.

The results of our experiments indicate that our model,
called RLTB, outperformed other heuristic methods and GNN
approaches on the easier graph instances. Furthermore, when
evaluated on the more difficult graphs, our model performed
competitively against existing hybrid approaches, demonstrat-
ing its robustness and effectiveness.

This paper makes the following key contributions:

• We propose a novel hybrid model, RLTB, which RL
with the TabuCol heuristic algorithm, enhanced by GNNs,
to address the GCP. This hybrid approach leverages
the strengths of both machine learning and traditional
heuristic optimization techniques.

• Extensive experiments on standard DIMACS graph in-
stances demonstrate that RLTB significantly outperforms
existing heuristic algorithms (e.g., TabuCol, Greedy) and
GNN-based methods, particularly on small and medium-
sized graphs. Also when compared to other hybrid ap-
proaches, RLTB performs competitively, especially on
more challenging graph instances.

The paper is organized as follows: in Section 3, we
present some preliminary backgrounds. Section 4 describes
the proposed approach in detail. In Section 5, we show
computational results of our model. Conclusions are given in



the last section.

Fig. 1: Overview of our model framework, which is based on RLHO
framework [5]. We implemented an exponential probability function
for the RL steps, causing the probability of selecting RL steps to
decrease as the process continues, while the probability of selecting
Heuristic Optimizer steps increases over time.

II. RELATED WORK

A. Heuristic algorithms for the Graph Coloring Problem

The most basic and traditional algorithms are the greedy and
DSATUR (degree of saturation) [12] algorithms. As greedy
algorithms construct solutions step by step by choosing the
locally optimal choice at each step, in the GCP, a greedy
method colors each vertex in a sequence by choosing the
smallest number of colors that does not conflict with other
adjacent vertices. DSATUR algorithm is a more sophisticated
greedy algorithm that selects the next vertex to color based
on the saturation degree, which is the number of differently
colored neighbors the vertex has. In this manner, the vertex
with the highest saturation degree is colored first. Local search
methods are also prominent approaches used to tackle the
GCP. Local search methods, such as tabu search [8], [13] and
simulated annealing (SA) [14], iteratively improve a solution
by searching neighbor solutions.

B. Machine Learning Methods for Combinatorial Optimiza-
tion Problems including GCP

Graph Neural Networks (GNNs) have emerged as power-
ful tools for solving Combinatorial Optimization Problems
(COPs) due to their ability to capture complex graph structural
information. For example, pure deep learning mechanism
stacking GNN layers is used by [9], and Watkins et al. [15]
used RL method using Deep Q-Network(DQN) with GNNs.
This model added GNN structure to Q-Network [16]. But
graphs they tested were only small and medium sized graphs.
Also the results they made were not better than existing
heuristic algorithms such as tabucol, DSATUR, greedy, and
so on.

Hybrid methods that combine RL and Heuristic Optimiza-
tion (HO) have been widely studied for various COPs. These
approaches leverage the strenghs of RL for learning effective
strategies and HO for efficiently refining solutions. Cai et al.
[5] constructed RLHO framework, taking RL for x steps and
HO for y steps iteratively. They applied this framework to
the bin packing problem, using Proximal Policy Optimization
(PPO) for the RL component and SA for the HO component.
This framework is also applied for the GCP in [17]. They

used PPO for the RL component and Tabucol as the heuristic
component. Their model achieved quite good results on large
and challenging graphs. Zhou et al. [18] employed probability
learning to guide local search in COPs. Building on this
approach, Zhou et al. [19] adapted probability learning to gen-
erate starting solutions for tabu search, specifically addressing
the GCP. Zhou et al. [19] introduced two key improvements
over [18]: a group matching procedure that accounts for
the interchangeability of color groups in the GCP, and the
replacement of the basic descent-based local search in [18]
with a more effective tabu search-based coloring algorithm.

Our model, RLTB, closely relates to the work [5], [17], as
it also employs the RLHO framework and uses Tabucol as the
heuristic algorithm. However the key difference from [17] and
RLTB lies in the RL method. We adopted DQN enhanced with
GNNs while they used PPO method. We chose to incorporate
GNNs because GCP inherently deals with graph structures,
and GNNs are well-suited to capture and exploit the relational
information within graphs.

III. BACKGROUND

In this section, we briefly introduce the main concepts and
basics of our study.

A. Graph Coloring Problem

Let G be an undirected graph, G = (V,E) with vertex set
V and edge set E. Now we define a mapping function f ,
where f : V 7→ {1, 2, ..., k}. Then the value f(v) of vertex
v is the color of v. If two adjacent vertices x and y have the
same color j, then it is called a conflict. A coloring with no
conflicts is called a proper-coloring. The chromatic number of
G, denoted by χ(G), is the smallest k for which there exists
a k-coloring of G. Based on these definitions, GCP is the
problem of finding the chromatic number of given graph G,
which is the minimum number of colors required to color the
vertices of G such that no two adjacent vertices share the same
color.

B. Tabu Search

Tabu search [13], [20] is one of the global search methods
that is designed to overcome the limitations of traditional
local search algorithms. Tabu search begins with an intial
feasible solution and iteratively explores the solution space by
moving to neighboring solutions. To overcome the drawbacks
of other local search methods, which often get stuck in local
optima, tabu search tries to escape local optima by using a
short-term memory, known as the tabu list. The tabu list is
a memory structure that temporarily forbids certain moves,
preventing the algorithm from revisiting recently explored
solutions. This helps in avoiding cycles and encourages the
exploration of new areas of the solution space.

C. Deep Q-Network

A deep Q-Network [16] is a type of reinforcement learning
algorithm that combines Q-Learning with deep neural net-
works to handle continuous state spaces. The main idea is



to use a neural network to approximate the Q-value function,
which is the expected cumulative reward for taking a given
action in a given state and following the optimal policy
thereafter.

A neural network with parameters θ, known as the Q-
network, is adopted to approximate the Q-value function.
Training the Q-network involves minimizing a loss function
L(θ), which is computed based on the discrepancy between
the predicted Q-values and the target values that reflect the
expected rewards.

L(θ) = Es,a∼ρ[(y −Q(s, a : θ))2] (1)

In this context, the target value y is defined as y =
Es′∼ϵ[r + γmaxa′ Q(s′, a′ : θ)|s, a], where γ, the discount
factor, determines the importance of future rewards, and
ρ(s, a) represents the probability distribution over the state-
action pairs, often referred to as the behavior distribution. The
target value y is computed based on the immediate reward r
and the discounted maximum Q-value for the next state s′,
guiding the network toward optimal decision-making [16].

The two major features of DQN are Experience Replay and
Target Network. By using experience replay method, we store
trajectories (state, action, reward, next state) in a replay buffer
instead of updating the Q-network after each action. During
training, random samples from this buffer are used to update
the Q-network. This helps to break the correlation between
consecutive samples and leads to more stable learning. A
separate target network with parameters θ̂ is used to generate
the target values yi. The parameters of the target network
are periodically updated to match the parameters of the Q-
Network. This helps to stabilize the learning process.

D. Graph Neural Network

A graph neural network is a type of artificial neural
networks for processing data that can be represented as
graphs. Given graph G, attributes of graph G in GNN are
feature of nodes, feature of edges and graph feature. Each
feature makes a graph consisted of nodes and each node has
a feature vector, which is called a message, that is sent to
all its neighbors. After receiving messages from neighbors
in each node, aggregate and update functions are executed
so we get changed feature graph. This process is called the
Message Passing, which is the core of GNN [6], [21].

IV. METHODOLOGY

A. Deep Q-Network Architecture for Graph Coloring

In our approach, we applied DQN to solve the GCP by
defining a single Q-Network. This network is designed to
evaluate and select the most promising (node, color) pair
during the action selection process. The overall architecture
of the Q-Network is illustrated in Figure 2.

The Q-Network is responsible for assessing the potential
of each (node, color) combination within the graph. Inputs to
the network include both node features and color features.

These features are concatenated to form a comprehensive
representation of each possible (node, color) pair.

The Q-Network processes these combined features through
multiple layers, including GNN layers for message passing and
feature aggregation, followed by fully connected layers. The
final output layer produces Q-values corresponding to each
(node, color) pair, representing the expected future rewards of
selecting that specific action in the current state.

The implementation of our DQN model was based on
the CleanRL framework [22], which provides a robust and
efficient foundation for constructing reinforcement learning
algorithms.

B. Applying Graph Neural Network

We designed three types of features to effectively represent
the graph structure and color assignments: graph features, node
features, and color features. Specifically, we integrated both
node and color features within our Q-Network to evaluate
and select the most promising (node, color) pairs for action
selection.

Each node in the graph is characterized by four features:
degree, degree centrality, the number of conflicts with adjacent
nodes, and the number of colors used by neighboring nodes.
These node features provide essential information about each
node’s connectivity and its interactions within the graph.
Additionally, we introduced three color features for each color:
the number of conflicts that would arise when using a specific
color, the number of nodes currently assigned that color, and
the ratio of usage of that color relative to the total number of
nodes in the graph. These color features capture the prevalence
and potential conflicts associated with each color choice.

The node and color features are concatenated to form com-
prehensive (node, color) pair representations. These combined
features are then passed through multiple GNN layers, par-
ticularly Graph Convolutional Network (GCN) layers, within
our Q-Network. In these GCN layers, message passing is per-
formed to aggregate and update feature representations based
on the graph’s connectivity, effectively capturing both local
and global structural information. This process results in an
updated feature graph that integrates the nuanced interactions
between nodes and colors.

C. Combining RL and Heuristic Algorithm

1) Heuristic Algorithm Based on TabuCol: TabuCol is a
heuristic algorithm that applies the principles of tabu search to
the GCP, which is first introduced by Glover et al. [20]. It uti-
lizes the tabu list to avoid revisiting recently explored solutions
and enhance the search process. Following the method of Hertz
and Werra [8], we incorporate an aspiration level function
within the TabuCol method. This function allows move that is
classified as tabu to be accepted if it meets certain aspiration
criteria, typically if it results in a solution better than any
previously found solution. This mechanism ensures that the
search does not overlook potentially optimal solutions.

To effectively evaluate the quality of a coloring solution,
we introduce a conflict function f . This function calculates the



Fig. 2: Diagram illustrating the architecture of the Q-Network designed for the Graph Coloring Problem. The input feature graph consists of
node features and color features, which are concatenated to form comprehensive (node, color) pair representations. These combined features
are processed through multiple GNN layers, where message passing enables the aggregation and updating of node features based on their
neighbors and associated colors. The transformed node feature graph is then passed through fully connected linear layers, culminating in
the generation of Q-values for each (node, color) pair. The network identifies and outputs the most promising node-color pair based on the
highest Q-value.

total number of conflicting edges in the current graph coloring.
Formally, for a given coloring C, the conflict function is
defined as:

f(C) =
∑

{u,v}∈E

δ(u, v)

where δ is the indicator function that returns 1 if if both
vertices u and v are assigned the same color and 0 otherwise.

Based on these ideas, pseudocode for our heuristic algorithm
is in the following.

Algorithm 1 TabuCol algorithm [8]

1: Input: graph G = (V,E), initial solution s0, reps and
maxiter

2: Initialization iter ← 0, tabu list T ← ∅ , best solution
s∗ ← s0

3: while iter < maxiter do
4: Generate reps number of neighboring solutions by

changing the color of one vertex
5: Select the best move s′ in this iteration that is not in T

or meets the aspiration criteria
6: Update the coloring of G with the selected move s′

7: if f(s′) ≤ f(s∗) then
8: s∗ ← s′

9: end if
10: Add the selected move s′ to T
11: Remove the oldest move from T if it exceeds the length

limit
12: end while
13: return the best solution s∗ found

2) Combining RL and Heuristic Algorithm: Our approach
combines a RL agent with TabuCol algorithm to solve the
GCP. The combined structure consists of two main compo-
nents: the RL agent and the TabuCol heuristic optimizer (HO).

The RL agent is responsible for generating initial solutions
for the GCP. These initial solutions serve as the starting point
for the TabuCol heuristic. Once the RL agent provides an
initial coloring, the TabuCol algorithm takes over to refine and
search for improved solutions, starting from the RL-generated
initialization.

To explore and search vast and diverse areas of the solution
space, we introduced a probabilistic model for selecting HO
steps. In the initial phases, the RL steps are predominantly
applied, allowing the RL agent to explore a wide range of
possibilities. As the process progresses, HO steps, specifically
the TabuCol algorithm, are increasingly employed. This means
that our model selects the TabuCol algorithm with a probability
p. Initially, the model mainly relies on RL steps, while the
TabuCol algorithm is occasionally invoked. As the process
continues, the frequency of HO steps increases, with the Tabu-
Col algorithm being applied more regularly. The probability p
for selecting the HO is defined as follows:

p
HO

= 1− e(ψ×
processed steps

global total steps ) (2)

where ψ is the parameter for adjusting how fast the shift is.
This formula indicates that as the number of steps increases,
the probability p for selecting the HO also increases, leading
to a gradual shift from RL-driven exploration to HO-driven
optimization.

3) Action: In our approach, the action space is composed
of pairs of nodes and colors, representing potential moves in
the GCP. Specifically, the RL agent selects an action from this
space by choosing the most promising (node, color) pair.

4) Reward Function: The default reward for per step is
set to -1.0 e-4. The reward consists of two parts, RL reward
and heuristic (TabuCol) reward. In our RL framework, the
reward is designed to encourage the reduction of conflicts. The
conflict function f(s) returns the number of conflicts given



Algorithm 2 Pseudocode of RLTB Model

1: Input: graph G = (V,E), number of colors k, total steps
T , parameter ψ

2: Initialization s, s∗ ← random k-coloring
3: for t = 1 to T do
4: p

HO
← 1− e(ψ×

t
T )

5: r ← Random(0, 1)
6: if r < p

HO
then

7: s← TabuCol(s)
8: else
9: s← RL Step(s)

10: end if
11: reward← rewardRL + rewardTB
12: Give reward to the RL agent
13: if f(s) ≤ f(s∗) then
14: s∗ ← s
15: end if
16: end for
17: return s∗

state s. To motivate the progress by the RL agent, we defined
the reward as:

rewardRL = λ× (f(s)− f(s′)) (3)

where f(s) and f(s′) are the numbers of conflicts in states s
and s′, respectively and λ is a scaling factor that adjusts the
magnitude of the reward. In the heuristic (TabuCol) reward, the
reward is calculated based on the improvement achieved by the
TabuCol algorithm. Specifically, it is defined by the difference
between the number of conflicts in the initial solution provided
to the HO and the number of conflicts after the TabuCol
algorithm has been applied. Thus the reward function is
expressed as:

rewardTB = f(sinitial)− f(sfinal) (4)

The final reward considering these two rewards is as follows:

reward = rewardRL + rewardTB (5)

V. EXPERIMENTS AND RESULTS

To assess the effectiveness of our model in solving the
GCP, we conducted experiments using a diverse set of DI-
MACS graph instances, including dsjc, queen, flat, and game
graphs. These graph types are commonly utilized to evaluate
performance on the GCP, providing a comprehensive assess-
ment of our model’s generalization capabilities across various
structural complexities. The experiments were conducted on
a machine with an Intel Core i5-12600K CPU at 3.70 GHz,
32GB of RAM, an NVIDIA GeForce RTX 3060 GPU, and
running Ubuntu 22.04 LTS.

Table1 presents the key parameter values used in our ex-
periments. We set the learning rate to 2.5e-4, the batch size to
128, psi (ψ) to -0.5 for controlling the probability of Heuristic
Optimization (HO) steps, and lambda (λ) to 0.01 for weighting
the reward function.

TABLE I: Key Parameters for Training the RLTB Model

Parameter Value

Learning Rate (α) 2.5e-4
Batch Size 128
Psi (ψ) -0.5
Lambda (λ) 0.01

Our evaluation was divided into two main parts. First, we
compared our model with existing heuristic algorithms and
GNN methods on relatively easy graphs. Second, we tested our
model on more challenging graphs, comparing its performance
with other hybrid approaches. Each test on a graph was
executed with a maximum time limit of 7 hours.

TABLE II: Comparison of Chromatic Numbers produced by
our model, RLTB, GNN [9], and two other heuristic algorithms
on easy instances of DIMACS graphs

Instance Order χ/k∗ RLTB GNN [9] TabuCol [9] Greedy [9]

queen5 5 25 5/5 5 6 5 8
queen6 6 36 7/7 7 7 8 11
myciel5 47 6/6 6 5 6 6
queen7 7 49 7/7 7 8 8 10
queen8 8 64 9/9 9 8 10 13
queen9 9 81 10/10 10 9 11 16
myciel6 95 7/7 7 7 7 7
games120 120 9/9 9 6 9 9
queen11 11 121 11/11 13 12 NA 17
myciel7 191 8/8 8 NA 8 8

Note: the value ”NA” indicates that we were unable to find the corresponding
results either from any other papers or from our own experiments.

The results in Table 2 indicate that our model, RLTB,
consistently outperformed existing heuristic algorithms such
as Tabucol and a greedy algorithm, as well as GNN methods
from [9] on the easier DIMACS graph instances. RLTB was
able to determine the chromatic number for all easy DIMACS
graphs, except the queen11 11 graph.

TABLE III: Comparison of Chromatic Numbers produced by
our model, RLTB, RLTCOL [17], RLS [18] and PLSCOL [19]
on some challenging instances of DIMACS graphs

Instance Order χ/k∗ RLTB RLTCOL [17] RLS [18] PLSCOL [19]

dsjc125.1 125 ?/5 5 NA 5 5
dsjc125.5 125 ?/17 17 18 17 17
dsjc250.1 250 ?/8 8 8 8 8
dsjc250.5 250 ?/28 29 28 29 28
flat300 28 0 300 28/28 30 30 32 30
le450 5c 450 5/5 5 NA NA NA
le450 15b 450 15/15 16 NA 15 15
le450 15d 450 15/15 15 16 15 15
le450 25a 450 25/25 25 25 26 25
le450 25b 450 25/25 25 25 26 25
dsjc500.1 500 ?/12 13 12 13 12
dsjc500.5 500 ?/47 48 48 50 48

Note: the symbol ”?” indicates that the chromatic number for the correspond-
ing graph is not known and value ”NA” indicates that we were unable to
find the corresponding results either from any other papers or from our own
experiments.

When tested on more challenging graphs, RLTB demon-
strated robust and consistent performance, often surpassing
other existing hybrid methods. In comparison with RLTCOL



[17], which also applied the RLHO framework, our model
showed superior results on the dsjc125.5 and le450 15d
graphs, demonstrating its ability to efficiently handle certain
types of challenging instances. However, RLTCOL performed
better on the dsjc250.5 and dsjc500.1 graphs. These results
indicate that while RLTB has robust performance and can
surpass other hybrid methods on specific graphs, different
approaches may excel depending on the characteristics of the
graph instances. Overall, RLTB has demonstrated strong and
consistent performance, particularly on smaller and medium-
sized graphs. However, as the order and size of the graphs
increase, the accuracy of RLTB tends to decrease.

VI. CONCLUDING REMARKS

In this paper, we introduced a hybrid model, RLTB, that
combines reinforcement learning (RL) with heuristic algo-
rithms to address the graph coloring problem (GCP). Our
model integrates a deep Q-Network (DQN) architecture with
multiple graph neural network (GNN) layers.

The experimental results demonstrate that RLTB signif-
icantly outperformed existing heuristic algorithms such as
TabuCol and a greedy algorithm, as well as GNN methods
from [9], [15], across almost all of easy DIMACS graph
instances. When compared with other hybrid methods [17]–
[19], RLTB showed robust performance, often matching or sur-
passing these models, particularly on more challenging graph
instances. This indicates the effectiveness of our approach
in leveraging both RL and GNNs to improve the quality of
solutions in the GCP.

However, due to time constraints, we were unable to explore
alternative RL mechanisms or heuristic algorithms within
the RLTB framework. Exploring variations such as different
RL algorithms or advanced heuristics could potentially yield
significant performance improvements. Moving forward, we
plan to experiment with alternative RL methods like Proximal
Policy Optimization (PPO) and integrate heuristics such as
Simulated Annealing or variations of TabuCol to enhance
the model’s capabilities. Additionally, we aim to extend the
application of the RLTB model to other combinatorial opti-
mization problems, further investigating its adaptability and
effectiveness across diverse contexts.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT)(No. 2021R1F1A1048466). It was also supported by
Korea Institute of Marine Science & Technology Promotion
(KIMST) funded by the Ministry of Oceans and Fisheries,
Korea (RS-2022-KS221629).

REFERENCES

[1] Preston Briggs, Keith D. Cooper, and Linda Torczon, ”Improvements to
graph coloring register allocation”, ACM Trans. Program. Lang. Syst.
16, 3 (may 1994), 428–455, 1994

[2] Taehoon Park and Chae Y. Lee, ”Application of the Graph Coloring
Algorithm to the Frequency Assignment Problem”, Journal of the
Operations Research Society of Japan 39, 2 (1996), 258–265, 1996

[3] Nicolas Zufferey, Patrick Amstutz, and Philippe Giaccari, ”Graph
colouring approaches for a satellite range scheduling problem”, J. of
Scheduling 11, 4 (August 2008), 263–277, 2008

[4] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev,
”Reinforcement Learning for Combinatorial Optimization: A Survey”,
arXiv:2003.03600 [cs.LG], 2020

[5] Qingpeng Cai, Will Hang, Azalia Mirhoseini, George Tucker, Jingtao
Wang, and Wei Wei, ”Reinforcement Learning Driven Heuristic Opti-
mization”, arXiv:1906.06639 [cs.LG], 2019

[6] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner,
and Gabriele Monfardini, ”The Graph Neural Network Model”, IEEE
Transactions on Neural Networks 20, 1 (2009), 61–80, 2009

[7] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li and Maosong Sun,
”Graph Neural Networks: A Review of Methods and Applications”,
arXiv:1812.08434 [cs.LG], 2021

[8] Alain Hertz and D. Werra, ”Using Tabu Search Techniques for Graph
Coloring”, Computing 39, 345-351. Computing 39 (December 1987),
1987

[9] H. Lemos, M. Prates, P. Avelar, and L. Lamb, ”Graph Colouring
Meets Deep Learning: Effective Graph Neural Network Models for
Combinatorial Problems”, In 2019 IEEE 31st International Conference
on Tools with Artificial Intelligence (ICTAI). IEEE Computer Society,
Los Alamitos, CA, USA, 879–885, 2019

[10] Jin Kao Hao Daniel Porumbel and Pascale Kuntz, ”DIMACS Graphs:
Benchmark Instances and Best Upper Bounds”, Accessed: 2024-08-30,
2011

[11] Carnegie Mellon University. [n. d.]. ”Graph-Coloring-Instances”,
https://mat.tepper. cmu.edu/COLOR/instances.html, unpublished, Ac-
cessed: 2024-08-30.

[12] Daniel Brélaz, ”New methods to color the vertices of a graph”, Commun.
ACM 22, 4 (apr 1979), 251–256, 1979

[13] Fred Glover and Manuel Laguna, ”Tabu search I. Vol. 1.”, 1999
[14] M. Chams, A. Hertz, and D. de Werra, ”Some experiments with simu-

lated annealing for coloring graphs”, European Journal of Operational
Research 32, 2 (November 1987), 260–266, 1987

[15] George Watkins, Giovanni Montana, and Juergen Branke, ”Generating
a Graph Colouring Heuristic with Deep Q-Learning and Graph Neural
Networks” arXiv:2304.04051 [cs.LG], 2023

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra and Martin Riedmiller, ”Playing Atari
with Deep Reinforcement Learning”, NIPS Deep Learning Workshop
2013 (12 2013).

[17] Adrian Salamon and Klara Sandström, ”Reinforcement learning for
improved local search : Applied to the graph coloring problem”,
unpublished, 2023

[18] Yangming Zhou, Jin-Kao Hao, and Béatrice Duval, ”Reinforcement
learning based local search for grouping problems: a case study on graph
coloring”, arXiv:1604.00377 [cs.AI], 2016.

[19] Yangming Zhou, Béatrice Duval, and Jin-Kao Hao, ”Improving proba-
bility learning based local search for graph coloring” Appl. Soft Comput.
65, C (April 2018), 542–553, 2018

[20] Fred Glover, C. McMillan, and Beth Novick, ”Interactive decision
software and computer graphics for architectural and space planning”
Annals of Operations Research 5 (October 1985), 557–573, 1985

[21] Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce and Alexander
B. Wiltschko, ”A Gentle Introduction to Graph Neural Networks” Distill,
2021

[22] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye and Jeff
Braga, ”CleanRL: High-quality Single-file Implementations of Deep
Reinforcement Learning Algorithms” arXiv:2111.08819 [cs.LG], 2021


