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Abstract—Colon cancer is one of the most fatal cancers
globally among both males and females, highlighting the urgent
need for effective early detection methods to improve survival
rates. Histopathological image analysis plays a critical role
in identifying malignancy by examining cellular patterns, but
traditional diagnostic methods can be time-consuming and
resource-intensive, necessitating more efficient solutions. This
study focuses on the colon-specific subset of the LC25000
dataset, a collection of high-resolution histopathological images,
to develop a deep learning-based diagnostic framework using the
MobileNetV2 architecture. A unique pre-processing technique
including key steps like noise reduction, grayscale conversion,
and dimensional standardization was employed to enhance image
quality for model training. For colon cancer detection, the
model achieved an overall accuracy of 99.95% with 100% recall,
precision, and F1-scores. This architecture is designed to reduce
computational power and processing time, which makes it highly
suitable for mass utilization and resource-limited conditions. A
comparative performance analysis was done with existing works
to highlight the model’s effectiveness in detecting colon cancer.
These findings present the impact of the proposed work to
develop a more reliable solution for colon cancer diagnosis.

Index Terms—Colon cancer, MobileNetV2, Histopathological
images, Pre-processing, Image classification.

I. INTRODUCTION

Colon cancer has become increasingly common in both
men and women, resulting from a combination of genetic
tendencies and environmental factors. As per the World
Health Organization, cancer is the leading cause of death
globally with an estimated 28.4 million new cases projected
by 2040 [1]. Additional cancer risk factors include lifestyle
choices such as weight gain, physical inactivity, excessive
alcohol intake, and poor eating patterns [2]. Age is a major,
unavoidable risk factor for cancer, with 87% of cases emerging
in individuals aged 50 and older [3]. A statistical study in the
U.S. estimated that lung and colon cancers would rank among
the three most common cancer types in 2020, with patients
dealing with high death rates [4]. Cancer includes a wide

range of diseases, with colon cancer being one of the deadliest
types, contributing around 10% of global cancer-related deaths
[5]. Accurate diagnosis requires minimally invasive methods,
as non-invasive methods alone can rarely perform precise
characterization of tumors. The growth of colon cancer does
not have a side effect at an early stage. The symptoms do not
show till the disease makes significant progression.

Mitigating colon cancer death rates largely depends on
early diagnosis and thorough screening. But accurate early
detection remains difficult without diagnostic approaches such
as tissue biopsies, CT scan and MRI. Regular screening is
important for early detection in healthy individuals as well
as patients already undergoing treatment. But constant testing
also increases costs and places stress on medical workers.
Computer-aided diagnostic systems are a powerful solution to
minimize workload and error rates. These systems utilize deep
learning (DL) architectures to examine large medical datasets
more accurately and effectively and solve the challenges
associated with the rapid increase of medical data.

The traditional method of screening cancer with
histopathological images has been largely affected by
technological advances like AI. This development enables
quicker analysis and better decisions. Machine learning (ML)
allows systems to learn specific tasks by processing data
without requiring explicit programming [6]. ML algorithms
are widely used in the biomedical sector to predict and
classify various signals and images. In the same way, DL
algorithms, that are meant to handle high dimensional data
like multimodal anatomical images and videos contain
artificial neural networks with multiple layers specially
designed for classification tasks [7].

This work proposes a new DL-based study to identify colon
cancer from histopathology images using the LC25000 dataset.
This approach utilizes the MobileNetV2 transfer learning (TL)
model, specifically designed to enhance diagnostic efficiency
with less computational power.



II. LITERATURE REVIEW

Colorectal cancer can be classified as either colon cancer
or rectal cancer, depending on where it develops. Early
discovery remains difficult due to the overlapping cell
structure, complicating diagnosis. In order to overcome this,
current research has used artificial intelligence (AI) more
and more to improve the accuracy and efficiency of cancer
diagnosis utilizing histopathological images.

Shapcott et al. [8] presented a DL-based cell classification
approach for colon cancer identification from histopathology
images through region sampling focused on classification
based on cell density, with features extracted through DL to
ensure effective detection. Later, Garg et al. [9] applied a
pre-trained Convolutional Neural Network (CNN) model for
the prediction of lung and colon cancers. This work examined
eight CNN-based models for classifying malignant and benign
images, achieving promising accuracies.

Nur Ibrahim et al. [10] built a baseline CNN model
for classifying four types of colon cancer. The study used
histological images, with features extracted from 150 × 50
pixel textures. The model achieved an accuracy of 83%.
Yildirim and Cinar [11] employed a specialized CNN model,
MA_ColonNET, achieving an accuracy rate of 99.75% in
classifying colon tissue types. This model, composed of 45
layers, demonstrated strong diagnostic reliability, helping to
reduce diagnostic errors typically associated with manual
evaluation methods. In a similar manner, Zarrin et al. [12]
proposed a DL predictive model using MobileNetV2 and
CNN-based layers, including Max and Average pooling.
This study aimed to improve the classification of colon
cancer images, achieving a peak accuracy of 99.67% with
MobileNetV2.

M. Shahid et al. [13] utilised the AlexNet model in a
modified form to classify colon and lung cancers using the
LC25000 image dataset. Before training on the dataset, four
layers of AlexNet were adjusted and the dataset images
underwent various pre-processing steps. This optimized
approach achieved an overall accuracy of 98.4%, proving
to be computationally efficient for cancer detection. Mesut
Toğaçar [14] introduced an AI-based approach to classify
lung and colon cancer using the DarkNet-19 model for
feature extraction, followed by Equilibrium and Manta Ray
Foraging algorithm to eliminate low predictive value. The
remaining features were classified with a Support Vector
Machine (SVM), achieving an accuracy of 99.69%.

Following this, Chehade et al. [15] focused on different
ML methods for the classification of lung and colon cancer
subtypes by utilizing models like XGBoost, SVM, RF,
LDA, MLP, and LightGBM. The study found XGBoost to
be the top-performing classifier, with a peak accuracy of
99%. The study underscored the interpretability advantage
of feature-engineered machine-learning models over deep
learning, which functions more as a “black box” and is
less interpretable. Al-Jabbar et al. [2] combined GoogLeNet,
VGG-19, ANN, and PCA models to enhance the early

diagnosis of colon cancer, improving image quality through
contrast adjustments and reducing high-dimensional data
requirements. In parallel, Tummala et al. [1] employed
the EfficientNetV2 model with Grad-CAM to create visual
saliency maps that highlight key regions in histopathological
images, aiding cancer subtype identification.

Hadiyoso et al. [16] utilized a VGG16-based CNN model
with Contrast Limited Adaptive Histogram Equalization
(CLAHE) to achieve consistent performance across various
training epochs, while Singh et al. [17] introduced an ensemble
method combining logistic regression, SVM, and random
forest models, which yielded high accuracy but increased
computational demands due to the ensemble structure. Khan et
al. [18] proposed a model utilizing Vision Transformer (ViT)
and a modified Swin Transformer for colon cancer detection.
Using the LC25000 dataset, the Swin Transformer model
achieved 99.80% accuracy, outperforming other models such
as ResNet-101 and traditional ViT.

III. DATASET

In this study, the colon cancer subset from the Lung and
Colon Cancer Histopathological Image Dataset (LC25000),
published in 2020, was utilized [19]. The LC25000 dataset
was collected at the James A. Haley Veterans’ Hospital,
Tampa, Florida, and is categorized, labeled, and augmented
with rotations and flips by its authors. The LC25000 dataset
contains 25,000 RGB histopathology images stained with
hematoxylin and eosin of five classes of colon and lung tissues,
5,000 images of each class.

Fig. 1: Tissue Samples from LC25000 Datasets

Figure 1 depicts a sample of two classes from the colon
cancer subset. The colon cancer subset includes 10,000
histopathological images divided into two classes: 5,000
images of colon Adenocarcinoma and 5,000 images of Benign
colon tissue. All images are stained with hematoxylin and
eosin, stored in JPEG format, and have a resolution of
768×768 pixels.

IV. METHODOLOGY

A. Overall Workflow

Figure 2 shows the entire framework of the proposed
research. Firstly, the dataset is divided into training,
testing, and validation subsets before pre-processing, with



Fig. 2: Overall Workflow of the Study

a split ratio of 70:20:10. Then, the images from LC25000
dataset are transformed into grayscale format without losing
important features. Furthermore, the improvements of contrast,
brightness, and sharpness are applied to obtain better
clarification. Noise reduction techniques like Gaussian blurring
are used to remove artifacts while not losing sharpness at
the edges. The binary thresholding routine is performed
to highlight contours before cropping images according to
extreme points.

The images are then resized to a standard resolution
of 224x224 pixels. The MobileNetV2 architecture uses its
pre-trained weights for feature extraction. This allows for
precise classification of histopathological images into two
categories. The workflow finishes with performance evaluation
using metrics such as accuracy, precision, recall, and F1-score.

B. Train-Test Split

Initially, the dataset was split into a training set and
a combined validation-test set. Thereafter, the combined
validation-test set was further divided into separate validation
and test sets. This process resulted in dividing the data into
70% for training, 20% for testing, and 10% for validation.
Each image was mapped to its designated subset directory and
transferred efficiently by using parallelization. Consequently,
it provided a well-organized and balanced dataset, which is
essential for reliable model training and evaluation.

C. Pre-processing

Figure 3 illustrates an overview of the entire pre-processing
framework. Each image is converted in grayscale format,
where the original workflow is applied to simplify the visual
data while retaining essential features. The grayscale image
is then transformed to PIL format for better enhancement. To
enhance visual clarity, three key adjustments are performed:
The contrast is amplified by a factor of 1.2 for greater disparity
in tone, brightness is modified by 1.1 to uncover subtler details,
and finally sharpness boosts the effective resolution via a value

of 1.2, creating a clearer picture. After such augmentations, the
resulting images are in numpy array shape, which helps for
the next steps on the pipeline.

Once enhanced, a Gaussian blur with a kernel size of (3, 3)
is applied to minimize noise and smooth the image, which
helps in isolating primary features. Following this, binary
thresholding is conducted with a threshold value of 45 (on
a 0–255 scale), binarizing the image and further reducing
noise. This step is essential for contour detection, enabling the
identification of distinct shapes within the image. If contours
are detected, the algorithm determines the image’s extreme
points (top, bottom, left, and right) and crops the image
accordingly, focusing on the most relevant area. If no contours
are found, the image bypasses cropping and proceeds as-is to
the following steps.

Noise reduction is further enhanced through bilateral
filtering, which employs a diameter of 2 and sigma values
of 50 for both color and spatial distances, effectively reducing
noise without sacrificing edge sharpness. For enhanced visual
differentiation, a pseudo-color transformation is applied using
the bone color map, adding depth and contrast to the
grayscale image. The processed image is then resized to a
standardized 224x224 pixels, ensuring uniformity across the
dataset. Finally, the image is saved, completing the overall
pre-processing designed to optimize each image for model
training.

D. MobileNetV2 Architecture

The proposed study uses the MobileNetV2 architecture,
a DL model intended for transfer learning, and altered
the architecture solely for the needs of colon image
classification [20]. The architecture is designed to be efficient,
producing high-quality images for classification tasks with
less computing. The architecture uses depthwise separable
convolutions that break down standard convolution operations
into two smaller ones shown in figure 4. Then, the
architecture reduces the parameters and operations on a lower



Fig. 3: Overall Pre-processing Framework

margin by selecting an optimal layout. It also uses inverted
residual blocks with linear bottlenecks to capture the most
important spatial features. So, the architecture can achieve
higher accuracy with lower latency, proving its potential for
constrained environments.

The top layer of the original pre-trained MobileNetV2
model (include_top=False) was removed. This change retains

the convolutional base, which acts as a feature extractor
for the high-dimensional histopathological image data.
Depthwise separable convolutions are a key building block
for many efficient neural network architectures. Finally, the
convolutional base uses depthwise separable convolutions and
inverted residual blocks to provide efficient feature extraction
while remaining computationally light.

Fig. 4: MobileNetV2 Architecture(Residual and Inverted Residual Block)

Over the base pre-trained model, a sequence of custom
layers was stacked in order to fine-tune the model for
binary classification. Then a GlobalAveragePooling2D layer
extracts the spatial features from the convolutional base while
preserving essential information. Moreover, a Dense layer with
128 units and ReLU activation is deployed. A Dropout layer
(rate = 0.2) regularizes the model and reduces overfitting. The
architecture is frozen with a Dense output layer consisting
of two units with softmax activation to allow accurate binary
classification. The base layers of MobileNetV2 were kept static
while training to preserve the pre-trained weights while only
optimizing the newly added layers.

E. Performance Evaluation Metrics

The analysis used standard evaluation metrics, as outlined
in Equations (1)–(4).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score =
2× Precision × Recall

Precision + Recall
(4)

The True Positive (TP) recognizes normal data as normal,
and True Negative(TN) stands for abnormal data, correctly
classifying to its different classes of exceptionality. Both TP
and TN are correct classifications. In contrast, if the data are
abnormal but classified as normal, it is called False Positive
(FP), while if they are normal and wrongly classified, this is
called false negative (FN) [11].



V. RESULT ANALYSIS

The model was trained for 18 epochs. Table I presents
information on training and validation loss and the accuracy
for the last five epochs, during which the model achieved its
highest training and validation accuracy. Figure 5 provides a
comparative visualization of training and validation metrics,
with one graph illustrating accuracy and the other depicting
loss across all epochs.

TABLE I: Training and Validation Metrics for Last 5 Epochs

Epoch
Number

Training
Accuracy

(%)

Training
Loss
(%)

Val.
Accuracy

(%)

Val.
Loss
(%)

14 99.77 0.51 100 0.0658

15 99.77 0.84 100 0.0216

16 99.75 0.73 100 0.0211

17 99.84 0.43 100 0.0417

18 99.91 0.25 100 0.0174

Fig. 5: Training and Validation Performance Comparison

Table II shows the performance of the model on the test
set, which consists of data that were not used during the
training phase. The evaluation metrics indicate exceptional
performance across various aspects. It achieved a very low
test loss of 0.1%, suggesting minimal error in predictions and
strong alignment with actual values. With an overall accuracy
of 99.95%, the model demonstrates high reliability in correctly
classifying instances, indicating that nearly all predictions
were accurate. The specificity at sensitivity metric, recorded
at 1, signifies that the model attains perfect specificity when
a predefined sensitivity threshold is maintained.

TABLE II: Test Set Model Evaluation Results

Overall
Accuracy

(%)

Test Loss
(%)

Test
Sensitivity

Test AUC

99.95 0.10 1 1

The confusion matrix displayed in figure 6 illustrates the
model’s performance on the test data. The matrix shows
that the MobileNetV2 model achieves a high level of

accuracy across both categories, with only a single benign
class image incorrectly identified as adenocarcinoma. This
result highlights the model’s reliability in detecting and
distinguishing adenocarcinoma cancer cells from natural cells.

Fig. 6: Confusion Matrix for MobileNetV2

TABLE III: Classification Report Metrics

Class Precision
(%)

Recall
(%)

F1-Score
(%)

Adenocarcinoma 100 100 100
Benign 100 100 100

Table III provides the precision, recall, and F1-Score for
the adenocarcinoma and benign classes. The model achieved
100% in all metrics for both classes. This result shows the
model’s accuracy in distinguishing the classes.

VI. COMPARATIVE ANALYSIS

Table IV shows a comparison among various existing
architectures with the proposed work. Results show that
MobileNetV2 achieved the highest accuracy of 99.95%
and precision of 100%. Only the DCNN model was
able to obtain the same precision score. This architecture
outperformed models like MA_ColonNET, CoC-ResNet50V2,
and XGBoost. The proposed work also shows a notable
improvement over earlier models like ResNet50 and
ResNet-v2. This demonstrates the impact of MobileNetV2’s
concise architecture for extracting relevant features.

VII. CONCLUSION

Early diagnosis of colon cancer is necessary to begin
timely treatment and improve survival rates. This study
presents a DL-based framework employing the MobileNetV2
architecture for detecting and classifying colon cancer from
histopathological images. The proposed model achieved an
excellent accuracy of 99.95%, addressing drawbacks in
traditional methods. The model was trained on 7000 images
and tested on 2000 images, where it correctly identified 1999
cases. These results show the model’s potential for reliable
and scalable colon cancer detection in clinical applications. In
the future, the model can be adapted and tested on other types



TABLE IV: Comparisons with previous work.

Study\Paper Architecture Accuracy (%) Precision (%) Recall (%)
Bukhari et al. [21] ResNet50 93.91 95.74 96.77
Gupta et al. [22] ResNet-v2 90 96 87
Kishor et al. [23] CoC-ResNet50V2 99.55 99.38 99.69
Chehade et al. [15] XGBoost 99.3 99.5 99.5
Yildirim et al. [11] MA_ColonNET 99.75 99.80 -
Hasan et al. [24] DCNN 99.80 100 99.59
Proposed work MobileNetV2 99.95 100 100

of cancer datasets to evaluate its performance in classification
and prediction tasks.

VIII. CODE AVAILABILITY

The code will be shared upon request.
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