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Abstract—This paper introduces SR-DeepSC, a novel
super-resolution semantic communication system to serve
for satellite image transmission. We propose an asymmet-
ric architecture utilizing Vision Mamba-inspired blocks,
tailored for both satellite and ground station environ-
ments. SR-DeepSC significantly outperforms traditional
methods like JPEG+Cubic in image quality, maintain-
ing high SSIM and PSNR values across various SNR
levels. The system’s lightweight satellite-side implemen-
tation and more complex ground station processing
effectively balance computational load, reducing latency
while improving reconstruction quality. Experimental
results demonstrate SR-DeepSC’s robustness to noise
and efficiency in bandwidth-limited conditions, making
it a promising solution for enhanced satellite image
communication.

Index Terms—semantic communication, lightweight,
6G

I. INTRODUCTION

Satellite image transmission plays a crucial role
in Earth observation, meteorology, and remote sens-
ing applications. However, the process faces signifi-
cant challenges due to bandwidth limitations, atmo-
spheric interference, and the vast distances involved.
These constraints often result in the reception of low-
resolution images that may lack critical details for
accurate analysis and interpretation. To address this
issue, super-resolution techniques have emerged as a
promising solution. These methods aim to enhance the
spatial resolution of received images, reconstructing
high-fidelity versions from their low-resolution coun-
terparts.

dqtuan@uclab.re.kr dwwon @uclab.re.kr
6" Sungrae Cho
Chung-Ang University
Seoul 06974, South Korea
srcho@cau.ac.kr

Semantic communication, a paradigm shift from tra-
ditional Shannon-based communication systems, offers
a potential avenue for optimizing satellite image trans-
mission. By focusing on the meaning and relevance
of the transmitted information rather than raw data,
semantic communication systems can prioritize the
transmission of essential image features. This approach
may reduce bandwidth requirements while preserving
the semantic content crucial for downstream applica-
tions.

A. Related Works

In the field of semantic communication, significant
strides have been made, particularly in text trans-
mission. The DeepSC [1] model pioneered the use
of Transformer-based architectures, optimizing both
semantic and channel coding simultaneously. This was
followed by LiteDeepSC [2], which offered a more
resource-efficient solution for IoT applications. Jia et
al. [3] further advanced the field with a lightweight
JSCC scheme using a DeLighT-based neural network,
achieving comparable or better communication relia-
bility than Transformer-based models while substan-
tially reducing computational demands. Their approach
employs a DeLighT-based deep neural network model,
achieving comparable or superior communication re-
liability to Transformer-based JSCC schemes while
significantly reducing computational requirements and
parameter count. SemVit, introduced by Yoo et al.
[4], combined ViT and CNN architectures to enhance
performance. Ren et al. [5] developed an asymmetric
system for edge devices based on Diffusion models.
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Fig. 1: Overview about Super-Resolution Satellite Image Transmission

Ye et al. proposed a robust codebook-based system
utilizing vector-to-index transformers to combat noise
effects. Zhang et al. [6] introduced a multi-server
framework leveraging image-to-graph semantic simi-
larity and multi-agent reinforcement learning for effi-
cient resource allocation. In the realm of multimodal
semantic communication, Do et al. [7] presented a
Mamba-based multi-user multi-modal DeepSC to im-
prove multi-modal data transmission efficiency. trans-
mission.

B. Contributions

The main contributions of this research are:

« We propose SR-DeepSC, a novel super-resolution
semantic communication architecture designed
to generate high-resolution images from low-
resolution inputs received over constrained wire-
less channels. This system addresses the unique
challenges of satellite image transmission in
bandwidth-limited environments.

o We introduce two innovative variants of Vision
Mamba-inspired blocks, specifically tailored for
satellite and ground station environments. These
adaptations enhance the efficiency and effective-
ness of image processing in the context of long-
range, low-bandwidth satellite communications.

II. PROPOSED SYSTEM

Fig. 1 illustrates the overview of the Super-
Resolution Image Transmission system, wherein a
satellite transmits low-resolution images to a ground
station, which subsequently processes and outputs
high-resolution images.
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Fig. 2: The architecture of Vision Mamba-2 (VM-2)

A. Vision Mamba blocks

The core component of the proposed architecture is
the Vision Mamba-2 (VM-2) block, which is funda-
mentally derived from the Mamba-2 module [8]. How-
ever, it incorporates modifications to the State Space
Model (SSM) to accommodate 2D data processing.
Fig. 2 depicts the structure of the Vision Mamba-2.



The operational sequence of the Vision Mamba can be
described as follows:
o Layer Normalization: The input tensor i € REZ* P
is normalized as iyo;m = LayerNorm(i), where L
represents the sequence length and D the feature
dimension.
o Input Projection: Two linear projections are ap-
plied to the normalized input

x = Linear(iyom, 0z) € REX(ExD)

z = Linear(iyom, 0,) € REX(ExD)

(D

where 6, and 6, denote the weight matrices for
the main and gating branch linear projections, re-
spectively, and E represents the expansion factor
of the Mamba module.

o Depthwise Convolution: A depthwise convolution
is applied to the main branch:

z. = Conv(z,Ocony) € RL*(ExD) )

where Ocony is the weight matrix of Convolutional
layer
o State Space Model (SSM) Processing:

y=SSMa pcn(z.) € REXEXD) 3)

where A, B, C, and A are the learnable parame-
ters of the SSM.

« Gating Mechanism: The SSM output is modulated
by the gating branch:

Ymerged = Y * SZLU(Z) c RLX(EXD) )

¢ Output Projection and Residual Connection: The
final output is computed as:

out = Linear (Ymerged, 0o) + 1 € RE*P (5)

where 6, is the weight matrix of output projection

layer.
Given the computational constraints of satellites, we
propose two variants of the Vision Mamba-inspired
block, tailored for both satellite and ground station
applications: the Compact Residual Vision Mamba-
inspired Block (CRVMB) and the Residual Vision
Mamba-inspired Block (RVMB), respectively. Fig. 5
illustrates the architectures of these two variants. The
primary distinction between the two variants lies in
their structural complexity. The CRVMB incorporates
a single Vision Mamba-2 (VM-2) block, whereas the
RVMB employs two such blocks in sequence. Con-
sequently, the CRVMB exhibits lower computational
requirements compared to the RVMB, making it more
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Fig. 3: Architectures of two variants: Residual Vision
Mamba-inspired Block (RVMB) for ground station
side and Compact Residual Vision Mamba-inspired
Block (CRVMB) for satellite side

suitable for satellite-based processing. The operations
of two modules can express as:

RVMB(z) = Conv(VM-2%(z, 0y ), 0c) +

6
CRVMB(z) = Conv(VM-2(z, 0y ), 0c + ©

where 0y s, Oc represents for the weight matrix of
Vision Mamba-2 and Convolutional layer, respectively.

B. Framework Architecture

The framework architecture, as illustrated in Fig. 4,
comprises two primary components: the Satellite side
and the Ground Station side. Given the computational
constraints of satellite systems, we have designed the
satellite-side processing to be as lightweight as pos-
sible. On the Satellite side, the process begins with
a low-resolution input image Iz € R**7*W_ This
image undergoes initial processing through a convolu-
tional layer followed by patch embedding to extract
shallow features and divide the image into smaller
patches:

P = PatchEmbedding(Conv(I 1 g, Oshaow), Ope)  (7)

where P € RUXW)XD represents for image patches;
H, W represents for image height and width, re-
spectively; fpg is the weight matrix for patch embed-
ding. Subsequently, these image patches are processed
through two CRVMB blocks to extract semantic fea-
tures:

SF = CRVMB?(P, fcrvms) (8)
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Fig. 4: The proposed framework architecture include the satellite side and the ground station side

where SF € RE>XW)XD represents for extracted
semantic features; gy prp represents for the weight
matrices of CRVMB blocks. The extracted features
then undergo channel projection to transform them into
regulated transmitting symbols:

Y = Linear(SF,0cg) 9)

where Y € REP*W)XCS is channel encoded fea-
tures; C'S are the number of channel symbols; 0cg
is the weight matrix of channel encoder. The encoded
symbols Y are transmitted through a wireless chan-
nel, modeled as an Additive White Gaussian Noise
(AWGN) channel:

Z=Y+N (10)

where Z € R(PXW)xCS ig received feature at ground
station side; N denotes for AWGN channel noise. On
the Ground Station side, the received features Z are
processed via the channel decoder:

CDF = Linear(Z,0cp) (11)

where CDF € RPXH*W represents for channel de-
coded features; O¢cp represents for the weight matrix
of channel decoder projection. The channel-decoded
features CDF are then processed through a series
of four RVMB blocks to reconstruct the embedded
patches:

P = RVYMB*(CDF, fryns) (12)

where P € RPXH*XW repregents for reconstructed
embedded patches; Orymp represents for weight matrix
of the RVMB blocks. Finally, Pis processed through
a series of three convolutional layers for unembedding
and upscaling:

jHR = COHU(COTL'U(COTLU(P, 9unembed)7 epostconv)v eup)
(13)

where THR € R3*(Hs)x(W:s) represents the recon-
structed high-resolution image, s denotes the upscale
ratio, and funembed, Oposiconv, and 6y, represent the
weight matrices for unembedding, feature refinement,
and upsampling, respectively.

C. Evaluation Metrics

To evaluate SR-DeepSC’s efficacy in transmitting
and reconstructing images, we utilize two comple-
mentary quantitative measures: the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM). The PSNR metric quantifies image quality by
comparing the maximum possible signal power to the
power of corrupting noise. It is calculated as:

MAX?
MSE
Where M AX; represents the maximum attainable
pixel intensity, and M SE denotes the Mean Squared
Error between the source and reconstructed images.
Larger PSNR values correspond to superior image
fidelity. The SSIM index assesses the visual similarity
between two images by examining their luminance,
contrast, and structural characteristics. Its formulation
is:

PSNR =10 % log10(

) (14)

(2papy + c1)(204y + c2)
(12 +p2 +c1)(02 + 02 +c2)

SSIM(z,y) = (15)

Here, p1, and p, denote the mean intensities, ag and
05 represent the variances, and oxy is the covariance
of image patches x and y. The SSIM score ranges
from -1 to 1, with unity indicating perfect correspon-
dence. While PSNR effectively gauges overall noise
levels, SSIM provides insight into the preservation
of structural information and correlates more closely
with human visual perception. In combination, these
metrics offer a holistic assessment of SR-DeepSC’s



capacity to maintain image integrity across diverse
channel conditions.

IITI. SIMULATION RESULTS
A. Simulation Setup

This experiment is conducted using a system
equipped with an Intel Core 17-14700 with 2.1GHz
and an NVIDIA GeForce RTX 4070Ti Super with
16GB DRAM. Table I lists the other simulation setups.
The adopted datasets is amalgamated from Landsat 8
and Sentinel-2, include 659 265x265 training images
and 117 795x795 test images. To compare with SR-
DeepSC, we adopt the JPEG+Cubic in which JPEG
is for image source coding and Cubic to upscale the
image.

TABLE I: Simulation Setups

Name Value
Batch Size 4
Learning rate 1.00E-04

Training epochs | 10

Optimizer AdamW
Loss function MSE
Upscale ratio 3
Hidden size 60
Patch size 1

B. Image results

The SSIM results, illustrated in Fig. 5a reveals stark
differences between the two methods. SR-DeepSC
maintains extremely high SSIM values across all SNR
levels, indicating near-perfect structural similarity to
the original image. In contrast, JPEG + Cubic shows
very poor SSIM values, starting at 0.008888 at -6 dB
SNR and improving to only 0.100829 at 18 dB SNR.
While the proposed method’s SSIM remains stable,
JPEG + Cubic’s SSIM improves with increasing SNR,
but remains far inferior throughout the range of SNR
values tested.

The PSNR results, illustrated in Fig. 5b further
underscores the performance difference between the
two methods. SR-DeepSC demonstrates consistently
high PSNR values, ranging from 23.52 dB at -6 dB
SNR to 26.53 dB at 18 dB SNR. In contrast, JPEG
+ Cubic shows much lower PSNR values, starting at
6.91 dB and improving to 17.62 dB as SNR increases.
While both methods show improvement in PSNR as
SNR increases, SR-DeepSC maintains a significant
advantage throughout the entire SNR range, with a

TABLE II: The model size of SR-DeepSC and
JPEG+Cubic in satellite and ground station side

Methods Satellite | Ground Station
SR-DeepSC (proposed) | 132,968 | 402,942
JPEG+Cubic - -

performance gap of over 8 dB even at the highest SNR
level tested.

Through two above metrics we can see that SR-
DeepSC exhibits strong robustness to noise, maintain-
ing high performance even at low SNR levels. As
a result, SR-DeepSC show the potential for satellite
image transmission where the noise environment is
extreme

C. Model Size and Latencies

The Table II show the model size of SR-DeepSC and
JPEG+Cubic in satellite and ground station side. The
SR-DeepSC model employs an asymmetric architec-
ture, which is particularly advantageous for satellite-to-
ground communication systems. On the satellite side,
the model has only 132,968 parameters, enabling effi-
cient on-board processing within the limited, expensive
computational resources of satellites. In contrast, the
ground station component has 402,942 parameters,
approximately three times larger, allowing for more
complex processing and potentially better reconstruc-
tion of received signals. This asymmetric design intel-
ligently distributes the computational load, placing the
bulk of the processing burden on the ground station
where resources are more abundant. JPEG+Cubic is a
conventional method so it does not have any trainable
parameters.

TABLE III: The mean latencies of SR-DeepSC,
JPEG+Cubic method in satellite and ground Station
side in millisecond (ms)

Methods Satellite | Ground Station
SR-DeepSC (proposed) | 3.033 10.308
JPEG+Cubic 13.372 13.218

The Table. III shows the comparsion between
SR-DeepSC and JPEG+Cubic method. SR-DeepSC
demonstrates superior performance on the satellite
side, with a mean latency of only 3.033 ms compared
to JPEG+Cubic’s 13.372 ms. This substantial differ-
ence of over 10 ms is crucial in satellite applications
where rapid processing is essential due to limited on-
board resources and power constraints. On the ground
station side, SR-DeepSC maintains its efficiency with
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Fig. 5: Results of the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) for

SR-DeepSC (proposed) and JPEG+Cubic

a latency of 10.308 ms, while JPEG+Cubic shows a
similar performance to its satellite-side operation at
13.218 ms. The asymmetric nature of SR-DeepSC’s
architecture is evident in its latency distribution, with
more processing time allocated to the ground station
where computational resources are more abundant. De-
spite this, SR-DeepSC still outperforms JPEG+Cubic
on the ground.

IV. CONCLUSION

In conclusion, SR-DeepSC presents a novel super-
resolution semantic communication system for satel-
lite image transmission. Leveraging asymmetric Vision
Mamba-inspired blocks, it significantly outperforms
traditional methods in image quality, computational
efficiency, and latency. The system’s robust perfor-
mance across various SNR levels, coupled with its
lightweight satellite-side implementation, makes it par-
ticularly well-suited for the challenging constraints of
satellite communications. SR-DeepSC thus represents
a promising advancement in efficient, high-quality
satellite image transmission and reconstruction.
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