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Abstract—In recent years, Fluid Antenna Systems (FAS) have
emerged as an innovative solution in wireless communications,
offering dynamic adaptability by adjusting antenna positions
within a confined space to enhance signal reception and coverage.
By seamlessly optimizing antenna placement in response to
varying channel conditions, FAS significantly improves the signal-
to-noise ratio (SNR) and ensures superior quality of service
(QoS), particularly in challenging environments. A key aspect
of maximizing the potential of FAS lies in efficient resource
allocation, which is essential for optimizing network performance,
balancing power and latency, and mitigating interference. This
paper provides a comprehensive survey of Deep Reinforcement
Learning (DRL)-assisted resource allocation strategies tailored
for FAS. It explores the integration of DRL algorithms to
leverage FAS’s inherent flexibility, addressing scalability and
reliability challenges. Our findings highlight the ability of DRL-
enhanced resource allocation to improve network capacity and
resilience, underscoring the transformative potential of FAS in
next-generation wireless systems. Furthermore, we discuss key
research challenges and future trends in this evolving domain,
setting a roadmap for future advancements.

Index Terms—Deep Reinforcement Learning, Fluid Antenna
Systems, Resource Allocation

I. INTRODUCTION

The growing demand for reliable, high-speed wireless
communication is being driven by the rapid expansion of
mobile devices, Internet of Things (IoT) applications, and
data-intensive services. However, traditional antenna systems
often struggle to deliver consistent performance, particularly in
densely populated areas or environments prone to interference.
To overcome these limitations, Fluid Antenna Systems (FAS)
have emerged as a groundbreaking solution. FAS introduces
a novel level of flexibility in antenna design, enabling real-
time adjustments of antenna positions within a defined space.
Unlike static antennas, FAS dynamically identifies and moves
to optimal locations for signal reception, making it particularly
effective in scenarios characterized by high interference or
significant signal variability [4, 8]. This adaptability positions
FAS as a transformative technology for enhancing wireless
communication in complex and challenging environments.

Resource allocation is pivotal in harnessing the full potential
of FAS, ensuring optimal utilization of power, spectrum, and
other network resources. Unlike traditional systems, resource
allocation in FAS presents unique challenges due to the
dynamic nature of antenna positioning and its interplay with

constantly changing channel conditions. Effective resource
allocation strategies must leverage the inherent adaptability of
FAS to balance power efficiency, minimize interference, and
maximize throughput, all while meeting diverse user demands.
This requires the development of sophisticated algorithms ca-
pable of dynamically adjusting resource allocation in response
to both user mobility and the real-time positional adjustments
of FAS. In complex and dynamic environments, DRL has
emerged as a promising approach to address these challenges.
By learning and adapting to evolving network conditions, DRL
provides an efficient framework for solving resource allocation
problems in FAS systems, ensuring improved performance and
reliability.

This paper delves into the optimization of resource allo-
cation in FAS, introducing novel techniques that capitalize
on FAS’s dynamic flexibility. By enhancing resource utiliza-
tion and ensuring resilient connectivity, FAS emerges as a
transformative solution for wireless communication networks,
offering scalability and adaptability to meet diverse operational
scenarios and user demands. The structure of this research is
as follows: Section I introduces our approach and sets the
foundation for the study. Section II provides a comprehen-
sive overview of DRL-aided resource management in FAS,
highlighting its advantages over traditional systems and its
potential application in next-generation networks. Section III
discusses key challenges and outlines future trends in this
evolving domain. Finally, Section IV presents the conclusion,
summarizing the insights and implications of this work.

II. RESOURCE ALLOCATION IN THE FLUID ANTENNA
SYSTEMS

A. Fluid Antenna Systems

FAS represent a groundbreaking advancement in wireless
communication technology, utilizing position-flexible antennas
capable of dynamically reconfiguring their shape and position
to optimize radio-frequency (RF) performance [4, 8]. Unlike
traditional antennas with fixed elements, FAS introduces the
ability to adjust antenna positions within a defined space,
offering superior spatial diversity and enhanced multiplexing
gains. This adaptability allows FAS to effectively mitigate
interference and improve signal quality, making it particularly
well-suited for densely populated communication environ-
ments, such as urban areas with numerous simultaneously



connected devices. Additionally, FAS can modify its orien-
tation and frequency response in real-time, enabling it to
adapt seamlessly to changing signal conditions, environments,
and QoS requirements. This versatility positions FAS as a
transformative technology for future wireless networks.

FAMA (Fluid Antenna Multiple Access) and FAS-assisted
next-generation multi-access techniques are innovative ap-
proaches that harness the adaptability of FAS to revolution-
ize multiple access methods. In FAMA, users are assigned
unique spatial signatures, and antenna positions are dynami-
cally adjusted to enhance signal reception while suppressing
interference [6]. Unlike traditional methods such as orthogo-
nal multiple access (OMA), non-orthogonal multiple access
(NOMA), or rate-splitting multiple access (RSMA), which
rely on advanced techniques related to signal processing like
successive interference cancellation (SIC), FAMA operates
without requiring channel state information (CSI) at the trans-
mitter and eliminates the need for SIC at the receiver. This
reduces system complexity, enabling efficient management of
massive connectivity demands in 6G networks. FAMA and
other FAS-assisted multi-access techniques exploit the fluid
antenna’s unique ability to reposition itself in response to deep
signal fades and interference, providing inherent interference
suppression. By dynamically reconfiguring antenna positions
based on real-time channel conditions, these techniques in-
troduce a new degree of freedom, optimizing communication
performance across both time and space. Furthermore, inte-
grating FAS with NOMA or RSMA has recently emerged as
a promising strategy for achieving efficient resource allocation.
However, these combinations present new challenges that
require innovative solutions to fully realize their potential in
next-generation networks.

B. Deep Reinforcement Learning

DRL is an advanced area of machine learning technology
that integrates the representational power of deep learning with
the sequential decision-making framework of reinforcement
learning. DRL enables agents to operate autonomously in com-
plex environments by learning from interactions. The agent
observes the current state of the environment, selects actions,
and receives feedback as rewards. The agent’s objective is
to maximize cumulative rewards over time, learning optimal
policies that guide its actions [2, 3]. By leveraging deep neural
networks, DRL can process high-dimensional data, like images
or sensory input, allowing it to perform well in tasks with large
state spaces where traditional reinforcement learning struggles.
Notable successes of DRL include mastering games, as well
as advancing fields such as robotics, autonomous driving,
and natural language processing. Despite its successes, DRL
faces challenges, such as high computational requirements,
sample inefficiency, and difficulty in ensuring stability and
convergence in training, making it an active area of research
and innovation.

C. Deep Reinforcement Learning-assisted Resource Alloca-
tion for Fluid Antenna System

DRL-assisted resource allocation for FAS represents a
cutting-edge approach to optimizing wireless communication
networks. FAS offers unprecedented flexibility by enabling an-
tennas to dynamically adjust their positions or configurations
within a defined space, enhancing signal quality and mitigating
interference. However, the complex and dynamic nature of
FAS poses significant challenges for traditional optimization
techniques. DRL provides an effective solution by leveraging
its ability to learn optimal policies through interactions with
the environment. By modeling resource allocation tasks as a
reinforcement learning problem, DRL agents can dynamically
adapt to changing network conditions, efficiently allocate
resources like power and spectrum, and improve performance
metrics such as throughput and energy efficiency. Especially,
the critic network in actor-critic frameworks utilizes a deep
neural network to approximate the expected reward generated
by the policy, while the actor network is responsible for
determining the optimal policy. The advantage function, which
represents the difference between the action-value function and
a value function for a given state and action, is used as the loss
function for training. It employs interactive feedback from the
environment to iteratively train the neural networks, allowing
the system to learn from real-time experiences rather than pre-
labeled examples. This integration of DRL with FAS promises
enhanced adaptability, scalability, dynamic optimization in
complex environments, and automation, paving the way for
smarter and more efficient next-generation communication
systems.

III. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

While the advantages of FAS are undeniable, it presents
significant challenges for resource allocation in such systems
[4, 5]. First, the large-scale implementation of FAS requires
the development of cost-effective, energy-efficient fluid an-
tenna hardware. While current fluid antennas show promise
in research settings, they must be optimized for practical,
real-world deployment. Despite recent studies exploring FAS,
practical considerations for real-world applications have not
yet been fully addressed. Additionally, integrating FAS, and
FAS-assisted multi-access techniques with emerging next-
generation technologies, such as reconfigurable intelligent sur-
faces (RIS), AI-driven networks, and terahertz communication,
presents both technical and operational hurdles. The need to
ensure optimized resource allocation, low latency and high
reliability in densely populated urban environments remains a
significant challenge. Furthermore, the complexity of resource
allocation within the FAS framework presents its own set
of difficulties. Developing efficient algorithms to manage
dynamic resource distribution while optimizing performance
in such a flexible and adaptive system remains an ongoing
challenge. Addressing these issues is essential for unlocking
the full potential of FAS in real-world applications.

Therefore, DRL is a promising technique to address above
several problems. In the context of multiple-input multiple-



output-FAS downlink communication, optimizing the system
requires joint coordination of several parameters, including
the port selection, the precoding matrix at base station, and
the beamforming matrices at the user devices [5, 7]. DRL
emerges as a more suitable alternative for Supervised learning,
as it eliminates the need for labeled datasets by enabling
agents to learn optimal strategies through interaction with the
environment, making it well-suited for the complexities of FAS
resource allocation. In [1], Bello et al. introduced a neural
combinatorial optimization framework leveraging reinforce-
ment learning. This approach can be adapted to develop an
end-to-end learning model that optimizes stochastic policies
for selecting activated ports and precoders to maximize the
sum rate. This method provides a flexible and powerful
solution for efficiently optimizing resource allocation and
system performance in advanced communication networks.
In addition, DRL can learn and adapt to changing network
conditions and dynamic environments, and it is suitable for
large-scale networks with numerous users and antenna config-
urations in real world. However, in [9], Yun et al. presented
the instability of reinforcement learning during the training
phase, it is a key factor that affects the convergence of the
model. To address this challenge, mathematical methods with
reinforcement learning can reduce learning variance, leading to
enhanced training stability and faster model convergence. Ad-
ditionally, strategies, which encourages exploration of learning
process, should be designed clearly to avoid local mini-
mum, and the balancing between exploration and exploitation
problem. Specifically, the epsilon-greedy strategy encourages
exploration by randomly selecting actions. However, its in-
herent randomness can reduce the efficiency of exploration,
potentially slowing down the overall convergence. Besides,
the algorithm selection and combination between different
algorithms are also posing difficult challenges in recent times.

Future research should prioritize improving the hardware
design of FAS to enhance their scalability and operational
efficiency. Additionally, advances in DRL algorithms could
facilitate more intelligent and adaptive antenna configuration
strategies that respond dynamically to evolving network con-
ditions. Thus, they need to be designed clearly to address
efficiently proposed challenges. Exploring the integration of
FAMA with other multiple access techniques, such as NOMA
and RSMA, could open new pathways for enhancing network
performance, particularly in the context of 6G. Moreover,
resource allocation strategies need to be developed within
the complex FAS framework to effectively tackle challenges
such as energy consumption, cost, latency, and convergence of
algorithms. To ensure accurate evaluation of system quality, it
is essential to conduct deeper performance analysis, providing
valuable insights into the effectiveness and efficiency of the
proposed solutions.

IV. CONCLUSIONS

FAS represent a groundbreaking solution for enabling mas-
sive connectivity and efficient spectrum utilization in 6G
networks. The unique reconfigurability of FAS allows for

reduced system complexity, interference mitigation, and en-
hanced scalability and flexibility, while also improving energy
efficiency. These advantages position FAS as a pivotal tech-
nology for the next generation of communication systems.
However, several challenges related to resource allocation
in real-world applications persist, including hardware imple-
mentation, integration with existing technologies, adaptation
to dynamic environments, and large-scale deployment. To
address these challenges effectively, DRL offers a promising
approach. Nevertheless, the system’s accuracy, convergence,
and efficiency requirements need to be ensure. Nevertheless,
further research and development are crucial to unlocking the
full potential of FAS in 6G networks and ensuring its practical
deployment.
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