Early Detection of Lung Cancer Using Pyramid
Vision Transformer (PVT v2): A Comparative
Analysis of Deep Learning Models
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Abstract—Lung cancer remains one of the most prevalent
and life-threatening diseases worldwide, with early detection
being critical for improved survival rates. This paper explores
the application of advanced vision transformers, specifically the
Pyramid Vision Transformer (PVT v2), to enhance lung cancer
detection from Computed Tomography (CT) scan images. We
comprehensively compare state-of-the-art deep learning models,
including MaxViT, XCiT, and NextViT, and we investigate their
performance in classifying lung cancer into malignant, benign,
and standard categories. Utilizing the IQ-OTH/NCCD dataset, we
fine-tune PVT v2 alongside other models, implementing rigorous
preprocessing, augmentation, and regularization techniques to
achieve robust results. Our experimental findings demonstrate
that PVT v2 achieves superior accuracy with 99.09% and gen-
eralization, outperforming other models on multiple evaluation
metrics such as precision, recall, Receiver-operating Character-
istic curve (ROC) and Area under the curve (AUC) compared
to published research. Despite challenges like dataset imbalance
and computational costs, our work highlights the potential of
vision transformers to revolutionize lung cancer detection and
its application in public health.

Index Terms—Lung Cancer Detection, Pyramid Vision Trans-
former (PVT v2), Vision Transformers, Deep Learning, CT Scans,
MaxViT, XCiT, NextViT, Image Classification, Medical Imaging,
Early Detection, Receiver-operating Characteristic curve (ROC)
and Area under the curve (AUC).

I. INTRODUCTION

In the world, lung cancer is one of the most critical diseases
nowadays [1]. World Health Organization (WHO) estimated
that around 7.6 million deaths worldwide per year are caused
by lung cancer [2]. In 2030, humanity because of cancer is
supposed to continue rising, to become around 17 million
worldwide [3]. The only method of its cure is to find out
lung cancer in the early stage [4]. MRI, isotope, and CT
methods are available for the diagnosis of lung cancer, but
X-ray chest radiography and Computer Tomography (CT) are
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the two familiar anatomic imaging modalities that are regularly
used in the recognition of different lung diseases [5], [6].
Physicians and radiologists use CT images to identify and
recognize the presence of lung cancer [7].

Lung cancer disease cannot be identified easily in CT im-
ages. Because of that, low-dose helical computed tomography
(LDCT) is applied as a modality [8], [9]. The computer-aided
automatic detection (CAD) process must be applied to the
clinical center to develop an effective cancer prediction system
using an optimized and intelligent technique [10]. Using deep
learning in CAD systems has many advantages, like it can
perform end-to-end detection by learning the most salient
features during training time [11]. This makes the network
robust to variations as it captures nodules’ features in various
CT scans with varying parameters.

Recently, vision transformers have also become very popu-
lar in medical sector research [12]. The Swin transformer was
a popular choice among researchers; many other architectures
were also found where the vision transformer was combined
with convolution neural networks or the UNet model [13]. The
advent of transformers apprised researchers of CNNs’ major
drawback, the inability to capture long-range dependencies
such as the extraction of contextual information and the non-
local correlation of objects [13].

II. LITERATURE REVIEW

Roy, Sirohi, and Patle [14]developed a system to detect
lung cancer nodules using a fuzzy inference system for clas-
sification. This method uses gray transformation for image
contrast enhancement. The resulting image is segmented using
an active contour model. Features like area, mean, entropy,
correlation, primary axis length, and minor axis length are
extracted to train the classifier. The limitation of this method



is that it does not classify the cancer as benign or malignant,
which is the future scope of this proposed model.

Hiram et al. [15] have classified lung nodules using the
Frequency domain and SVM with RBF. Neural Ensemble-
based Detection (NED) was proposed by Zhi-Hua et al. [16],
which utilized an artificial neural network ensemble to identify
lung cancer cells. This method provides high accuracy in
the identification of cancer cells. Hui Chen et al. [17] have
provided a computerized scheme for formatting a lung nod-
ule’s classification on a thin-section CT scan using a Neural
Network Ensemble (NNE).

Parmar et al. [18] have been used to derive features to
describe images quantitatively. The integration of Al-enabled
diagnostic tools improves the precision of tumor characteriza-
tion and paves the way for personalized interventions in lung
cancer. A pre-trained GoogleNet architecture was proposed by
Sajja et al [19]. They tested the method on the LIDC dataset
of CT scans and achieved the highest success compared to
several pre-trained CNN models like ResNet 50, AlexNet,
and GoogleNet. Lyu [20] proposed an ensemble approach to
the IQ-QTH/NCCD dataset using four different CNN models:
AlexNet, VGG, DCNN, and DenseNet. It can be seen that the
ensemble approach improves the performance of the single
model, and the DenseNet architecture provides the highest
accuracy by using GoogleNet Model Al-Hussein et al. [21],
achieving 94.38% accuracy. Raza et al. [22] proposed Effi-
cientNetB1 architecture using a novel transfer learning-based
approach for lung cancer diagnosis. With the proposed Lung-
EffNet, they achieved 99.10% accuracy on the test set. They
also used various data augmentation techniques to solve the
imbalance problem in the dataset.

III. BACKGROUND STUDY
A. Existing Technologies

Many deep learning models have been developed to aid in
the detection of lung cancer, primarily using CT and MRI
scans. EFFI-CNN uses lung CT scan images from LIDC-IDRI
and Mendeley data sets [23]. EFFI-CNN has a unique combi-
nation of CNN layers with parameters. AlexNet CNN is also
used to detect lung cancer because the proposed CNN achieves
a high degree of accuracy, which is more effective [24]. CNN
architecture, a DL algorithm, helps detect lung cancer. As the
methods deal with binary classification, which confirms yes/no
of the lung cancer presence in the human body, both SVM
and CNN methods are more straightforward than any other
ML/DL algorithms for this lung cancer data considered [25].
ResNet-50/101 and EfficientNet-B3 are also commonly used
for lung cancer diagnosis because these models utilize transfer
learning, where they are pre-trained on large datasets like
ImageNet and then fine-tuned for medical applications, such as
identifying cancerous nodules from CT images [26]. YOLOvS8
has been shown to achieve high accuracy in lung cancer
detection, especially in CT images [27]. 3D Residual CNN is
employed to reduce false positives in lung nodule detection
[27]. DenseNets have been used to classify lung nodules,
crucial for early cancer detection [27]. ARNN has an attention

layer that performs the encoding and decoding process within
single sequences using variable-length vectors. It also has the
advantage of performing automatic feature extraction [28]. A
hybrid bidirectional Long-Short-Term-Memory (BiDLSTM)-
Mask Region-Based Convolutional Neural Network (Mask-
RCNN) model proposes a lung disease prediction framework
[29].

B. Our Approach

As we know, CNN, RNN, and other deep learning models
are very common for detecting lung cancer and other medical
diseases [30]. So, we want to introduce everyone to some new
models of vision transformers. The first is PVT v2, which
is known as the Pyramid Vision Transformer. PVT v2 can
obtain more local image and feature map continuity than
PVT vl [31]. It can process variable-resolution input flexibly
and enjoy the same linear complexity as CNN. Secondly,
ViTamin, with only 436M parameters and trained on the public
DataComp-1B dataset, achieves an impressive 82.9% zero-shot
ImageNet accuracy [32]. Thirdly, MaxViT uses a hierarchical
backbone similar to standard ConvNet practices where the
input is first downsampled using Conv3x3 layers in the stem
stage. The body of the network contains four stages, with
each stage having half the resolution of the previous one with
a doubled number of channels [33]. Fourthly, NextViT is a
next-generation vision Transformer for efficient deployment
in realistic industrial scenarios, which dominates both CNNs
and ViTs from the perspective of latency/accuracy trade-
off [34]. Fifthly, XCiT is known as the Cross-Covariance
Image Transformer. It is built upon XCA and combines
conventional transformers’ accuracy with convolutional archi-
tectures’ scalability. XCiT by reporting excellent results on
multiple vision benchmarks, including self-supervised learning
for image classification on ImageNet-1k, object detection,
instance segmentation on COCO, and semantic segmentation
on ADE20k [35].

IV. METHODOLOGY
A. Data Analysis

For our research, we collected the dataset from Kaggle
[36]-[38]. This dataset is based on cancer diseases (IQ-
OTH/NCCD) lung cancer, and it was collected in the specialist
hospitals mentioned above over three months in the fall
of 2019. CT scans of different patients with lung cancer
in various stages are included here. The dataset has three
classes of norm: abnormal, benign, and malignant. The dataset
contains 1190 images representing CT scan slices of 110 cases.
Among them, 40 cases are diagnosed as malignant, 15 cases
are diagnosed as benign, and 55 cases are classified as typical
cases. Here, Figures 1, 2, and 3 represent three states of lung
cancer from the dataset.

B. System Design

We utilized the Pvt v2 for the image classification model, es-
pecially the PVT-v2-b0 architecture from OpenGVLab, which
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Fig. 1. Bengin Case

Fig. 2. Malignant Case  Fig. 3. Normal Case

we fine-tuned to classify lung cancer images into three cate-
gories: benign, malignant, and normal. Data was preprocessed
using image transformations, including resizing to 224x224,
grayscale conversion, Gaussian blur, random horizontal flips,
rotations, and color jitter to enhance generalization. The
dataset was split into training into 80%, validation into 10%,
and test into 10% sets, with appropriate normalization applied.
Figure 4 shows all the procedures for designing our models
and training the dataset.
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Fig. 4. Proposed System Architecture of Pyramid Vision Transformers.

Hyper-parameter
Tuning

Batch Size and
Learning Rate
Adjustment

Dataset
8
R 2

ROC-AUC
Calculation

We employed a custom dataset class to load images and
labels, leveraging a Trainer from the Hugging Face library to
streamline the training process. The training was conducted
over 50 epochs, using a cosine learning rate scheduler with
restarts and weight decay for regularization. The model was
optimized and evaluated based on key metrics such as accu-
racy, precision, recall, F1-score, and ROC-AUC, computed on
both validation and test datasets, providing robust insights into
the model’s performance. We also apply this cross-entropy
loss formula in our models, which calculates the difference
between the predicted class probabilities and the ground truth:

N C
L==%" yiclog(fc)

i=1 c=1
To find out the accuracy of every model, we use this
formula:

N
1 N
Accuracy = N z; (G = vi)
i
For other models such as NextViT, MaxViT, XCiT, and
ViTamin, we set the batch size to 32, the learning rate at 0.001.

To calculate the learning rate, we applied this Learning Rate
Scheduling (Cosine Annealing) formula:

1 T
Nt = Nmin + i(nmax - 77min> (1 + cos ( cur W))

max

We use 50 epochs, and the weight decay of le-4(L2
regularization) and applied this formula:

Ltotal = E + )\sz

We use the AdamW optimizer, image size into 224 * 224
as input resolution for models. The augmentation we use
in the dataset is a random resized crop, random horizontal
flip, random rotation, random grayscale conversion, and color
jitter-like brightness, contrast, and hue adjustment. We also
resized all images to 224x224 resolution and normalized them
using ImageNet mean and standard deviation values: [0.485,
0.456, 0.406] for mean and [0.229, 0.224, 0.225] for standard
deviation.

V. RESULT AND ANALYSIS

Our research focused on the PVT v2 model, but we also
used many pre-trained models in the same dataset, such as
MaxViT, NextViT, Vitamin, and XCiT. All models were as-
sessed based on training accuracy, validation accuracy, training
loss, and validation loss. This way, we can understand each
model’s performance on the training dataset and its capacity to
generalize to unseen data. Table I represents the performance
metrics for all models across these tasks.

TABLE I
OVERALL MODEL PERFORMANCE RESULTS
Model Training Training Validation Validation
Loss Accuracy Loss accuracy
MaxViT 0.0330 98.29% 0.0749 98.17%
NextViT 0.0620 97.49% 0.2774 91.74%
Vitamin 0.1961 92.12% 0.2774 91.74%
XCiT 0.0535 98.06% 0.1164 97.25%
PVT v2 0.1278 99.09% 0.0507 98.18%

Here, in training accuracy, PVT v2 achieved the highest
accuracy with 99.09%, and MaxViT was in second place with
98.29%. XCiT and NextViT also reached good accuracy with
98.06% and 97.49%. Vitamin lagged with a training accuracy
of 92.12%. Regarding validation accuracy, PVT v2 performed
best at 98.18%, and with a bit of low accuracy, MaxViT
performed at 98.17%. XCiT maintained a vital validation
accuracy of 97.25%, while NextViT and Vitamin performed
less than other models at 91.74%.

Figure 5 shows the output of our model, which detects lung
cancer. MaxViT exhibited a low value of 0.0749 regarding
validation loss, indicating good generalization capabilities.
PVT v2 showed an even lower validation loss of 0.0507, which
suggests that it adapts well to unseen data. XCiT recorded a
validation loss of 0.1164, indicating a solid performance. On
the other hand, NextViT and Vitamin faced challenges with
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Fig. 5. Performance Outcomes of the Lung Cancer Detection System.

higher validation losses of 0.2774 and 0.2774, respectively,
which represent these two models could imply overfitting
issues or difficulty capturing the dataset’s complexities. Figure
6 represents the training and validation loss and accuracy
curves, which shows how our model performs well.
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Fig. 6. Training and Validation Loss & Accuracy Curves for PVT v2.

In terms of training loss, MaxViT achieved the lowest value
at 0.0330, indicating excellent learning and minimal error
during training. XCiT placed second by a training loss of
0.0535, showcasing its effective training process. Although
PVT v2 had a higher training loss of 0.1278, it maintained
competitive training accuracy. NextViT and Vitamin experi-
enced even higher training losses of 0.0620 and 0.1961, re-
spectively, which correlate with their lower training accuracies,
suggesting challenges in capturing the dataset’s complexities.

Comparison of Training and Validation Accuracies Across Models
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Fig. 7. Analyzing Accuracy Trends in Different Models

Figure 7 represents all the model’s training and valida-

tion accuracies. Finally, MaxViT and PVT v2 are the best-
performing models, showcasing superior training, validation
accuracy, and low validation loss. MaxViT efficiently extracts
complex features, leading to high accuracy and minimal errors.
PVT v2 also demonstrates strong generalization capabilities,
indicating its potential for practical applications. On the
other hand, XCiT also shows promising results; NextViT
and Vitamin highlight the challenges of achieving effective
performance and generalization, suggesting that these models
need further optimization. Overall, the findings underscore the
advantage of utilizing advanced architectures like MaxViT and
PVT v2 for tackling complex datasets, particularly in contexts
requiring robust feature extraction and generalization.

VI. COMPARISON

Prity et al. [39] use this same dataset, and they apply CNN-
based model XceptionNet where they achieve 99.64% in Vali-
dation accuracy and 99.51% in training accuracy. They trained
their model for 80 epochs with early stopping, 8 batch sizes,
and for learning rate le-5. For comparison, they also applied
Inception V3, DenseNet201, EfficientNetB7, MobileNetV2,
NASNetMobile, and ResNet101v2. Jafar Abdollahi et al. [40]
also used the same dataset to evaluate LeNet algorithms for
classification. Here, they Achieved 97.88% accuracy, 83.17%
validation accuracy, and 93.17% sensitivity.

TABLE 1T
ANALYZING PERFORMANCE MEASURES IN COMPARISON TO
OTHER TECHNIQUES

Study Year Methodology Accuracy
Prity et al. 2023 CNN-Based 99.64&

Model

(XceptionNet)
Jafar Abdollahi | 2023 LeNet 83.17%
et al. Algorithm
Abdalbasit Mo- | 2023 Hybrid- 98.54%
hammed Qadir LCSCDM
et al.
Our proposed | 2024 Pyramid Vision | 99.09%
method (PVT Transformer
v2)

Abdalbasit Mohammed Qadir et al. [41] used an inno-
vative lung cancer detection system known as the Hybrid
Lung Cancer Stage Classifier and Diagnosis Model known
as Hybrid-LCSCDM. Here, they approach in two ways. The
first approach used a pre-trained model VGG-16 for detecting
key features in lung cancer, and secondly, the classifier used
machine learning, which is XGBoost. They addressed the
class imbalance challenge in our dataset by applying Stratified
5-fold Cross-Validation. Their strategy achieved an overall
accuracy of 98.54%. In that case, we worked with different
approaches. We used transformer-based models here to deter-
mine which model gave us better performance. After analyzing
other models in Table II and all our model’s performances, we
noticed that the Pyramid vision transformer, known as PVT v2,
gave us better training and validation accuracy. We got 99.09%
in training accuracy and 98.18% in validation accuracy.



VII. APPLICATIONS, LIMITATIONS, AND FUTURE WORK

The application of advanced deep learning models, such as
PVT-V2, holds significant potential in the early detection of
lung cancer, a leading cause of mortality worldwide. Early and
accurate diagnosis is critical for improving survival rates, and
PVT-V2 can enhance the analysis of CT scans by enabling
precise, rapid, and automated detection of cancer nodules, as
well as their classification into benign or malignant categories.
This Al-driven diagnostic approach has substantial public
health implications, particularly in resource-limited settings
where trained radiologists and advanced diagnostic tools are
scarce.

Beyond lung cancer, the methodology can be extended to
other critical diseases, laying the groundwork for Al-driven
solutions to complex health challenges. Such applications
support broader public health goals, addressing healthcare
disparities, fostering innovation in disease prevention, and
enhancing management strategies. However, the integration of
Al models like PVT-V2 into clinical practice poses challenges,
including the need for seamless compatibility with existing
healthcare infrastructure and fostering collaboration among
clinicians, technologists, and policymakers. Addressing these
challenges is essential to maximizing the impact of Al in
advancing equitable and effective public health interventions.

Our significant limitation is that we only work on one
dataset based on Iraq. Still, lung cancer is a worldwide
problem, so we have to increase our dataset and combine
other countries’ datasets. Although the images were resized to
224x224 pixels, this could have caused a loss of critical details,
especially when detecting smaller nodules or more intricate
features of malignant cases. The reduced resolution may affect
the model’s ability to effectively differentiate between benign
and malignant tumors. NextViT and Vitamin exhibited higher
training losses, suggesting that these models might overfit the
training data. This could reduce their ability to generalize
to unseen data, leading to a drop in performance during
real-world deployment. The dataset is imbalanced, with more
benign and normal cases than malignant ones. We also should
have to include MRI-based datasets in our new dataset for
our models. We will develop real-time lung cancer detection
models integrated with cloud-based systems to assist radi-
ologists in quicker diagnosis and treatment decisions. These
systems should be capable of handling high volumes of patient
data, and further work should be done to ensure the model’s
scalability and integration with hospital infrastructure.

VIII. CONCLUSION

Early detection is critically important if a significant reduc-
tion in lung cancer morbidity and mortality is to be realized.
Although some patients at risk of lung cancer have other co-
morbidities that could preclude surgery, new approaches such
as stereotactic ablative body radiotherapy (SABR) have had
promising results in treating patients with stage. It also needs
to be clear how many CT scans patients should have through-
out their lifetime. The proposed technique gives promising
results compared with other methods that have been used.

Vision transformer models are developed daily, so we should
not use old techniques in the future because old models will
not handle upcoming advanced machine images. Moving in
vision transformers instead of old models will bring a massive
revolution. It is more efficient than other models to detect even
more minor things that old models cannot do.
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