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Abstract—The advancement in Artificial Intelligence has made
it possible to control the robots through intuitive interfaces such
as speech and gestures. A robotic control system for human-
robot interaction has been developed, enabling robot control
using human speech or hand gestures. Speech and gesture
recognition technology has become a part of robotic control
systems, acting as a bridge for interaction between humans and
robots. However, simple robotic control systems process control
commands independently, without considering the situation in
which the robot is located. This leads to collision risks and a
decline in control reliability. This paper introduces a Command
Feedback System based on Context Awareness (CFS-CA) to
minimize control errors by integrating real-time situational
analysis with user commands. The system provides context-aware
feedback, enabling more accurate and efficient robotic control.
Experiments performed in a virtual environment with seven
participants demonstrated that CFS-CA significantly reduces
control errors and improves performance across key metrics,
including the number of commands, driving time, collisions, and
path efficiency, ensuring safer and more reliable robotic control.

Index Terms—Human-robot interaction, Feedback, Context
awareness, Speech recognition, Gesture recognition

I. INTRODUCTION

Recent advancements in Artificial Intelligence have been
observed to bring significant attention to technologies that
control robots through speech and gestures, leading to the
emergence of various robotic control systems. Human-robot
interaction (HRI) through speech and gestures enhances the
intuitiveness and efficiency of robotic control systems, playing
a crucial role in various applications [1], [2]. Speech and
gesture-based robotic control systems provide user-friendly
interfaces by leveraging intuitive human input and real-time
responsiveness [3], [4]. In particular, continuous research on
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deep learning and computer vision technologies has signifi-
cantly improved the accuracy of speech and gesture recogni-
tion [5]. As a result of these advancements and the intuitive
nature of speech and gestures, they have been recognized
as essential means of HRI, with their practicality gradually
expanding [6], [7]. However, simple robotic control systems
are designed to process control commands independently,
focusing solely on basic robotic control. There is a limitation
in that the situation in which the robot is located is not
considered.

Conventional speech [8] and gesture-based robotic control
systems [9], as shown in Fig. 1(a), are designed such that
commands input by the operator are executed as robotic
control commands if they exceed a certain accuracy threshold.
However, if incorrect commands are input into the system
and executed, it may lead to robot malfunction or damage,
as well as harm to the surrounding environment. This risk
becomes more pronounced in complex or visually constrained
situations, where such issues could result in critical failures
within robotic control systems in HRI. Additionally, there
is a concern that commands incompatible with the robot’s
real-world context may be executed due to the operator’s
carelessness, compromising safety and reliability. This design
does not account for critical aspects of HRI, including the
recognition of the operator’s intent and adaptability to sit-
uational contexts, ultimately reducing user convenience and
operational efficiency.

In this study, to minimize control command errors, a Com-
mand Feedback System based on Context-Awareness (CFS-
CA) was designed by integrating context awareness into the
robotic control system, as shown in Fig. 1(b). This system
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Fig. 1. Concept of CFS-CA

simultaneously analyzes questions including the operator’s
command and the robot’s surrounding environment in real
time, providing command feedback based on situational anal-
ysis. By analyzing the robot’s surrounding environment and
recommending more accurate commands to the operator, the
system aims to minimize control error and enable more stable,
efficient, and contextually appropriate robotic control. To
validate the efficiency of the proposed system, we conducted a
robotic control experiment with seven participants in a virtual
environment modeled after the 5th floor of the Daeyang Al
Center at Sejong University.

This paper is organized as follows: Section II introduces
the internal modules that consist the CFS-CA. Section III
describes the experimental environment and the artificial intel-
ligence technologies incorporated into the system. Section IV
provides experimental results to verify whether the proposed
system meets its intended objectives. Finally, Section V con-
cludes with a summary of the study and a brief discussion of
future work.

II. SYSTEM ARCHITECTURE OF CFS-CA

The CFS-CA is designed to minimize command errors
during robotic operation through feedback. The architecture
of CFS-CA, as shown in Fig. 2, consists of User, Inference
Module, and Control Module. User’s speech and gestures are
converted into Human Interface Command through Human
Interface Recognition. First, a question containing the con-
verted command and the image captured by the forward-
view camera mounted on the robot are input into Context
Awareness, where situational analysis and feedback generation
are performed. Context Awareness determines whether the
user’s initial command is an appropriate control command and
generates feedback accordingly. The user’s final command,
adjusted based on the feedback, is used to generate the robot
control intent in Intent Generation through Human Interface
Recognition.
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Fig. 2. System architecture of CFS-CA

A. Inference Module of CFS-CA

o Human Interface Recognition: Human Interface Recog-
nition is part of Inference Module and processes the
user’s speech and gestures into actionable commands. The
speech recognition model converts the user’s speech into
text, regarding the gesture recognition model, it generates
control commands using the joint values and angles of
both detected hands in the image. This module serves
as a connecting intermediary that enables humman-robot
interaction within the CFS-CA.

o Context Awareness: Context Awareness simultaneously
receives questions, including human interface commands,
in text form and the forward-view image as inputs. Addi-
tionally, it is multimodal, which is capable of processing
text and images within a single model, and generates
feedback based on whether the control command is
executable in the robot’s environment. The generated
feedback is presented in text format and is displayed on
the screen for the user’s reference.

B. Control Module of CFS-CA

o Camera: Camera in Control Module transmits real-time
images captured by the robot’s forward-view camera to
the context awareness model. The model analyzes the
robot’s surrounding environment using forward-view im-
ages and evaluates the appropriateness of the command.

o Intent Generation: Intent Generation takes Human In-
terface Command, refined by feedback, as input and
generates robot control intents containing speed, direc-
tion, and angular velocity. The generated control intent is
transmitted to the robot’s hardware to perform the actual
actions.

III. EXPERIMENTAL SETUP

We conducted experiments to verify that the CFS-CA
system enables more accurate and efficient robot control
by providing context-aware feedback. To achieve this, we



created a virtual environment modeled after the 5th floor
of the Daeyang AI Center at Sejong University. The virtual
environment was constructed using Isaac Sim, and control ex-
periments were performed with a four-wheeled robot involving
seven participants. Human Interface Recognition in the CFS-
CA Inference Module includes a speech recognition model
and a gesture recognition model. For the speech recognition
model, the Whisper model [10] was fine-tuned to improve
the accuracy of speech-based control commands. For the
gesture recognition model, gesture-based control commands
were generated by training CNN-LSTM network on joint
values extracted through MediaPipe [11]. Context Awareness
in the CFS-CA Inference Module utilized the Vision-Language
model, LLaVA [12].

A. Simulation Environment

We selected the four-wheeled robot as the Unmanned
Ground Vehicle (UGV) and conducted experiments in the vir-
tual environment we generated. The indoor space was scanned
using a LiDAR sensor to create a 3D map. Additionally,
rendering techniques were applied to add textures, visualizing
the indoor environment. Fig. 3 shows the virtual environment
we constructed. Fig. 3(a) shows the LiDAR-scanned indoor
virtual environment with textures added through rendering.
Fig. 3(b) illustrates the virtual box and path designed for the
control experiments. Fig. 3(c) indicates the starting point of
the four-wheeled robot and Fig. 3(d) shows its target endpoint.

(a) LiDAR-scanned indoor virtual en-
vironment

(b) Control experiment environment

(c) Starting point of robot driving

(d) Target endpoint of robot driving

Fig. 3. Simulation environment

B. Speech and Gesture Models for Robot Control

We fine-tuned the Whisper-small model to serve as the
speech recognition component of our system. The fine-tuning
process involved 13 participants constructing 12 instruction
sets, and fine-tuning the model using the dataset consisting
of 2,087 instruction sentences. Among the 12 commands, five
were selected as the most suitable for controlling the four-
wheeled robot: forward, backward, left, right, and cancel. In
addition, parameters such as the robot’s linear velocity and
angular velocity can be specified by speech input.

For gesture recognition, 42 joint values of both hands
were extracted using MediaPipe. These joint values were
processed by CNN to maximize feature extraction and further
analyzed by LSTM to recognize dynamic gestures, forming
CNN-LSTM model [13]. A total of 19 different commands
were collected from 17 participants, with 500 samples per
command. From this dataset, only five commands that were
identical to the speech commands were used. The linear
velocity of the robot in response to gestures is set to 2 m/s,
while the angular velocity is 1 rad/s. Speech and gesture
commands are shown in Table. 1.

TABLE I
COMMAND OF SPEECH AND GESTURE
Command Speech Gesture
Forward
o 0.1
Forward %;1 00
<-0.1
0 0.5 1 1.5 2 2.5
Time (s)
Backward
0.5
Backward é 00 {’ T
<
-0.5
0 0.5 1 1.5 2 2.5
Time (s)
Left
° 0.5
<05
0 0.5 1 1.5 2 2.5
Time (s)
Right
05
3
< -0.5
0 0.5 1 1.5 2 2.5
Time (s)
Cancel
0.5
]
Cancel %;1 00 wii
< 0s Cancel
0 0. 1.5 2 2.5
Time (s)
Linear Velocity
& Speech Parameters 2 m/s & 1 rad/s
Angular Velocity

C. Vision-Language Model for Generate Feedback

The Vision-Language model, LLaVA was used to process
a question containing a human interface command along with
the front-view image. By processing these two inputs within a
unified model, the Vision-Language model generates efficient
feedback that accounts for environmental factors.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

We conducted experiments with seven participants control-
ling the four-wheeled robot in the indoor virtual environment.
To evaluate the efficiency of the system, control experiments



TABLE 11
PERFORMANCE METRICS OF CFS-CA

Speech Gesture
Evaluation Metrics
#1 #2 | #3 | #4 | #5 | #6 | #T | Avg. | #1 #2 | #3 | #4 | #5 #6 | #7 | Avg.
w/o Feedback | 40 35 46 | 46 | 55 49 39 43 40 | 61 52 | 42 | 35 | 50 | 53 48
Number of Commands [Times]
w/ Feedback | 35 | 31 35 | 32 | 42 | 37 | 34 35 35 | 50 | 46 | 35 37 | 48 | 40 41
w/o Feedback | 527 | 450 | 560 | 552 | 620 | 598 | 482 | 541 | 285 | 363 | 319 | 245 | 228 | 267 | 343 | 292
Driving Time [Seconds]
w/ Feedback | 467 | 408 | 507 | 434 | 473 | 486 | 421 | 456 | 271 | 311 | 301 | 228 | 226 | 242 | 293 | 267
w/o Feedback | 6 3 7 6 4 5 4 5.0 2 6 4 5 3 4 6 4.2
Number of Collisions [Times]
w/ Feedback 4 3 4 3 3 3 3 3.2 2 4 3 3 2 3 3 2.8
w/o Feedback | 21.5 | 20.8 | 21.6 | 22.2 | 22.9 | 23.7 | 21.8 | 22.0 | 18.8 | 26.2 | 23.6 | 20.0 | 19.2 | 22.2 | 25.3 | 22.1
Path Efficiency [Meter]
w/ Feedback | 18.7 | 20.5 | 19.1 | 18.4 | 20.8 | 20.1 | 18.3 | 19.4 | 17.5 | 22.4 | 24.7 | 18.5 | 18.6 | 21.7 | 20.5 | 20.5

using speech and gesture inputs were conducted separately,
with and without context-awareness. Additionally, the evalu-
ation metrics included Number of Commands, Driving Time,
Number of Collisions, and Path Efficiency.

Table. II presents the experimental results. In the speech-
based experiments, the system demonstrated improved per-
formance across all evaluation metrics when feedback was
enabled. Notably, the number of commands decreased by up
to 14, and the number of collisions was reduced by up to
3. Additionally, the driving time was reduced by over 100
seconds, and the path efficiency improved by approximately
3 meters. In experiments using gestures, feedback resulted in
better performance on average across all evaluation metrics.
Specifically, the number of commands improved by 7, the
driving time was reduced by 30 seconds, the number of
collisions decreased by 1, and the path efficiency improved by
2 meters. However, the performance varied depending on the
skill level of the operator. The number of collisions remained
unchanged for the first participant, and the path efficiency
metric increased for the third participant when feedback was
used. The results indicate that CFS-CA significantly reduces
control errors and improves key metrics such as the number
of commands, driving time, collision frequency, and path
efficiency. This enhancement ensures safer and more reliable
robot control.

Fig. 4 shows the trajectories and collision points observed
during experiments conducted in the Daeyang AI Center
indoor virtual environment. Fig. 4(a) shows the results of
participant #1 performing the task without feedback, resulting
in 6 collisions. In contrast, Fig. 4(b) presents the results with
feedback, showing that the number of collisions was reduced
to 4. Similarly, Fig. 4(c) and Fig. 4(d) describes the results of
participant #2’s gestures, showing 6 and 4 collisions, respec-
tively. These results demonstrate that integrating feedback can
effectively reduce the number of collisions.

Table. IIT shows the results of feedback generated by the
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Participant #1 Participant #1
(a) (Speech, w/o feedback) (b) (Speech, w/ feedback)

|
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Participant #2 Participant #2
(c) (Gesture, w/o feedback) (d) (Gesture, w/ feedback)

Fig. 4. Number of collisions without and with feedback

context-awareness model by combining the questions with the
operator’s command and the forward-view image. In the first
and third images, we can see that the response is generated
based on accurate facts. However, in the second image, al-
though the response correctly states that there is an obstacle




when turning left, it also generates incorrect information that
there is a box instead of a wall in the additional explanation.
This shows that the context-aware model generally reflects
feedback well, but has limitations in certain situations.

TABLE III
FEEDBACK RESULTS

Feedback
No, from this perspective there does
not appear to be any obstacle if one
were to turn left at the door. The
area to the left looks clear and
unobstructed by any objects or
physical barriers.

Human Interface Command Forward-view Image

Is there an obstacle if you go to
the left in the given picture?

Yes, if you were to turn left at the
door, you would encounter a stack
of boxes or bins, which could be
considered an obstacle.

Is there an obstacle if you go to
the left in the given picture?

No, if you were to move forward in
the direction of the boxes, there is
no apparent obstacle.

Is there an obstacle if you go
forward in the given picture?

V. CONCLUSION

In this study, we proposed the Command Feedback System
based on Context-Awareness (CFS-CA) to address the limi-
tations of traditional speech and gesture-based robot control
systems. By integrating real-time situation analysis with user
commands, the system generates context-aware feedback, en-
abling more accurate, reliable, and efficient robot control.

The proposed system was evaluated through experiments
conducted in the virtual environment, focusing on key metrics
such as the number of commands, driving time, number of col-
lisions, and path efficiency. The results showed that CFS-CA
significantly reduces command errors, improves safety, and
increases overall performance compared to systems without
feedback mechanisms. Specifically, the integration of context-
awareness led to a noticeable reduction in number of com-
mands, driving time, and number of collisons for both speech
and gesture-based controls. Although this system generally
showed improved performance across all evaluation metrics,
its performance was limited by the skill level of individual
participants.

Future research will focus on evaluating the feedback gen-
eration performance of state-of-the-art (SOTA) VLM models
across various tasks. The ultimate objective is to develop a
robust context-aware model for dynamic environments and
robot control, enabling effective HRI in complex scenarios.
Furthermore, the system will be extended into a more general
framework by incorporating a wider range of commands
beyond the existing ones.
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