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Abstract— In recent years, the introduction of IoT has advanced 

across all industrial sectors. Efforts toward “smart agriculture” 

aim to enhance agricultural management efficiency by visualizing 

plant cultivation, improving crop quality, and collecting various 

data regarding crop growth to understand and analyze trends. 

This study focuses on the light spectrum necessary for crops to 

grow under solar radiation and extracts wavelengths within the 

visible light range (400–700 nm) from scattered light with a broad 

spectrum. Multi-spectral sensors can measure the reflectance of 

light at each wavelength by passing it through silicon filter lenses, 

capturing the “distribution of crop growth” as information 

obtained from light. In this paper, we sample the fruit portion of 

tomatoes as the target crop and discuss the changes in distribution 

between wavelengths that are not visible to the naked eye, based 

on differences in light reflectance. Tomatoes change color during 

the growth process through photosynthesis, eventually 

accumulating acidity and sweetness, reaching the harvest time. At 

this point, the distribution between wavelengths can be quantified, 

allowing us to interpret the optimal harvest timing. While farmers 

have traditionally relied on their experience to judge fruit ripeness 

based on color, using this quantified indicator is expected to 

greatly assist new farmers entering agricultural work. 

Furthermore, by accumulating these quantified datasets, it will be 

possible to apply them to machine learning for classifying the 

optimal harvest timing for future data samples. This paper also 

presents the methodology for this process. 
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I. I. INTRODUCTION 

In the field of agriculture, the implementation of various 
technologies, including IT utilization, drones, automated guided 
vehicles, and plant factories, continues to contribute to the 
increased productivity of relatively large-scale agricultural 
operators. In particular, research and field trials regarding 

agricultural IT in crop growth are diverse. The Ubiquitous 
Environmental Control System (UECS) technology enables 
remote monitoring of temperature and humidity control, sunlight 
restriction, irrigation electromagnetic valve control, soil 
component management, etc., in facility cultivation that can be 
isolated from external environmental changes and pests. This 
eliminates the need for physical presence and visual 
assessments, achieving multifunctional and automated 
environmental control. Additionally, techniques have been 
reported that use hyperspectral cameras mounted on drones to 
analyze the color distribution of crops growing in fields, 
allowing for the determination of growth trends and pest damage 
[1][2]. By using specific wavelengths of light emitted by LEDs, 
which promote growth as a substitute for sunlight, high-density 
growing spaces can be created, enhancing value by constructing 
plant factories within the crop consumption area, thus improving 
product freshness and reducing transportation costs [3][4]. 

On the other hand, it is also true that there are many small-
scale farmers who hesitate to implement these systems, aside 
from those agricultural businesses that can cover the costs of 
UECS installation and the rising energy consumption costs 
associated with environmental control. Especially in urban 
agriculture, where the arable land area is limited in urban areas 
and their surroundings, there is a need to focus on high-quality 
and high-value cultivation techniques that enhance sweetness 
and color, in addition to increasing yields to stabilize agricultural 
management. Moreover, the decline in the farming population 
and the aging of farmers are seen as an impending crisis that 
threatens crop self-sufficiency, and it has become a 
responsibility to delve into and research agricultural IT, 
including the acquisition of new farmers and skill inheritance. 

Traditionally, agricultural workers engaged in farming while 
judging the growth of crops and environmental conditions based 
on their own experiences, know-how, and subjective 



sensibilities, conveying this knowledge to successors over time 
[5][6]. To address this issue, this research aims to establish a 
technology that visualizes and substantiates the conditions 
implied by subjective sensibilities by quantifying the degree to 
which crops grow through nutrition and photosynthesis using 
light spectra. Furthermore, it seeks to accumulate and analyze 
data to estimate the growth process of crops and aid in future 
predictions. 

II. PROTOTYPE OF EQUIPMENT FOR MEASURING SPECTRUM 

A. Scattered Light and Visible Light Region 

As a general principle, the weight, nutritional components, 
and texture of crops are determined by photosynthesis, which 
produces carbohydrates and oxygen from carbon dioxide 
through the conversion of specific wavelengths of light energy 
into the chemical energy necessary for plant growth. The 
wavelengths of scattered light range from 300 to 3000 nm, but 
the wavelengths effective for photosynthesis are considered to 
be in the visible light range (400 to 700 nm). Traditionally, it has 
been necessary to use polarized filter lenses on optical sensors 

to extract specific wavelengths. In this research, we developed a 
prototype that uses a silicon-based visible light band filter in an 
array shape to measure the multispectral data of the visible light 
range through digital processing. 

B. Light Morphogenesis Information 

Light morphogenesis information refers to capturing not 
only visible colors but also the role of information obtained from 
light. By extracting specific wavelength components from the 
broad spectrum of scattered light, we observe the degree of light 
reflection of crops to capture their characteristics and monitor 
changes occurring during the growth process. The growth rate 
of crops is believed to vary under different conditions, such as 
the locations where fruits appear and the density of leaves. 
Furthermore, even if the same color is perceived by the human 
eye, it becomes possible to identify the progress of growth by 
contrasting the obtained information. The prototype captures 
eight wavelengths of light (415, 445, 480, 515, 555, 590, 630, 
680 nm) in the visible light range as a light multi-spectrum 
(Figure1,2). 

C. Normalization Processing of Light Wavelengths 

The amount of sunlight received from the sun changes due 
to seasonal variations and weather conditions. When capturing 
light intensity, measurements that can adapt to these changes are 
required. The optical semiconductor built into the prototype 
controls exposure based on measurement time and aperture size 
to convert light reflection levels. If strong light intensity is 
received for a certain period while the aperture remains large, 
the light reflection level may saturate. Conversely, in indoor 
environments where sunlight does not directly enter, it is 
necessary to reduce the aperture size to increase sensitivity. In 
facility cultivation, the light intensity of scattered light also 
changes over time, so if a certain time and aperture size are 
maintained, it is possible that one of the light wavelengths may 
reach a saturated or low-resolution state. Additionally, when 
exposure conditions are changed, the magnitude (absolute value) 
of the light reflection level measured under the same light 
wavelength can vary depending on the exposure conditions. 
Therefore, normalization processing was performed to compare 
the relative values between light wavelengths. The formula 
related to the normalization processing is expressed as (1). 

Figure 2.  Show Spectral Distribution of Tomato Growth of 

immature green process as Boxplot. 

Figure 1.  Show Spectral Distribution of Tomato Growth of slitely 

mature red process as Boxplot. 

TABLE I.  PARAMETERS FOR EXPOSURE CONTROL. 

 

Step Gain Time 

1  0.5x  140ms 

2  2x  140ms 

3  8x  140ms 

4  32x  140ms 

5  128x  140ms 

6  512x  140ms 

7  512x  140x 4ms 

Note: When the maximum light intensity value satisfies 

conditional expressions (2) and (3), the exposure condition is 

updated from outdoors (Step 1) to a darkroom (Step 7). 
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Additionally, we established an algorithm for automatic 
exposure control that follows the rules of conditions (2) and (3). 
This processing confirmed that even when the exposure 
conditions change due to differences in time, there are no 
discrepancies in the relationship of distributions between light 
wavelengths. Here, represents the minimum light wavelength. 
The parameter variables for exposure control are shown in Table 
1. 
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III. DATA PROCESSING TECHNIQUES FOR 

MACHINE LEARNING 

In this section, we consider a machine learning classification 
model to distinguish the difference in the growth stage of 
tomatoes from the difference in wavelength distribution in 
optical sensing and describe the classification procedure. 

A. Machine Learning 

In recent years, the implementation of artificial intelligence 
(AI) in various contexts has enabled automatic learning from 
past data sample sets without human intervention, allowing for 
fact-based reasoning and classification to make judgments or 
decisions on behalf of humans. In other words, machine learning 
is a mechanism by which computer programs learn 
automatically to create mathematical models. 

In this study, we aim to construct a classification model for 
a group of data representing the distribution of wavelengths 
measured and normalized by light spectrum, which is plotted as 
multiple classes of point clouds on a two-dimensional plane. The 
method used to create this model is the Support Vector Machine 
(SVM). Geometrically, it is formulated by maximizing the non-
interference zone (margin) M, which separates each point cloud 
from the boundary line that classifies the point clouds 
(equation). Furthermore, the data used in this study consists of 
sampled data, which is treated separately as training data and test 
data. The point x plotted on a two-dimensional plane and the 
parameters W and b are formulated in vector form (4) as 
follows: 

For vectors 
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The separating hyperplane in n-dimensional space is 
expressed by equation (5). 

Next, this paper applies a classification model that allows 

max4,5 6 , ��
*'+� , -�‖*‖  ≫ 6 
. � 0,1,2, ⋯ , 0� 
6� 

��
*'+� , -� : 1 � ;�;� � max<0, 6 � ��
*'+� , -�‖*‖ = 
7� 

;� units inside the margin (equation). This means that it also 
permits points to exist in the opposite region of the classification 
boundary. This is because there is a certain degree of variation 
in the fruit measurements sampled during the crop growth 
process. This variation may arise from measurement errors of 
the sensors in the actual measurements or from light scattering 
coming from different directions contaminating the sensor 
readings. 

Here, ;� represents the degree to which the training data 

�. is allowed to protrude inside the margin, serving as a 

parameter when optimizing the SVM, represented by the 

following equation: 
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The second term of the equation includes the objective 
function. A smaller cost parameter C allows ;�   to be larger, 
resulting in looser constraints. Conversely, a larger C restricts  ;� 
from being large, preventing the training data from existing 
inside the margin or crossing the classification boundary into the 
opposite region. C becomes a hyperparameter that determines 
the performance of the SVM. 

 

B. Removal of Outliers 

Verifying whether certain variations follow a probabilistic 
model distribution is a very challenging problem. Agriculture is 

Figure 3.  Show Spectral Distribution of Selected btween Light 

Wavelength in Visible light regin as Pairplot. 

Note: The units for both the vertical and horizontal axes 

are [nm]. 



governed by the natural environment, and in controlled 
environments, such as facility cultivation, environmental control 
is influenced by external factors and disturbances that affect 
surrounding changes. Additionally, human errors during 
sampling can be expected. It cannot be assumed that all sampling 
groups that distinguish similar items are correct, as subjective 
judgment by the measurement operator may be involved. 
Therefore, in this case, preprocessing is needed to remove 
outliers based on a statistical criterion for identification within 
the point cloud. In this instance, we used the interquartile range 
(IQR) from the box plot as the upper and lower limits for 
determining and removing outliers. 

 

IV. EXPERIMENT. 

A. Experimental Field 

We conducted an experimental farm for tomato cultivation 
incorporating the UECS environment as the experimental field. 
Each year, new crop experiments are established by re-creating 
the beds around the summer Obon period. The beds utilize a 
coconut coir substrate for solution cultivation, allowing the roots 
to absorb moisture and liquid fertilizer. Since pesticide is 
regularly sprayed once a week, we used the prototype to conduct 
light multispectral measurements on the fruits and leaves just 
before pesticide application. 

B. Measurement Timing 

In this experiment, we measured the light spectrum 
according to the color of the fruits after the tomato seedlings had 
grown and the height exceeded 1 meter, approximately five 
weeks after planting, when the lower and middle sections of the 

plant bore fruits that changed color from green (immature) to red 
(orange yellow) (see Figures 1 and 2). The number of fruits 
measured was approximately 70 for each color, and additional 
fruits are expected to develop in the upper section, with green 
fruits turning orange-yellow and orange-yellow fruits turning 
red. 

 

C. Measurement Results and Discussion 

According to the light multispectral distribution measured 
for the green and red fruits, the normalized reference 
wavelengths showed a maximum of 445 nm and a minimum of 
630 nm, indicating that the differences in other wavelengths 
reflect the variations in fruit growth. The prominent trends 
observed in the growth process from green to red fruits are found 
at wavelengths of 415 nm and 515, 555, and 680 nm. The 
wavelength of 415 nm corresponds to the blue region of visible 
light, and as the fruit grows and ripens, the light intensity 
increases. In contrast, the wavelengths corresponding to the 
yellow-green region, 515 and 555 nm, both show a decrease in 
light intensity, and the wavelength corresponding to the red 
region, 680 nm, also decreases in intensity. This suggests that 
measuring the light multi-spectrum of the target crops can be 
linked to the color judgments made by nearby agricultural 
workers. Traditionally, the near-infrared range (900 nm and 
above) has been used along with the red wavelength (680 nm) to 
calculate the Normalized Difference Vegetation Index (NDVI), 
which indicates vegetation vitality. This discussion focuses on 
grouping visible light wavelengths and exploring how the 
distribution of light intensity changes during the growth process 
of vegetation, which leaves ample room for further discussion. 

Figure 4.  Show Spectral Distribution of Selected btween Light 

Wavelength in Visible light regin as Pairplot. 

Note: The units for both the vertical and horizontal axes 

are [nm]. 

 
Figure 5.  Show Confusion Matrix between growth red Tomato 

and ripe-red Tomat with Spectral Distribution for model 

suitability. 

Note: Each axis represents the frequency, and the numbers 

in the boxes represent the degree of fit. 



This complexity arises because discussing light wavelength 
groups in relation to time and vegetation growth is challenging 
in a simple planar matrix or three-dimensional space. 

D. Classification Using Machine Learning 

In this experiment, we use tomato growth in facility 
cultivation as the sample. We select two wavelength 
components as features from among eight light spectra in the 
visible light range during the ripe and harvest periods (Figure.3). 
For the pair of wavelengths (515-555 nm) selected as classifiable 
from three distributions, including the blue period, we 
performed classification using a Support Vector Machine 
(SVM). The parameters used for the classification model were 
the cost parameter C (=100) and training data T (=0.2), allowing 
for data to be included within the margin and classification 
boundary. As part of the preprocessing for learning, we 
restricted outlier values that should be judged as anomalies 
among the factors of measurement variation to those within the 
interquartile range of the box plot, excluding those outside this 
range. This enabled classification and exploration of 
classification boundaries, as compared to using the dataset 
directly without preprocessing (Figure.4). 

Moreover, as an evaluation metric for the performance of the 
classification model, the fitness assessment from the confusion 
matrix indicated that while there were a certain number of false 
negatives and false positives in such cases, the precision could 
be maintained above 50% (Figure.5). This suggests that when 
the dataset used for training includes outliers, it becomes 
impossible to classify them on a two-dimensional plane 
coordinate if they are contained within other datasets, leading to 
limitations in the two-dimensional space. To address the 
distribution of these two-class point clouds, an effective method 
involves extending interpretations to a certain rule, allowing for 
a transformation of the two-dimensional plane into a three-
dimensional linear space, thus achieving dimensional separation 
at the boundary surface. However, it is generally acknowledged 
that there is no universally applicable formula for generalization 
and that the computational time for learning increases 
significantly with dimensionality increase, although this 
discussion is omitted in this paper. It is important to note that 
raw data used in actual operations almost invariably contains 
missing values and anomalies, which can hinder the learning of 
classification models. Therefore, we believe it is crucial to 
establish a situation where preprocessing is necessary to 
facilitate learning while maintaining a lower dimensionality. 

 

V. CONCLUSION. 

This study presents the results of experiments conducted 
using a prototype measuring instrument to quantify the growth 
degree of crops during the growth process through visible light 
multispectral (light wavelength) analysis. The enhancement of 
crop growth and sweetness quality is influenced by many 
complex conditions, including not only photosynthesis from 
sunlight but also factors such as the duration of sunlight and the 
timing of water application. Furthermore, we demonstrated that 
preprocessing of data is essential when applying machine 
learning using Support Vector Machines (SVM) to classify and 
optimize the classification of growth degrees, particularly when 
dealing with raw data that may contain outliers. In the future, it 
is expected that the quantified light spectrum distribution 
information can be utilized as additional information for sorting 
machines and automated harvesting robots, leading to rapid and 
accurate classification. 
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