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Abstract—IDS is becoming increasingly important as
networks become more vulnerable to a variety of attacks.
However, traditional ML and DL-based IDS have limited
accuracy and false positive rates due to the lack of
open adversarial network datasets and vendors’ concerns
regarding potential data leakage during the training
process. To address these challenges, VAE and GAN-
based network packet generation models have emerged,
but they still face issues with low data fidelity. In this
context, TabDDPM is a suitable option for generating
network packets, as it surpasses VAE and GAN in
accurately capturing data distribution characteristics
and effectively learning the inherent structure of network
packet formats. Despite its potential, research applying
TabDDPM to network packet generation has not yet been
explored.

In this paper, we propose and evaluate DP-NetDDPM,
a novel framework that enables adversarial network
traffic generation while preserving both fidelity and
privacy guarantees. Specifically, we examine the use of
diffusion to generate adversarial network packet datasets
and compare its performance with baseline models. Our
framework focuses on three key criteria: data fidelity,
adaptability for machine learning applications, and data
privacy. The results show that DP-NetDDPM surpasses
traditional models in both fidelity and adaptability,
achieving a notable 72% improvement in fidelity and
a 45% enhancement in adaptability over baselines.

Index Terms—Adversarial Network Traffic Genera-
tion, Data Synthesis, Tabular Diffusion, Differential Pri-
vacy.

I. INTRODUCTION

With the increasing complexity and scale of net-
works, the frequency of unauthorized access and ma-
licious activities has risen, emphasizing the critical
need for robust Intrusion Detection Systems (IDS).
Traditional IDS techniques—such as signature-based,
rule-based, and heuristic-based approaches that depend
on predefined detection conditions—are widely imple-
mented to monitor and classify various types of ma-
licious traffic and attacks [1]. However, these conven-
tional methods face significant challenges in adapting
to the growing sophistication of contemporary network

threats, particularly those that exploit new vulnerabil-
ities or evade traditional detection mechanisms. While
machine learning (ML) and deep learning (DL) models
have been introduced to improve IDS performance,
their efficacy has been limited by concerns over data
leakage from vendors and the lack of openly available
adversarial network datasets [2].

To address these limitations, network packet synthe-
sis methods have been developed, leveraging genera-
tive models such as Tabular Variational Autoencoders
(TVAE) [3] and Tabular Generative Adversarial Net-
works (TGAN) [4], [5]. The adoption of tabular data
formats for network traffic synthesis offers several key
advantages: it enables efficient reconstruction of net-
work flows, preserves complete flow header informa-
tion, and provides computational efficiency compared
to image-based approaches. These methods allow for
the creation of new datasets that preserve the statistical
properties of the original data. However, both Varia-
tional Autoencoders (VAE) and Generative Adversarial
Networks (GAN) exhibit inherent limitations, includ-
ing mode collapse, poor locality, and challenges in
handling sparse data, such as missing values. These is-
sues hinder their effectiveness in learning complex data
distributions, resulting in synthesized network traffic
that fails to achieve classification accuracy comparable
to real-world datasets.

To overcome the limitations of traditional generative
models, diffusion models have recently gained atten-
tion, with the Tabular Diffusion Probabilistic Model
(TabDDPM) emerging as a leading example [6]. Diffu-
sion models have demonstrated superior performance
in learning data distributions, effectively preserving
the fidelity of raw data. Despite their potential, re-
search into the use of TabDDPM for network packet
generation remains scarce, presenting a gap in our
understanding of its effectiveness in network packet
generation applications.

In this paper, we suggest end-to-end framework,



DP-NetDDPM. Our framework demonstrates several
key capabilities in network data generation: (1) In
DP-NetDDPM, we provide both DP-enabled and stan-
dard models, allowing users to choose based on their
specific requirements. By offering this flexibility, our
framework accommodates diverse use cases in net-
work security research and applications, from privacy-
sensitive scenarios requiring robust data protection to
cases where maximum fidelity is paramount for accu-
rate analysis and testing. (2) DP-NetDDPM effectively
synthesizes both packet and flow-level network traffic
data, capturing the intricate characteristics of header
traces and payload information through entropy values
while preserving the complex relationships between
numerical and categorical features via its diffusion
process architecture. (3) DP-NetDDPM demonstrated
a 45% superior accuracy compared to baseline mod-
els in downstream tasks, showcasing its potential for
expansion into additional downstream applications.
(4) By incorporating of DP-SGD, we ensure privacy
preservation while maintaining high-quality synthetic
data generation. Our experimental results demonstrate
that this privacy-preserving approach maintains com-
petitive performance in both packet and flow-level
analysis. Through this comprehensive approach, we
address the current shortage of IDS datasets and pro-
pose a method to enhance the reliability of research in
the network security domain while maintaining privacy
guarantees.

II. RELATED WORKS

A. Diffusion Models for Tabular Data Generation

Diffusion models, which gained initial recognition
through success in image generation, have emerged as
a promising approach for tabular data synthesis. These
models operate by adding and reversing noise system-
atically during training, demonstrating remarkable ver-
satility across various domains [7]. The introduction of
DDPM by Ho et al [8]. marked a significant advance-
ment, establishing superior stability and performance
compared to traditional generative approaches.

In the specific domain of tabular data synthesis, mul-
tiple approaches have been developed to address the
challenges of limited dataset sizes. Traditional methods
like TVAE [3] have shown success through feature
embeddings and conditional dependencies, effectively
preserving statistical properties and inter-feature re-
lationships [9]. GAN-based approaches, particularly
CTGAN and TGAN, have contributed by addressing
challenges related to mixed data types and imbalanced
distributions [3], [10].

The latest advancement in this field is represented
by specialized diffusion-based models. TabDDPM [6]
pioneered the adaptation of diffusion processes for
tabular data, introducing carefully designed noise
schedules and denoising steps to preserve feature
relationships. This approach has shown particular

promise in maintaining statistical integrity while offer-
ing improved stability. Recent developments, includ-
ing multinomial diffusion models [11], have further
enhanced the handling of categorical variables within
tabular structures, while ongoing research focuses on
optimizing these models for better adaptability and
efficiency [12].

B. Adversarial Traffic Generation

The challenge of collecting real malicious traffic
data, constrained by ethical and legal considerations,
has led to increased research focus on synthetic ma-
licious traffic data generation. In this domain, various
approaches have been developed to address these lim-
itations.

Gulrajani et al. introduced Wasserstein GAN with
Gradient Penalty (WGAN-GP), addressing the persis-
tent challenges of instability and mode collapse in
traditional GANs [13]. Building on this foundation,
Zolbayar et al. proposed NIDSGAN [14], demon-
strating enhanced capabilities in generating adversar-
ial network traffic specifically designed to challenge
ML-based IDS systems. Zilong et al. utilized low-
dimensional latent representations to enhance data
diversity and quality [15].

Recent research has explored network traffic image
synthesis using diffusion models [16]. However, these
approaches are limited by their focus on generating
image representations rather than tabular data. While
image synthesis can capture certain visual patterns, it
presents challenges in reconstructing realistic network
datasets since the original tabular structure and rela-
tionships between features may be lost in the image-
to-data conversion process.

III. METHDOLOGY

In this section, we present DP-NetDDPM based on
TabDDPM [6], a diffusion-based adversarial network
traffic synthetic generation model. To overcome the
limitations of existing models like GANs, such as
mode collapse and difficulty in capturing local dis-
tributions, this model employs a diffusion process.
Additionally, it uses feature vectors of network packet
header traces as tabular input in table form. In tabular
data, it’s important to thoroughly understand the distri-
butions of heterogeneous features to uncover patterns
inherent to each column. At this point, the ability to
process categorical data through TabDDPM’s multino-
mial diffusion process is essential.

The proposed framework in Fig. 1 consists of three
main phases: (1) data pre-processing, (2) training and
synthesis phases and (3) post-processing.

In the pre-processing phase (1), we begin with the
adversarial dataset in raw PCAP format. To handle
raw packet data without predefined labels, we im-
plement an automated labeling mechanism based on
the dataset’s metadata, including labeled flow data
provided by the authors [17], timestamps, and attack



Fig. 1: Overview of DP-NetDDPM framework.

IP addresses, to classify distinct network attacks. Ad-
ditionally, we extract both network and transport layers
header and payload features from the raw packets fo-
cusing on header information that characterizes various
types of network behaviors and attack patterns. The
data is then converted into a tabular format, preserving
essential packet characteristics.

After the converting process, the data is converted
to NumPy arrays to facilitate efficient processing and
manipulation. The final pre-processing step involves
splitting the data into three distinct components: nu-
meric features (xnum), categorical features (xcat) con-
taining protocol information, checksum, and flags, and
labels (ylabel) representing attack classifications.

Numerical Features (xnum) are processed through
a Quantile Transformer, which ensures that the nu-
merical value Nnum are normalized into a uniform
distribution xnum ∈ RNnum . Categorical Features
(xcat) are handled through a One-hot Encoder, which
converts Ki categorical features with C numbers of
xcati and xohecati ∈ {0, 1}

Ki into a numeric vector,
where each bit represents a category.

The processed data xin’s dimension is (Nnum +∑
Ki). The reverse diffusion step is modeled by a

multi-layer neural network that has an output of the
same dimensionality as x0, where the first Nnum

coordinates are the predictions of ε for the Gaussian
diffusion and the rest are the predictions of xohecati for
the multinomial diffusions.

After processing, the system computes a residual
term e for the categorical component, to refine the
categorical output. The Softmax layer ensures that the
final output remains a valid probability distribution
over the categories. The entire system in Fig. 2 thus
processes both continuous and categorical data in an
integrated pipeline.

The training and synthesis phase (2) employs two
parallel approaches: standard Tabular Diffusion and
DP-SGD (Differentially Private Stochastic Gradient
Descent) Tabular Diffusion. The standard tabular dif-

fusion model prioritizes maintaining high-fidelity data
distributions and complex feature relationships, mak-
ing it suitable for scenarios where maximum accuracy
in synthetic data generation is required.

In contrast, the DP-SGD variant incorporates
privacy-preserving mechanisms during the training
process, offering formal privacy guarantees at the cost
of potentially reduced distribution accuracy. In DP-
NetDDPM, the parameter update as: θt+1 = θt −
η∇L(θt) where θt represents the model parameters
at step t, η is the learning rate, and ∇L(θt) is the
gradient of the loss function. DP-SGD modifies this
process with three key steps:

• Per-example gradient computation: For each
example i in the batch, compute individual gradi-
ents: gi = ∇L(θt, xi)

• Gradient clipping: Clip the gradient norm to a
threshold C: ḡi = gi ·min(1, C

||gi||2 )
• Noise addition: Add Gaussian noise calibrated

to the clipping threshold: g̃ = 1
B (

∑B
i=1 ḡi +

N (0, σ2C2I))

The final update rule becomes: θt+1 = θt−ηg̃ where
B is the batch size, C is the clipping threshold, and δ is
the noise multiplier. The privacy guarantee (ε) is cal-
culated based on these parameters and the number of
training steps, using the moments accountant method.

Although DP-SGD presents challenges in terms
of computational costs and reduced accuracy and
reproducibility, these limitations can be effectively
addressed by leveraging the data reproduction capabili-
ties in the diffusion process. This advancement enables
us to mitigate the traditional drawbacks of privacy-
preserving approaches while maintaining high-quality
synthetic data generation.

Our framework allows users to choose between DP
and standard models based on their specific require-
ments. When privacy is main consideration, users can
opt for the DP model. Conversely, when high-fidelity
data reproduction is the primary concern, users can



Fig. 2: Encoding process on DP-NetDDPM.

select the standard model. This dual-track approach
ensures that the framework can accommodate vary-
ing priorities in synthetic network traffic generation
while maintaining appropriate balance between privacy
preservation and data utility.

After generating all synthetic data, we restore the
label-encoded data its original representation. The data
is converted into CSV format and then reconstructed
into its original PCAP or flow data format. This pro-
cess enables the creation of new datasets that maintain
the structural integrity of network traffic data. These
reconstructed synthetic datasets are evaluated using a
comprehensive methodology to assess their quality and
utility for network security applications.

IV. EVALUATION

In this section, we provide a overview of our eval-
uation methods.

TABLE I: Overview of datasets features

Packet Header Fields (16) Flow Header Fields (13)

1. Source port number 1. Destination port
2. Destination port number 2. Protocol
3. Time To Live (TTL) 3. Flow duration
4. Packet size 4. Total forward packets
5. Protocol 5. Total backward packets
6. Payload size 6. Total length of forward packets
7. Payload Entropy 7. Total length of backward packets
8. Type of service 8. Forward packet length maximum
9. Total length 9. Forward packet length mean
10. Identification 10. Flow bytes per second
11. Flags 11. Flow packets per second
12. Fragment offset 12. Packet length standard deviation
13. Header checksum 13. Forward IAT mean
14. Label (benign/attack)
15. Source IP address (numeric)
16. Destination IP address (numeric)

Dataset Summary

Dataset Labels

CICIDS-2018(Flow) benign, bot, brute force, DDoS,
DoS, infiltration

CICIDS-2017(Packet) benign, Bot, DDoS, DoS (GoldenEye, Hulk,
Slowhttptest, slowloris), FTP-Patator, PortScan

A. Evaluation Setup

Datasets. To systematically evaluate the perfor-
mance of tabular data generation models, we select
two public datasets (one flow-based and one packet-
based dataset). For packet header datasets, we consider
16 fields in the packet records. The field extraction

process was implemented according to the protocol
hierarchy of the Network layer (IP) and Transport layer
(TCP, UDP). For flow header datasets, we analyze
13 key fields in the flow records, each labeled as
either benign traffic or a specific type of attack. For
flow-based header extraction, we selected a subset
of universally applicable features to prevent model
overfitting on dataset-specific characteristics.

We evaluate DP-NetDDPM and baseline models
on datasets with 300,000 samples each, split into
training, validation, and test sets in a ratio of 8:1:1. The
dataset labels include four types of benign, bot, brute
force, DDoS, DoS, Infilteration for CICIDS-2018 and
benign, Bot, DDoS, DoS GoldenEye, DoS Hulk, DoS
Slowhttptest, DoS slowloris, FTP-Patator, PortScan for
CICIDS-2017. The information about the datasets we
used is in the Table I.

• CICIDS-2017(Packet traces) [17]: The CI-
CIDS2017 dataset captures full packet payloads
from a complete network infrastructure with di-
verse attack scenarios, making it suitable for
intrusion detection research.

• CICIDS-2018(Flow traces) [17]: The CSE-CIC-
IDS2018 dataset was created to provide com-
prehensive network traffic data, featuring seven
attack scenarios executed across an infrastructure
containing 50 attacking machines and 420 victim
machines.

Baselines. Given the extensive variety of generative
models currently proposed for tabular data generation,
this study focuses on comparing state-of-the-art model
such as GAN and VAE models.

• TVAE [3]: VAE model designed specifically
for tabular data, employs Gumbel-Softmax tech-
niques to handle both categorical and numerical
features effectively. It maintains its position as
the leading VAE-based approach due to its robust
performance and public availability [3].

• CTABGAN [10]: CTABGAN addresses funda-
mental challenges in tabular data generation
through its GAN-based architecture, particularly
focusing on class imbalance and mixed data



types using Conditional GAN structures. While
the model demonstrates superior performance in
classification tasks, it shows limitations when
handling regression applications that require con-
tinuous outputs [5].

• CTABGAN+ [10]: CTABGAN+ introduces ad-
vanced features including dynamic reweighting
and differentiable augmentation to better handle
rare categories and high-dimensional data [10].
CTABGAN+ is widely used in industries such
as finance and healthcare for data generation and
privacy preservation.

B. Experiment results

Data Distribution. Through t-SNE visualiza-
tions, we analyze high-dimensional data in lower-
dimensional space (2D and 3D) to evaluate the quality
of synthetic data generated by various models. Fig. 3
presents t-SNE comparisons between real data and
synthetic data generated by CTABGAN, CTABGAN-
PLUS, DDPM, and TVAE.

Fig. 3: 2D and 3D data distribution based on t-SNE.

The visualizations reveal that CTABGAN and
CTABGAN-PLUS exhibit noticeable distribution dif-
ferences from the real data, suggesting potential mode
collapse issues. In contrast, NetDDPM demonstrates
superior performance with closer distribution align-
ment in both 2D and 3D representations, suggesting
higher fidelity in synthetic data generation. TVAE
exhibits intermediate performance but still maintains
distinct separations between real and synthetic dis-
tributions. These results highlight DDPM’s superior
capability in capturing and synthesizing the true data
distribution.

Fidelity. In fidelity evaluation metrics, we employ
two complementary metrics to assess the fidelity of
synthetic data generation. Jensen-Shannon Divergence
(JSD) is used for categorical data, measuring distribu-
tional similarities with values approaching 0 indicating
higher similarity. For continuous data, we utilize Earth
Mover’s Distance (EMD), which quantifies the mini-
mal cost of transforming one distribution into another.

This dual-metric approach addresses the inherent
challenges in evaluating network traffic traces, where
continuous fields exhibit varying ranges that compli-
cate traditional metric applications. By utilizing JSD

(a) CICIDS 2017(Packet) JSD (b) CICIDS 2018(Flow) JSD

(c) CICIDS 2017(Packet) EMD

(d) CICIDS 2018(Flow) EMD

Fig. 4: JSD(↓) and normalized EMD(↓) between real
and synthetic distributions on CICIDS 2017-2018

for categorical features and EMD for numerical data,
we ensure appropriate evaluation across different data
types while maintaining measurement accuracy.

Overall in Fig. 4, our analysis demonstrates that Net-
DDPM achieves 77% better performance in maintain-
ing distribution fidelity across both packet and flow-
level metrics. Fig. 4 provides a detailed quantitative
comparison of different models across CICIDS 2017
and 2018 datasets, showcasing NetNetDDPM’s consis-
tent advantages over baseline approaches. We observe
that while baseline models occasionally perform well
on specific metrics, NetDDPM maintains consistent
performance across all distribution metrics.

For categorical features, NetDDPM demonstrates
significantly lower JSD values for both label and
protocol distributions, particularly notable in label dis-
tributions, where NetDDPM achieves approximately
an order of magnitude better performance compared
to baselines.

In terms of continuous features, NetDDPM consis-
tently maintains lower normalized EMD values across
various metrics. For packet-level analysis, NetDDPM
shows superior performance in preserving critical fea-
tures such as packet size (PckSize) and payload size
(PLSize), with normalized EMD values consistently
below 1.0. Similarly, in flow-level analysis, NetDDPM



TABLE II: Performance Comparison of ML-
Adaptation on CICIDS Datasets

ML-Adapation Model Packet (CICIDS 2017) Flow (CICIDS 2018)

Accuracy F1-Score Accuracy F1-Score

TVAE

Catboost 0.8564 0.306 0.6000 0.1071
MLP 0.6001 0.1111 0.5991 0.1091
Decision Tree 0.6106 0.1203 0.5970 0.1089
LR 0.6000 0.1111 0.5881 0.1060
Random Forest 0.6008 0.1103 0.6000 0.1090

Average 0.6536 0.1518 0.5968 0.1080

CTABGAN

Catboost 0.9262 0.5304 0.6079 0.2058
MLP 0.9199 0.5307 0.6492 0.3177
Decision Tree 0.7933 0.4053 0.5217 0.1684
LR 0.8607 0.3724 0.6017 0.1369
Random Forest 0.8934 0.5335 0.6033 0.2045

Average 0.8787 0.4745 0.5968 0.2067

CTABGAN+

Catboost 0.9058 0.4432 0.7877 0.4780
MLP 0.9017 0.4468 0.7916 0.5102
Decision Tree 0.5924 0.2158 0.7464 0.5526
LR 0.7680 0.3008 0.6780 0.3382
Random Forest 0.7101 0.2542 0.8065 0.5462

Average 0.7756 0.3322 0.7620 0.4850

NetDDPM

Catboost 0.9641 0.7463 0.8408 0.5857
MLP 0.9694 0.8171 0.7678 0.4556
Decision Tree 0.9958 0.9828 0.7869 0.5878
LR 0.9066 0.4022 0.6203 0.1788
Random Forest 0.9857 0.9271 0.8395 0.5981

Average 0.9643 0.7751 0.7711 0.4812

Real Data

Catboost 0.8755 0.6531 0.8753 0.6534
MLP 0.9892 0.9532 0.8278 0.5792
Decision Tree 1.0000 1.0000 0.8663 0.7437
LR 0.9210 0.4982 0.6505 0.2660
Random Forest 1.0000 1.0000 0.8786 0.7462

Average 0.9571 0.8209 0.8197 0.5977

maintains better fidelity across destination port (DP),
flow duration (FD), and flow byte (FB) distributions, as
evidenced by lower EMD values in logarithmic scale.

ML adaptability. Here, we measure how effectively
synthetic data can be utilized for downstream attack
classification tasks by comparing the performance of
various ML models trained on synthetic versus real
data. Our analysis demonstrates the practical utility of
synthetic data generation approaches through compre-
hensive accuracy and F1-score measurements.

The experimental results show that NetDDPM sig-
nificantly outperforms other generative models across
both packet and flow-level analysis. For packet-level
data (CICIDS 2017), NetDDPM achieved an average
accuracy of 0.9643 and F1-score of 0.7751, substan-
tially exceeding baseline models. Particularly notable
is NetDDPM’s performance with Decision Tree and
Random Forest classifiers, achieving accuracy rates of
0.9958 and 0.9857 respectively, closely approaching
the performance metrics of real data.

For flow-level analysis (CICIDS 2018), NetDDPM
maintained its superior performance with an average
accuracy of 0.7711 and F1-score of 0.4812, demon-
strating consistent effectiveness across different data
types.

These results indicate that NetDDPM generates
high-quality synthetic data that closely resembles real
network traffic patterns, enabling more effective train-
ing of machine learning models for attack detection.
The consistent performance across different classifier
types and datasets suggests that NetDDPM-generated
data maintains essential data characteristics and rela-

Fig. 5: Density distribution on real and synthetic data.

TABLE III: Privacy results on DP-NetDDPM

Privacy Metric DP-NetDDPM NetDDPM

DCR Epsilon DCR Epsilon
CICIDS-2017(Packet)1.8586 2.0∼13.2 0.16 ∞
CICIDS-2018(Flow) 1.3270 2.85∼15.23 0.13 ∞

DP-ML Adaptation Results
Model CICIDS-2017(Packet)CICIDS-2018(Flow)

Acc F1 Acc F1

Catboost 0.7359 0.1977 0.6676 0.4594
MLP 0.5984 0.0917 0.5914 0.1240
Decision Tree 0.4617 0.1081 0.6046 0.4170
LR 0.5847 0.0820 0.5925 0.1241
Random Forest 0.6081 0.0911 0.6299 0.2745

Avg 0.5978 0.1141 0.6172 0.2798

tionships.

Privacy. In our DP-NetDDPM framework, we uti-
lize DP-SGD for data synthesis and apply it during the
pre-training phase with public datasets, addressing po-
tential privacy concerns from the outset. We fixed the
δ value at 10−5 during pre-training, while optimizing
other hyperparameters through Optuna.

Table III shows the effectiveness of DP-NetDDPM
in synthetic data generation. Using DCR metrics and
epsilon values to measure privacy protection levels, our
framework achieves a DCR value of 1.8, indicating a
balanced trade-off between fidelity and privacy. The
epsilon values of 2.0 at 1000 epochs and 13.2 at 20000
epochs demonstrate strong privacy protection.

As shown in Fig. 5, the data fidelity distribution
difference between DP-SGD and standard models re-
mains minimal, indicating that the Diffusion model
maintains strong learning capabilities while satisfying
privacy requirements. Furthermore, in terms of ML
Adaptability, our DP-enabled model outperforms base-
line models like TVAE and CTABGAN in accuracy
metrics, demonstrating superior fidelity despite privacy
constraints.



V. CONCLUSION

In this study, we provide DP-NetDDPM frame-
work for synthetic network traffic generation. Our
empirical analysis shows that TabDDPM significantly
outperforms conventional GAN and VAE models in
data fidelity, adaptability, and privacy preservation.
The results confirm that diffusion-based models offer
promising solutions for generating high-quality syn-
thetic data in network security applications, though
future research opportunities remain in handling time-
series data and packet payloads.
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