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Abstract—Osteoporosis is a prevalent bone disease
characterized by reduced bone density and increased fracture
risk, particularly among older adults and postmenopausal
women. Early detection and accurate diagnosis are crucial to
mitigate the morbidity and mortality associated with
osteoporotic fractures. This paper proposes an advanced deep-
learning methodology to enhance the accuracy and efficiency of
osteoporosis detection using knee osteoporotic data. Our
approach integrates features from pre-trained model,
DenseNet169 and a custom designed attention model. The fused
feature set from these models is then passed through a fully
connected neural network to classify images as either
osteoporotic or normal. The results of our proposed model
demonstrated significant improvements in classification
accuracy, achieving a high accuracy rate on unseen test data.
Integrating DenseNet169, and attention mechanisms, effectively
captured comprehensive features, resulting in robust and
reliable osteoporosis detection. Moreover, the model
outperformed current state-of-the-art methods for classification
tasks, highlighting its potential for early intervention in clinical
settings.

Keywords— DenseNet169, Attention Model, Knees Dataset,
Osteoporosis classification.

I. INTRODUCTION

Osteoporosis is a pervasive and debilitating bone disease
characterized by decreased bone density and increased
fracture risk [1]. It primarily affects older adults, particularly
postmenopausal women, leading to significant morbidity and
mortality [2] [3]. The clinical importance of osteoporosis lies
in its potential to cause fractures, particularly in the hip, spine,
and wrist, which can result in chronic pain, disability, and
even death [4] [5]. The incidence of osteoporosis and
associated fractures is predicted to increase as the world's
population ages, highlighting the critical need for efficient
diagnosis and treatment methods.

Detecting and diagnosing osteoporosis early is crucial to
prevent fractures and their associated complications [6]. The
gold standard for determining bone mineral density (BMD) is
dual-energy X-ray absorptiometry (DXA), although these
conventional techniques are frequently constrained by
radiation dose, cost, and accessibility. [7]. Additionally, these
methods may not fully capture the complex structural changes
in bone architecture associated with osteoporosis. Therefore,
there is a critical need for more advanced, accurate, and
accessible methods for early detection and monitoring of
osteoporosis.

This paper aims to explore the use of deep-learning in
detecting abnormalities in the knee osteoporotic dataset KOP
[8], contributing to the broader effort to enhance osteoporosis
detection and treatment. By focusing on the knee, an area
particularly vulnerable to osteoporotic fractures, this research
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seeks to improve our understanding of osteoporosis
progression and develop more targeted intervention strategies.
Our contribution is mentioned below.

e We propose a deep-learning-based approach that
combines DenseNet169 and a custom-designed Attention
Model (AM) for enhanced osteoporosis detection.

e A custom AM is designed, incorporating channel and
spatial attention mechanisms to capture detailed spatial
and channel-specific information from input images.

e The fusion of features from both models creates a
comprehensive representation of input images, leading to
more accurate classification.

e The fully connected (FC) neural network is meticulously
tuned through extensive experimentation, enhancing the
model's overall performance.

II.  PROPOSED METHODOLOGY

The proposed methodology aims to leverage advanced
deep learning techniques to significantly improve the
accuracy and efficiency of osteoporosis detection and
classification using KOP. This new approach uses cutting-
edge deep learning techniques to overcome the limitations of
conventional diagnostic techniques. The overall model
architecture is illustrated in Figure 1. We prepare the data by
sourcing and augmenting the dataset to enhance model
performance. The dataset, obtained from Kaggle, comprises
186 normal and 186 osteoporotic images. Each image is
augmented to create five additional versions, resulting in a
significantly larger dataset of 1800 training images. The
images are divided into training, validation, and testing sets.
The augmentation steps include zooming, cropping regions of
interest (ROIs), and rotating the images. The testing set,
consisting of 72 unseen images, is used for the final evaluation
of the model.

A. Feature Extraction

The feature extraction involves the usage of pre-trained
model: DenseNet169 [9] and AM.

The DenseNet169, a convolutional neural network (CNN)
[11] known for its unique architecture, features dense
connectivity where each layer is connected to every other
layer in a feed-forward fashion. This dense connectivity
mitigates the vanishing gradient problem and improves the
flow of information throughout the network. For feature
extraction, DenseNet169 is employed by retaining its feature
extraction layers and removing the final classification layer.
This step produces a fixed-size feature vector of dimension
1664, independent of the original image dimensions.



N\

e [ Feature Extraction |,

J

[ Input ]—>[ Preprocessing ]

[ Osteoporosis ]<— pmmmmmmm e
|
I

Fig. 1. Overall architecture of the proposed model for osteoporosis detectio
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Fig. 2. Architecture of the proposed AM.

The AM block, a core component of our model, is
designed to detect osteoporosis by capturing detailed spatial
and channel information from knee radiographs. Using
multiple convolution layers and attention mechanisms, the
model is fine-tuned to highlight critical features indicating
osteoporosis, such as cortical thinning, disrupted trabecular
patterns, and micro-cracks. The AM employs channel
attention to emphasize important channels representing these
osteoporotic features and spatial attention to focus on key
areas of the image where abnormalities, such as bone porosity
or fractures, are likely to appear. Tailored to the specific
dataset of knee radiographs, our model is optimized for
identifying osteoporotic characteristics. The spatial attention
mechanism concatenates pooled feature maps and applies a
convolutional layer to ensure the network effectively focuses
on regions showing signs of osteoporosis, such as irregular
bone structures, cracks, or density loss. Meanwhile, the
channel attention mechanism enhances the model's ability to
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prioritize features that distinguish osteoporotic bones from
normal ones, reinforcing focus on relevant areas while
suppressing less informative regions.

The block comprises four convolutional layers with ReLU
activations and max-pooling. The first two layers use 32 filters
(3%3), while the latter two use 64 filters (3x3). Max-pooling
reduces feature map dimensions, ensuring a balance between
computational efficiency and detail retention. Channel
attention employs adaptive average and max pooling followed
by a shared MLP to emphasize significant channels, while
spatial attention combines pooled feature maps, applying a
convolutional layer to highlight key regions. Together, these
mechanisms refine feature representation for robust detection.
Fig 2 illustrates the architecture of AM.

Following the feature fusion step, the FC layer is
meticulously designed and tuned for optimal performance.
Extensive experimentation led to the following configuration:



TABLE L

SUMMARY OF THE PROPOSED RESULTS COMPARED TO BASELINE MODELS

Models Sensitivity Specificity Precision FPR Accuracy F1 Score Loss
VGGI19 [12] 0.8889 0.7143 0.9211 0.2857 0.7763 0.8046 0.6294
EfficientNetBO [14] 0.9259 0.7347 0.8774 0.2643 0.8026 0.8276 0.6029
Densenet169 [9] 0.8571 0.8049 0.8684 0.1951 0.8289 0.8354 0.5892
ViT [10] 0.9444 0.6852 0.7782 0.3148 0.7500 0.8043 0.6498
ResNet50[13] 0.8571 0.7083 0.8947 0.2917 0.7632 0.7907 0.6236
Ours 0.8293 0.8710 0.8947 0.1290 0.8472 0.8608 0.5834

The input to the FC layer is a concatenated feature vector
of size 1792, combining outputs from DenseNet169 (1664
features), and AM (128 features). The first layer reduces the
input size from 1792 to 1024 neurons. It includes batch
normalization to stabilize learning, a dropout layer with a rate
of 0.5 to avoid overfitting and a ReLU activation function to
introduce non-linearity. The second layer further reduces the
size from 1024 to 512 neurons, with batch normalization, 0.3
dropout rate, and ReLU activation. The third layer has a
dropout rate of 0.2, batch normalization, ReLU activation, and
a reduction in size from 512 to 256 neurons. The fourth layer
has a dropout rate of 0.1, batch normalization, ReLU
activation, and a reduction in size from 256 to 128. The final
output layer reduces the size from 128 to 1 neuron, using a
sigmoid activation function to produce a binary classification
output indicating the presence of osteoporosis or a normal
condition. This configuration of layers, channels, and dropout
rates was determined to be optimal after extensive
experimentation and tuning, ensuring that the model
effectively captures and leverages the features extracted from
the input images, providing a robust and accurate
classification of osteoporosis.

Combining deep feature extraction with attention
processes improves the model's capacity to identify
osteoporosis. The convolutional layers capture features from
low to high levels across the radiograph, while the attention
mechanisms selectively enhance ROIs. The FC network then
integrates and processes these features to produce an accurate
classification of osteoporosis presence or absence. By
tailoring the model specifically to this dataset, it becomes
highly sensitive to the subtle variations in BMD and structures
critical for identifying osteoporosis.

III. EXPERIMENTAL RESULTS

In our experiments, we used several performance metrics
to evaluate the models. These metrics thoroughly assess the
models' effectiveness in detecting osteoporosis. These metrics
include Accuracy, F1 score, loss, and precision. Table 2
provides the summary of the performance metrics used to
evaluate the performance of our model.

TABLE II. SUMMARY OF THE PERFORMANCE METRICS
Metrics Quantity
Sensitivity TPR=TP/(TP+ FN)
Specificity SPC=TN/(FP+TN)
Precision PPV =TP/ (TP +FP)

False Positive Rate FPR =FP/(FP + TN)
ACC=(TP+TN)/(P+N)

F1=2TP /(TP + FP + FN)

Accuracy

F1 Score

Since this a classification task so our model heavily relies
on F1 score, recall and accuracy. Among the models tested,
ViT achieved the highest sensitivity at 0.9444, indicating its
superior ability to correctly identify positive cases. VGG19,
on the other hand, excelled in precision with a score of 0.9211,
reflecting its accuracy in predicting true positives. ResNet50
showed balanced performance with a good trade-off between
sensitivity and precision, while Densenetl69 and
EfficientNetb0 resulted in a balance performance throughout.
Our proposed model demonstrated a strong overall
performance, with a notable accuracy of 0. 0.8472 and the F1
score of 0.8608, our model also exhibited the lowest loss value
of 0.5834 and superior specificity of 0.8710 indicating its
robustness and reliability in detecting osteoporosis. This
balance of metrics highlights the effectiveness of our approach
in maintaining both sensitivity and precision while
minimizing prediction errors. Table 1 provides the overall
results of our models while Fig 3 and 4 shows the overall
training and validation accuracy and loss respectively.
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Fig. 4. Training and validation loss

A. Confusion Matrix Analysis

In statistics, a True Positive (TP) occurs when a model
correctly predicts a positive result for a positive case. A True
Negative (TN) occurs when a model accurately forecasts a
negative result for a truly negative case. Conversely, a False
Negative (FN) occurs when the model predicts a negative
outcome for an instance that is actually positive, and a False




Positive (FP) occurs when the model predicts a positive
outcome for an instance that is actually negative. The
confusion matrix for the suggested model, as seen in Fig. 5,
summarizes the performance for the classification of the two
classes by illuminating the link between the actual and
anticipated values.. The plot shows that TP is 34, FP is 4, FN
is 7, and TN is 27.
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Fig. 5. Confusion matrix of proposed model.

IV. CONCLUSION

In this study, we developed a deep-learning-based
approach for osteoporosis detection using the KOP dataset.
Our methodology leverages the feature extraction capabilities
of DenseNet169 and a custom-designed AM. This combined
approach demonstrated superior performance in classifying
osteoporotic and normal conditions. The fusion of
DenseNet169’s robust feature extraction and the AM's spatial
and channel attention mechanisms, which emphasize critical
regions and features indicative of osteoporosis, provided
comprehensive image representation, resulting in improved
classification performance. Our results highlight the
effectiveness of integrating pre-trained models with attention-
enhanced blocks for medical image analysis, offering a
significant improvement over current SOTA techniques. This
method holds promise for clinical applications in osteoporosis
diagnosis, enabling earlier detection and better-targeted
interventions, potentially reducing the morbidity and
mortality associated with osteoporotic fractures. Future work
may involve further refinement of the model, larger datasets,
and its application to other bone-related pathologies for
broader clinical adoption.
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