
 

A Hybrid Attention-Driven Deep Learning Model 

for Osteoporosis Detection in Knees 
 

Ishaq Muhammad  

Dept of Information and Communication Engineering 

Chosun University 

Gwangju, South Korea 

ishaq.k@chosun.ac.kr 

Bumshik Lee 

Dept of Information and Communication Engineering 

Chosun University 

Gwangju, South Korea 

bslee@chosun.ac.kr 

Abstract—Osteoporosis is a prevalent bone disease 

characterized by reduced bone density and increased fracture 

risk, particularly among older adults and postmenopausal 

women. Early detection and accurate diagnosis are crucial to 

mitigate the morbidity and mortality associated with 

osteoporotic fractures. This paper proposes an advanced deep-

learning methodology to enhance the accuracy and efficiency of 

osteoporosis detection using knee osteoporotic data. Our 

approach integrates features from pre-trained model, 

DenseNet169 and a custom designed attention model. The fused 

feature set from these models is then passed through a fully 

connected neural network to classify images as either 

osteoporotic or normal. The results of our proposed model 

demonstrated significant improvements in classification 

accuracy, achieving a high accuracy rate on unseen test data. 

Integrating DenseNet169, and attention mechanisms, effectively 

captured comprehensive features, resulting in robust and 

reliable osteoporosis detection. Moreover, the model 

outperformed current state-of-the-art methods for classification 

tasks, highlighting its potential for early intervention in clinical 

settings. 

Keywords— DenseNet169, Attention Model, Knees Dataset, 
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I. INTRODUCTION 

Osteoporosis is a pervasive and debilitating bone disease 
characterized by decreased bone density and increased 
fracture risk [1]. It primarily affects older adults, particularly 
postmenopausal women, leading to significant morbidity and 
mortality [2] [3]. The clinical importance of osteoporosis lies 
in its potential to cause fractures, particularly in the hip, spine, 
and wrist, which can result in chronic pain, disability, and 
even death [4] [5]. The incidence of osteoporosis and 
associated fractures is predicted to increase as the world's 
population ages, highlighting the critical need for efficient 
diagnosis and treatment methods. 

Detecting and diagnosing osteoporosis early is crucial to 
prevent fractures and their associated complications [6]. The 
gold standard for determining bone mineral density (BMD) is 
dual-energy X-ray absorptiometry (DXA), although these 
conventional techniques are frequently constrained by 
radiation dose, cost, and accessibility. [7]. Additionally, these 
methods may not fully capture the complex structural changes 
in bone architecture associated with osteoporosis. Therefore, 
there is a critical need for more advanced, accurate, and 
accessible methods for early detection and monitoring of 
osteoporosis. 

This paper aims to explore the use of deep-learning in 
detecting abnormalities in the knee osteoporotic dataset KOP 
[8], contributing to the broader effort to enhance osteoporosis 
detection and treatment. By focusing on the knee, an area 
particularly vulnerable to osteoporotic fractures, this research 

seeks to improve our understanding of osteoporosis 
progression and develop more targeted intervention strategies. 
Our contribution is mentioned below.  

• We propose a deep-learning-based approach that 
combines DenseNet169 and a custom-designed Attention 
Model (AM) for enhanced osteoporosis detection. 

• A custom AM is designed, incorporating channel and 

spatial attention mechanisms to capture detailed spatial 

and channel-specific information from input images. 

• The fusion of features from both models creates a 
comprehensive representation of input images, leading to 
more accurate classification. 

• The fully connected (FC) neural network is meticulously 
tuned through extensive experimentation, enhancing the 
model's overall performance. 

II. PROPOSED METHODOLOGY 

The proposed methodology aims to leverage advanced 
deep learning techniques to significantly improve the 
accuracy and efficiency of osteoporosis detection and 
classification using KOP. This new approach uses cutting-
edge deep learning techniques to overcome the limitations of 
conventional diagnostic techniques. The overall model 
architecture is illustrated in Figure 1. We prepare the data by 
sourcing and augmenting the dataset to enhance model 
performance. The dataset, obtained from Kaggle, comprises 
186 normal and 186 osteoporotic images. Each image is 
augmented to create five additional versions, resulting in a 
significantly larger dataset of 1800 training images. The 
images are divided into training, validation, and testing sets. 
The augmentation steps include zooming, cropping regions of 
interest (ROIs), and rotating the images. The testing set, 
consisting of 72 unseen images, is used for the final evaluation 
of the model. 

A. Feature Extraction 

The feature extraction involves the usage of pre-trained 
model: DenseNet169 [9] and AM. 

The DenseNet169, a convolutional neural network (CNN) 
[11] known for its unique architecture, features dense 
connectivity where each layer is connected to every other 
layer in a feed-forward fashion. This dense connectivity 
mitigates the vanishing gradient problem and improves the 
flow of information throughout the network. For feature 
extraction, DenseNet169 is employed by retaining its feature 
extraction layers and removing the final classification layer. 
This step produces a fixed-size feature vector of dimension 
1664, independent of the original image dimensions. 



 

Fig. 1. Overall architecture of the proposed model for osteoporosis detectio

 

Fig. 2. Architecture of the proposed AM. 

The AM block, a core component of our model, is 
designed to detect osteoporosis by capturing detailed spatial 
and channel information from knee radiographs. Using 
multiple convolution layers and attention mechanisms, the 
model is fine-tuned to highlight critical features indicating 
osteoporosis, such as cortical thinning, disrupted trabecular 
patterns, and micro-cracks. The AM employs channel 
attention to emphasize important channels representing these 
osteoporotic features and spatial attention to focus on key 
areas of the image where abnormalities, such as bone porosity 
or fractures, are likely to appear. Tailored to the specific 
dataset of knee radiographs, our model is optimized for 
identifying osteoporotic characteristics. The spatial attention 
mechanism concatenates pooled feature maps and applies a 
convolutional layer to ensure the network effectively focuses 
on regions showing signs of osteoporosis, such as irregular 
bone structures, cracks, or density loss. Meanwhile, the 
channel attention mechanism enhances the model's ability to 

prioritize features that distinguish osteoporotic bones from 
normal ones, reinforcing focus on relevant areas while 
suppressing less informative regions. 

The block comprises four convolutional layers with ReLU 
activations and max-pooling. The first two layers use 32 filters 
(3×3), while the latter two use 64 filters (3×3). Max-pooling 
reduces feature map dimensions, ensuring a balance between 
computational efficiency and detail retention. Channel 
attention employs adaptive average and max pooling followed 
by a shared MLP to emphasize significant channels, while 
spatial attention combines pooled feature maps, applying a 
convolutional layer to highlight key regions. Together, these 
mechanisms refine feature representation for robust detection. 
Fig 2 illustrates the architecture of AM. 

Following the feature fusion step, the FC layer is 
meticulously designed and tuned for optimal performance. 
Extensive experimentation led to the following configuration:  

                  

                  

             

      

                        

            

      

          
                 

                 

                 

      

                 

     
  

  
       

 
  
  
  
  

           

       

               



TABLE I.  SUMMARY OF THE PROPOSED RESULTS COMPARED TO BASELINE MODELS 

Models Sensitivity Specificity Precision FPR Accuracy F1 Score Loss 

VGG19 [12] 0.8889 0.7143 0.9211 0.2857 0.7763 0.8046 0.6294 

EfficientNetB0 [14] 0.9259 0.7347 0.8774 0.2643 0.8026 0.8276 0.6029 

Densenet169 [9] 0.8571 0.8049 0.8684 0.1951 0.8289 0.8354 0.5892 

ViT [10] 0.9444 0.6852 0.7782 0.3148 0.7500 0.8043 0.6498 

ResNet50[13] 0.8571 0.7083 0.8947 0.2917 0.7632 0.7907 0.6236 

Ours 0.8293 0.8710 0.8947 0.1290 0.8472 0.8608 0.5834 

The input to the FC layer is a concatenated feature vector 
of size 1792, combining outputs from DenseNet169 (1664 
features), and AM (128 features). The first layer reduces the 
input size from 1792 to 1024 neurons. It includes batch 
normalization to stabilize learning, a dropout layer with a rate 
of 0.5 to avoid overfitting and a ReLU activation function to 
introduce non-linearity. The second layer further reduces the 
size from 1024 to 512 neurons, with batch normalization, 0.3 
dropout rate, and ReLU activation. The third layer has a 
dropout rate of 0.2, batch normalization, ReLU activation, and 
a reduction in size from 512 to 256 neurons. The fourth layer 
has a dropout rate of 0.1, batch normalization, ReLU 
activation, and a reduction in size from 256 to 128. The final 
output layer reduces the size from 128 to 1 neuron, using a 
sigmoid activation function to produce a binary classification 
output indicating the presence of osteoporosis or a normal 
condition. This configuration of layers, channels, and dropout 
rates was determined to be optimal after extensive 
experimentation and tuning, ensuring that the model 
effectively captures and leverages the features extracted from 
the input images, providing a robust and accurate 
classification of osteoporosis. 

Combining deep feature extraction with attention 
processes improves the model's capacity to identify 
osteoporosis. The convolutional layers capture features from 
low to high levels across the radiograph, while the attention 
mechanisms selectively enhance ROIs. The FC network then 
integrates and processes these features to produce an accurate 
classification of osteoporosis presence or absence. By 
tailoring the model specifically to this dataset, it becomes 
highly sensitive to the subtle variations in BMD and structures 
critical for identifying osteoporosis. 

III. EXPERIMENTAL RESULTS 

In our experiments, we used several performance metrics 
to evaluate the models. These metrics thoroughly assess the 
models' effectiveness in detecting osteoporosis. These metrics 
include Accuracy, F1 score, loss, and precision. Table 2 
provides  the summary of the performance metrics used to 
evaluate the performance of our model. 

TABLE II.  SUMMARY OF THE PERFORMANCE METRICS  

Metrics Quantity 

Sensitivity TPR = TP / (TP + FN) 

Specificity SPC = TN / (FP + TN) 

Precision PPV = TP / (TP + FP) 

False Positive Rate FPR = FP / (FP + TN) 

Accuracy ACC = (TP + TN) / (P + N) 

F1 Score F1 = 2TP / (2TP + FP + FN) 

Since this a classification task so our model heavily relies 
on F1 score, recall and accuracy. Among the models tested, 
ViT achieved the highest sensitivity at 0.9444, indicating its 
superior ability to correctly identify positive cases. VGG19, 
on the other hand, excelled in precision with a score of 0.9211, 
reflecting its accuracy in predicting true positives. ResNet50 
showed balanced performance with a good trade-off between 
sensitivity and precision, while Densenet169 and 
EfficientNetb0 resulted in a balance performance throughout. 
Our proposed model demonstrated a strong overall 
performance, with a notable accuracy of 0. 0.8472 and the F1 
score of 0.8608, our model also exhibited the lowest loss value 
of 0.5834 and superior specificity of 0.8710 indicating its 
robustness and reliability in detecting osteoporosis. This 
balance of metrics highlights the effectiveness of our approach 
in maintaining both sensitivity and precision while 
minimizing prediction errors. Table 1 provides the overall 
results of our models while Fig 3 and 4 shows the overall 
training and validation accuracy and loss respectively. 

 

Fig. 3. Training and validation accuracy 

 

Fig. 4. Training and validation loss 

A. Confusion Matrix Analysis 

In statistics, a True Positive (TP) occurs when a model 
correctly predicts a positive result for a positive case. A True 
Negative (TN) occurs when a model accurately forecasts a 
negative result for a truly negative case. Conversely, a False 
Negative (FN) occurs when the model predicts a negative 
outcome for an instance that is actually positive, and a False 



Positive (FP) occurs when the model predicts a positive 
outcome for an instance that is actually negative. The 
confusion matrix for the suggested model, as seen in Fig. 5, 
summarizes the performance for the classification of the two 
classes by illuminating the link between the actual and 
anticipated values.. The plot shows that TP is 34, FP is 4, FN 
is 7, and TN is 27. 

 

Fig. 5. Confusion matrix of proposed model. 

IV. CONCLUSION 

In this study, we developed a deep-learning-based 
approach for osteoporosis detection using the KOP dataset. 
Our methodology leverages the feature extraction capabilities 
of DenseNet169 and a custom-designed AM. This combined 
approach demonstrated superior performance in classifying 
osteoporotic and normal conditions. The fusion of 
DenseNet169’s robust feature extraction and the AM's spatial 
and channel attention mechanisms, which emphasize critical 
regions and features indicative of osteoporosis, provided 
comprehensive image representation, resulting in improved 
classification performance. Our results highlight the 
effectiveness of integrating pre-trained models with attention-
enhanced blocks for medical image analysis, offering a 
significant improvement over current SOTA  techniques. This 
method holds promise for clinical applications in osteoporosis 
diagnosis, enabling earlier detection and better-targeted 
interventions, potentially reducing the morbidity and 
mortality associated with osteoporotic fractures. Future work 
may involve further refinement of the model, larger datasets, 
and its application to other bone-related pathologies for 
broader clinical adoption. 
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