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Abstract—This study explores energy-efficient machine learn-
ing approaches for intrusion detection in SCADA systems,
addressing the dual challenges of cybersecurity and sustainability.
A comprehensive evaluation of models, including Decision Trees,
Random Forests, and LightGBM, highlights their performance
across SCADA, IIoT, and Edge IoT environments. Decision Trees
achieve exceptional efficiency scores, with 83.85 in Edge IoT
systems, demonstrating high accuracy with minimal energy con-
sumption. Random Forests and LightGBM balance scalability,
computational cost, and resilience, supporting robust deployment
in resource-constrained environments. Integrating lightweight
and high-performing models provides a roadmap for achieving
eco-secure SCADA systems, advancing the synergy between green
cybersecurity and machine learning reliability.

Index Terms—Green cybersecurity, Energy, Efficiency, Relia-
bility, SCADA, Sustainability,

I. INTRODUCTION

Supervisory control and data acquisition (SCADA) systems
are vital to critical infrastructure such as power grids, water
treatment, and manufacturing [1]. Integrating operations with
information technology has heightened their exposure to cyber
threats. While Artificial intelligence (AI)-driven techniques
significantly enhance SCADA cybersecurity by precisely de-
tecting conventional and SCADA-specific threats [2], they
often increase energy consumption [3]. Employing machine
learning (ML) and deep learning (DL) enables adaptive threat
detection [4], but optimizing energy usage is crucial to aligning
with green cybersecurity principles, ensuring both security and
sustainability [5], [6].

Green cybersecurity emphasizes secure, energy-efficient
practices to minimize the carbon footprint of cybersecurity
operations without compromising protection [7]. It focuses on
sustainable hardware, energy-efficient data centers, optimized
software, and resource-efficient intrusion detection systems
(IDS). Techniques include efficient coding, automated scal-
ing, optimized storage, AI-driven security, and cloud-native
solutions [8]. Integrating AI with green cybersecurity reduces
energy use by optimizing computational resources for threat
detection and response while enhancing critical infrastructure
resilience [9]. This ensures SCADA-managed systems, like
energy grids and water networks, remain secure, efficient, and
reliable.

The computational demand and energy consumption of
critical industrial operations, essential to modern infrastruc-
tures, is rising to meet energy needs, contributing 2.1-3.9% of
global emissions [7], with energy demands projected to rise.
Reliance on fossil fuels exacerbates climate issues, affecting
public health, biodiversity, and resources, highlighting the
need for “green” cybersecurity in IDS, which protects critical
infrastructure [10], [11]. Optimizing IDS energy consumption
can reduce environmental impact and operational costs. Ini-
tiatives like improving cloud data center efficiency show the
potential of green strategies to align sustainability with robust
security [7]. Energy-efficient algorithms and resource opti-
mization are vital to minimizing emissions while maintaining
cybersecurity’s critical role.

Traditional cybersecurity overlooks energy efficiency, pos-
ing scalability challenges for expanding systems like SCADA
networks due to high energy demands. Green cybersecurity ad-
dresses these limitations by integrating AI to optimize resource
usage, reduce operational costs, and align with Environmental,
Social, and Governance principles [11]. By emphasizing scal-
able, energy-efficient solutions, it delivers robust protection
against advanced threats while supporting global sustainability
goals and fostering environmental security practices. A recent
study highlighted inefficient cybersecurity scenarios and the
necessity of energy-aware cybersecurity solutions [7]. The
authors reviewed techniques for measuring and optimizing
cybersecurity solutions’ energy consumption and presented a
Green Security taxonomy. This study leverages the foundation
in [7] to investigate IDS algorithms for reliable, secure, eco-
friendly intrusion detection. This study pioneers the research
examining intrusion detection algorithms for sustainability and
green industrial operations.

Specifically, this study focuses on the following:
1) Investigate ML and DL algorithms for energy-efficient

intrusion detection, analyzing trade-offs between train-
ing and inference times across SCADA, IIoT, and Edge
IoT scenarios.

2) A roadmap for Green IDS implementations, empha-
sizing lightweight models that achieve competitive ac-
curacy with minimal computational overhead, aligning
cybersecurity with sustainability.



Fig. 1. The process flow of the concept of selecting an energy-efficient algorithm for the intrusion detection systems

3) A comparative framework showcasing resilient models
that balance accuracy, energy efficiency, and computa-
tional cost, enabling scalable deployment in resource-
constrained, green cybersecurity solutions.

The study is structured thus: introduction in Section I
is followed by Section II reviewing the existing works on
assessing the energy impact of security measures. Section III
discusses evaluation methodology. Section IV focused on the
experimentation and results. Section V concludes the study.

II. RELATED WORKS

An assessment of the energy impact of security measures
has been suggested [7], and this section briefly discusses
the methods utilized in contemporary IDSs to optimize en-
ergy consumption. Prior approaches to energy optimization
in IDSs have focused on reducing computational overheads,
communication overheads, or in-network job division [9].
They provided a simple model for evaluating the energy cost
of distributed packet inspection in intrusion detection systems
(IDSs). They used it to investigate energy leakage brought on
by the delayed detection of malicious packets.

To balance energy consumption, false positive rates, and
detection rates, a study proposed applying game theory to
activate anomaly detection techniques only in anticipation of
a new attack’s signature [12]. In scaling mode, the lightweight
anomaly detection method requires less energy to detect as-
saults with high detection and low false-positive rates, which
is why simulation results show that it performs better than
existing anomaly detection strategies.

A recent study highlighted the necessity of energy-aware cy-
bersecurity solutions by highlighting inefficient cybersecurity

scenarios [7]. The authors examined methods for calculating
and optimizing the energy consumption of cybersecurity so-
lutions based on the supposition that cybersecurity derivatives
account for around 20% of global ICT emissions, translating
into yearly carbon emissions of 142.5 million metric tons, or
roughly 0.4% carbon emissions globally [7]. They presented a
green security taxonomy and possible directions for improve-
ment through a systemic review of current research initiatives
and technical developments, laying the foundation of the
methodological approach in this paper toward an efficient and
reliable ML-based IDS for green cybersecurity in SCADA
networks.

III. METHODOLOGY

Figure 1 is the process flow of the proposed methodology.
It investigates intrusion detection algorithms, emphasizing
computational energy efficiency and resource optimization,
aligning with the principles of green cybersecurity. To ensure
consistent and fair evaluation, benchmark intrusion detec-
tion datasets such as Edge-IIoTset [13]1, WUSTL-IIoT-2021
dataset [14]2 and ICS-SCADA [15]3 were evaluated.

These datasets are preprocessed by scaling features to
a common range for unbiased training. Reconstructing the
datasets from the reduced space in Equation 1 improved the
computational efficiency.

Xreconstructed = XreducedP
⊤, (1)

1https://ieee-dataport.org/documents/edge-iiotset-new-comprehensive-
realistic-cyber-security-dataset-iot-and-iiot-applications

2https://ieee-dataport.org/documents/wustl-iiot-2021
3https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets



where Xreconstructed is the data reconstructed back into the
original space. Xreduced is data in the reduced-dimensional
space. X is the matrix of the top k eigenvectors used for
projection. P⊤ represents the transpose of the projection
matrix mapping back into the original space. Dividing the
dataset into training (80%) and testing (20%) subsets validates
model performance.

We evaluate representative ML and DL models, including
random forest (RF), pruned decision tree (DT) [1], light
gradient boost (LightGBM), K-nearest neighbours (KNN), 3-
Layered neural network (NN), a hybrid of convolutional neural
network and long-short term memory (CNN-LSTM) [16].
Each model is configured with standard hyperparameters, and
parameter tuning is performed where necessary to ensure
optimal performance.

The computational demands of each IDS model were ana-
lyzed based on the total model training time (Ttotal), inference
time (Itotal), which the time taken to classify the test dataset
and the total number of trainable parameters known as pa-
rameter count (P). Using the performance data collected, the
following metrics are calculated as follows:

1) Normalized time per data unit: evaluates the computa-
tional time for training and inference normalized by the dataset
size N . It allows fair comparisons between models trained
on varying data subsets to improve computational efficiency.
Training time per data unit is calculated as in Equation 2:
The metric draws light on the computational efficiency of
the training process. A lower Tunit indicates that the model
can learn effectively without excessive computational expense.
This is critical for SCADA systems managing massive data
streams, such as sensor readings in power grids or water
networks.

Tunit =
Ttotal

N
, (2)

where Ttotal is the total training time. Inference time per data
unit is as in Equation 3.

Iunit =
Itotal

N
, (3)

where Itotal is the total inference time. The lower the Iunit,
the faster the system can respond to anomalies, ensuring
operational reliability and minimizing potential downtime of
the SCADA system.

2) Efficiency score: normalizes computational cost with
a logarithmic scale for fair comparison and incorporates a
weighting factor α for customizable accuracy-cost trade-offs
as in Equation 4. It reflects the non-linear relationship between
computational cost and accuracy, enhancing real-world appli-
cability.

Escore =
A

α · log(1 + Tunit + Iunit)
, (4)

log(1+x) normalizes computational cost, mitigating high-cost
impact and capturing diminishing accuracy returns. Adding
1 ensures positivity, while the tunable parameter α > 0
balances accuracy and cost with smaller α favoring efficiency

in resource-limited SCADA systems. Escore ranked the IDS
models to balance detection accuracy and computational effi-
ciency. Scalability and resource efficiency, measured via com-
putation time, prioritized low-complexity models for resource-
constrained deployments. Algorithm 1 summarizes the investi-
gation of the computational demands of the evaluated intrusion
detection algorithms. Experimentation on fixed computational
resources ensured reproducibility, using Visual Studio Code,
Solidity v0.8.22, and Python 3.6.13 on a system with an Intel
i5-8500 CPU, 8GB RAM, and Windows 11.

Algorithm 1: Computational demand evaluation for
IDS models
Require: Total training time Ttotal, Total inference time Itotal,

Dataset size N , Model accuracy A
Ensure: Computed metrics Tunit, Iunit, and Escore

1: Calculate training time per data unit:
2: T_unit = T_total / N
3: Calculate inference time per data unit:
4: I_unit = I_total / N
5: Calculate efficiency score:
6: E_score = A / (T_unit + I_unit)
7: Output T_unit, I_unit, E_score

Fig. 2. Plot showing the accuracy performance of the evaluated algorithms

IV. EXPERIMENTATION AND RESULT DISCUSSION

This study investigates machine learning models like RF,
DT, LightGBM, KNN, NN, and CNN-LSTM across IoT
environments (SCADA, IIoT, and Edge IoT). RF, NN, and
CNN-LSTM consistently achieve near-perfect accuracy across
environments, making them reliable for cybersecurity detec-
tion tasks. The accuracy performance in Figure 2 shows that
DT maintains high accuracy (90% on SCADA, 99% on IIoT),
albeit slightly lower than RF and NN. Deep learning models
like CNN-LSTM sacrifice efficiency for high accuracy, while
DT and LightGBM balance both accuracy and efficiency, mak-
ing them ideal candidates for green cybersecurity solutions.



Table I compares the training and inference times of the
investigated models across evaluated datasets. With the lowest
training and inference times, DT demonstrates significant
efficiency and is ideal for green cybersecurity in real-time and
resource-constrained scenarios. RF and LightGBM show mod-
erate training and fast inference times, balancing efficiency
and performance. CNN-LSTM and KNN are computation-
ally intensive, with the highest training and inference times,
making them suitable for non-time-critical tasks. However,
times increase with data complexity (SCADA < IIoT <
EdgeIIoT ), with DT and RF retaining scalability.

TABLE I
TRAINING AND INFERENCE PERFORMANCE OF THE INVESTIGATED
MODELS ACROSS SCADA, IIOT, AND EDGEIIOT DATA SCENARIOS

Dataset Model Training Time (s/MB) Inference Time (s/MB)

SCADA

CNN-LSTM 90.2600 1.172222
KNN 0.8007 0.74390
NN 7.9800 0.87930
LightGBM 0.1510 0.00348
RF 0.4800 0.00223
DT 0.0500 0.00085

IIoT

CNN-LSTM 90.3680 1.15210
KNN 1.1700 1.73924
NN 9.4800 1.21510
LightGBM 0.2300 0.01654
RF 0.5600 0.00227
DT 0.0500 0.00089

Edge IoT

CNN-LSTM 90.3960 1.17020
KNN 1.2700 1.04103
NN 9.9600 0.86824
LightGBM 0.1500 0.01289
RF 0.2100 0.00223
DT 0.0800 0.00085

Likewise, the average training and inference performance
in Figure 3 shows DT as the highest efficient with the lowest
average training and inference time. This is followed by Light-
GBM and RF, which achieve low training and inference times,
albeit slightly less efficient than DT. Efficient models like DT
and RF provide a practical path for achieving energy-efficient,
scalable, and sustainable green cybersecurity systems, bal-
ancing performance and environmental impact. Conversely,
computationally complex models like CNN-LSTM should be
selectively used, prioritizing scenarios where their complexity
adds significant value.

Fig. 3. Plot showing the average training and inference performance of the
evaluated algorithms

A. Efficiency Insights

Efficiency scores highlight the model’s ability to combine
accuracy with computational efficiency. Efficiency scores in
Figure 4 demonstrate that DT leads with 13.03 (SCADA),
19.05 (IIoT), and 83.85 (Edge IoT), indicating its robustness
in delivering high accuracy at minimal energy cost. CNN-
LSTM and NN exhibit poor efficiency scores due to high
computational costs despite good accuracy. Although KNN
demonstrates excellent scores in SCADA (25.08), there are
declines in IIoT and Edge IoT due to inference inefficiencies.

Fig. 4. Plot showing the efficiency scores of the evaluated algorithms

Energy-efficiency insights highlight that DT and LightGBM
exhibit minimal normalized time per data unit for training and
inference, making them ideal for low-energy SCADA environ-
ments. CNN-LSTM are computationally intensive, consuming
significantly more time per data unit, indicating higher energy
costs. Similarly, LightGBM and DT scale efficiently across
IoT and Edge IoT, ensuring consistent performance without
significant energy overheads. In contrast, NN and CNN-LSTM
struggle to maintain efficiency, leading to increased energy
consumption in larger datasets.

B. Complexity Trade-off

DT and LightGBM outperform complex models NN and
CNN-LSTM, providing the best trade-off between accuracy,
energy efficiency, and scalability in energy-constrained envi-
ronments. NN’s high parameter count and CNN-LSTM’s deep
architecture result in excessive training and inference times,
reducing their practicality for eco-friendly SCADA systems.
RF can be considered for environments where slightly higher
computational costs are acceptable.

Table II shows the sizes and trainable parameters of the
evaluated models. It highlights the importance of selecting
models based on the trade-offs between computational com-
plexity, energy efficiency, and accuracy. Lightweight models
offer compelling solutions for eco-secure SCADA systems,
while more complex neural networks may be reserved for
scenarios where higher accuracy justifies the energy cost.
However, models with a combined advantage of less complex-
ity, accuracy, and significance regarding resource efficiency are
most suitable for green cybersecurity.



TABLE II
TRAINABLE PARAMETERS AND SIZES OF THE EVALUATED MODELS

Model Size /
Trainable Parameters

3-layered Neural network #10,570
CNN-LSTM #39,529

Random Forest 4.7 MB
Pruned Decision Tree 0.05 MB

LightGBM 1.00 MB
K-nearest neighbours 1.00 MB

C. Green Cybersecurity Implications

The results highlight the effective integration of green
technology into cybersecurity for SCADA and IoT systems,
emphasizing energy efficiency, operational reliability, and
real-time performance. Green IDSs aim to minimize en-
ergy consumption while maintaining robust protection [7],
[9], addressing energy-performance-security trade-offs for
resource-constrained embedded devices. Training and infer-
ence times correlate directly with energy consumption, making
lightweight models like LightGBM and DT ideal for energy-
constrained environments like Edge IoT. With minimal training
and inference times, these models ensure fast, low-power
operation critical for real-time cybersecurity applications. In
contrast, resource-intensive models like CNN-LSTM, offering
enhanced threat detection, are unsustainable for large-scale
or distributed deployments like IIoT and Edge IoT due to
their high energy demands. In systems where resources are
less constrained, CNN-LSTM may be justified if its security
benefits outweigh energy costs. However, LightGBM provides
a balanced alternative with lower energy use and fast inference.
For IIoT and Edge IoT, DT and LightGBM stand out as
optimal choices, aligning with green cybersecurity principles
by minimizing energy consumption and reducing the carbon
footprint. Adopting such models enables the achievement of
sustainability goals without compromising security. Prioritiz-
ing efficient, lightweight models is essential for balancing
cybersecurity performance with environmental sustainability.

V. CONCLUSION

This study demonstrates that lightweight ML models like
DT and LightGBM strike the optimal balance between ac-
curacy, energy efficiency, and scalability, making them ideal
candidates for eco-friendly SCADA cybersecurity solutions.
These models consistently deliver high performance with
minimal computational cost, as evidenced by their low training
and inference times and superior efficiency scores across all
datasets. In contrast, while achieving high accuracy, complex
models such as CNN-LSTM and neural networks exhibit
excessive energy demands and poor efficiency, rendering
them impractical for resource-constrained environments. It
emphasizes the need to prioritize efficient algorithms in green
cybersecurity frameworks. Future research should explore hy-
brid approaches combining simplicity and efficiency with the
robustness of deep learning alongside energy-aware hardware
optimizations to further enhance machine learning reliability
in sustainable SCADA networks.
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