Distributed Denial-of-Service (DDoS) Detection
Using Multitask Learning based on Deep Learning
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Abstract—Distributed Denial of Service (DDOS) is one of the
most significant threats among a wide variety of threats that can
attack increasingly vulnerable computer networks. Traditional
detection methods often fail to effectively manage the complexity
of modern attack scales because traditional methods usually rely
on monitoring the traffic volume and identifying spikes as an
attack. This approach causes ineffective, inaccuracy, and lack
of scalability. To address these challenges, this research aims
to develop an advanced and innovative approach to detect and
classify DDOS attacks. We use Multitask Learning (MTL) com-
bined with Deep Learning (DL) using three DL models: Multi-
Layer Perceptron (MLP), Long Short-Term Memory (LSTM),
and Convolutional Neural Networks (CNN). Using the NF-CSE-
CIC-IDS2018-V2 and NF-BoT-IoT-V2 datasets, our methodol-
ogy includes data pre-processing, feature normalization, and
adjustment to a specific model such as changing the input.
The evaluation shows that MTL-CNN model achieves perfect
scores across multiple metrics: 100% accuracy, 100% precision,
100% recall, and 100% F1-score, as well as an execution time of
32.77 seconds. Although there is an increase in the time metric
because of MTL compared to Single Task Learning(STL), MTL
combined with the DL algorithm allows the model to learn faster
with shared representation. This allows faster learning over time
using knowledge learned from both datasets, resulting in better
generalization and stronger attack detection.

Index Terms—Convolutional Neural Network(CNN), Deep
Learning(DL), Distributed Denial of Service (DDOS), Intrusion
Detection, Long Short-Term Memory(LSTM), Multi-Layer Per-
ceptron(MLP), Multitask Learning(MTL)

I. INTRODUCTION

One of the most significant threats to network and security
is DDOS attacks, intended to overload the system and disrupt
services by flooding traffic from various devices, making the
service inaccessible. Traditional detection methods often lack
the efficiency, accuracy, and scalability needed for complex
and large-scale attacks. These challenges happened because
traditional methods only focused on monitoring traffic volumes
and detecting spikes as the indicator of an attack [1]. Current
detection methods are inadequate, emphasizing the need for
more robust and effective approaches to counter DDoS attacks,
given the characteristics of this attack.

This research aims to develop an advanced approach to de-
tect and classify DDoS attacks using MTL and DL. MTL can
simultaneously learning if there are threats while classifying
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the type of attack, improving the efficiency and generalization
[2]. Meanwhile, DL can recognize complex patterns used in
DDoS attacks by automatically finding relevant information
from the raw data [3]. DL can find complex patterns, making
it an ideal choice for modern DDoS detection, compared
to conventional machine learning, which depends on pre-
defined features. This collaborative intrusion detection has
the potential to improve the security of systems in terms
of monitoring possible intrusions and abuse of Integrity. By
using different datasets, appropriate training methods will
yield optimal output and, hence, better detection capabilities
[4] [5]. This study explores the use of MTL and DL in DDoS
detection and classification as tools for evaluating the current
techniques. The objective is to combine MTL and DL with
their advantages to build a more efficient, scalable, and precise
model.

This research fills a gap in previous studies by Albelwi,
which highlights the need for more complex datasets and
sophisticated algorithms that integrate MTL and DL [6]. To
improve the detection and classification of DDoS attacks,
this research used two datasets: NF-CSE-CIC-IDS2018-V2
and NF-BoT-IoT-V2. These datasets were chosen due to
their implementation and advanced features that can handle
the complexities of modern DDoS attacks. As a result, this
research enhances DDoS feature detection and classification,
overcoming the previous weaknesses to yield a more robust
and coherent approach.

II. RELATED WORKS

Research [6] by Saleh Ali Albelwi. (2022) proposed an
intrusion detection system (IDS) based on MTL and Deep
Neural Networks (DNN) for simultaneous detection of multi-
ple attack types. The model by Albelwi using UNSW-NB15
and CICIDS2017 datasets achieved 87.50% accuracy, which is
better than traditional neural networks (81.48%) and decision
tree (86.41%) models. Generalization can be achieved through
this approach, as well as minimizing overfitting, which will
make it possible to resist complex attacks on network security.
This study, therefore, demonstrates how MTL could boost IDS
performance. However, there is a need for further analysis of
the model’s capabilities because there are no measures in this



study to determine its precision, recall, F1 score, or execution
time.

Research [7] by Shakya and Abbas. (2021) has conducted a
comparative analysis among different machine learning models
to detect DDoS attacks in Internet of Things (IoT) networks.
The research investigates using performance metrics such as
accuracy, precision, recall, and F1 score. In conclusion, it was
found that the XGBoost model had better results with 99.82%
accuracy, 99.8% precision, 99.85% recall, and finally, an F1
score of 99.82%, compared with a lower score for K-Nearest
Neighbor (KNN) model. The XGBoost model performed
better than KNN; hence, it may be suitable for complex and
large datasets. However, no computational time was involved
during these experiments, which are crucial in the real-time
detection of DDoS scenarios.

Research [8] by Halladay et al. (2023) has conducted
research involving the detection and classification of DDoS
attacks using time-based features, with a performance compar-
ison among various machine learning and DL algorithms. The
Deep Neural Network (DNN) model achieved 99% accuracy,
an Fl-score of 100%, and a training time of 185.61 seconds.
The Support Vector Machine (SVM) model also achieved
99% accuracy and an Fl-score of 100% but took a longer
training time of 203.28 seconds. This result shows that time-
based characteristics can slightly reduce precision and training
times, making them more useful for real-time applications.
These outcomes represent an initial step towards efficient and
effective DDoS detection.

Research [9] by Sarhan et al. (2022) proposed a Net-
work Intrusion Detection System (NIDS) using a standard-
ized NetFlow-based feature set in order to improve the
robustness and consistency of ML-based evaluation across
various datasets and attack scenarios. The NF-BoT-IoT-v2
dataset achieved 100% accuracy, 100% F1 score, and 3.90 us
prediction time, while the NF-CSE-CIC-IDS2018-v2 dataset
achieved 99.35% accuracy, 97% F1 score, and 21.75 ps predic-
tion time. The algorithm, along with metrics such as precision,
recall, and execution time, were not provided in this study.
This research highlights the usefulness of improving detection
accuracy and prediction efficiency of ML-based NIDS by
applying a NetFlow-based feature set.

The problem of detection and prevention of DDOS attacks
has been widely studied. However, no known research has
combined MTL and DL for DDOS detection using the datasets
that are NF-CSE-CIC-IDS2018-V2 and NF-BoT-IoT-V2. On
the other hand, some studies, such as S. Ali et al. (2023)
and Q. Liu et al. (2022), have investigated MTL and DL for
tasks similar to those in this study, but they cannot be di-
rectly compared. Ali’s research focused on detecting malware
using behavioral traffic analysis on IoT devices, considering
different datasets, and identifying malware that did not detect
DDoS [10]. However, Liu’s research used MTL for intrusion
detection. Moreover, they utilized different datasets and did
not prioritize execution time or provide a thorough evaluation
of several DL methods, including MLP, LSTM, and CNN [11]

The current study differs from others as it addresses the high

data complexity of NF-CSE-CIC-IDS2018-V2 and NFBoT-
IoT-V2 datasets, which still conduct execution time optimiza-
tion and performance evaluation with respect to several DL
models. The MTL approach allows the model to capture
inter-task relationships simultaneously, leading to efficient data
processing. This integration between DL and MTL facilitates
automatic feature extraction from raw data, thereby enhancing
sensitivity and accuracy in detecting and classifying numerous
DODS attacks. This technique improves the model’s perfor-
mance and overcomes significant challenges arising from the
data’s complex nature and diverse attack patterns.

III. METHODOLOGY

The system design for this research is illustrated in Fig. 1
through a flowchart.
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The process begins by preparing the datasets and then
preprocessing the data to ensure it is clean and ready for
model testing. From each dataset, 100,000 samples are selected
and filtered for intrusion detection, specifically focusing on
DDoS detection. Tasks are then assigned, and the data is
split into 70% for training and 30% for testing. A DL-based
MTL model is created, trained with the prepared training data,
and assessed using the test data. The evaluation metrics for
assessing the model’s performance include accuracy, precision,
recall, F1-Score, and execution time. These metrics are crucial
for measuring the model’s classification performance, the
balance between precision and recall, and efficiency in terms
of execution time.

Fig. 1.

Flowchart System

A. Datasets Description and Preprocessing

This research utilizes two datasets: NF-BoT-IoT-V2 and
NFCSE-CIC-IDS2018-V2. The NF-BOT-IOT-V2 dataset, de-
veloped by the University of Queensland, contains 30,420,085



entries focused on network traffic involving botnets on IoT
devices. The NF-CSE-CIC-IDS2018-V2 dataset from CSE-
CIC includes 17,129,714 entries aimed at detecting intrusion
attacks such as DDoS and port scanning. These datasets
were deliberately selected to balance diversity and manage-
ability, ensuring robust model development while avoiding
potential challenges associated with too many datasets, such
as increased computational complexity, overfitting due to
redundancy, and resource overhead. Both datasets feature 43
common attributes that describe various aspects of network
traffic, such as connection duration, protocols, packet size,
and the number of packets transmitted. These shared features
enable effective analysis and model development for detecting
intrusions, particularly DDoS attacks in IoT environments.

The following tables show the class distribution of each
dataset:

TABLE I
NF-BOT-I0T-V2 CLASSES
Classes Value

Benign 443
DDoS 51140
Dos 48417

The NF-BoT-IoT-V2 dataset, as shown in Table I, includes
three primary classes: Benign (443 instances), DDoS (51,140
instances), and DoS (48,417 instances). These classes repre-
sent regular network traffic and different types of denial-of-
service attacks, with the DDoS and DoS categories being the
most prevalent.

TABLE 11
NF-CSE-CIC-IDS2018-V2 CLASSES
Classes Value
Benign 89463
DDoS attacks—-LOIC-HTTP 6362
DDOS attack-HOIC 2630
DoS attacks—-Slowloris 1226
DoS attacks—Hulk 163
DoS attacks-GoldenEye 88
DoS attacks—-SlowHTTPTest 59
DDOS attack-LOIC-UDP 9

The NF-CSE-CIC-IDS2018-V2 dataset, as shown in Ta-
ble II, includes various attack classes, such as Benign
(89,463 instances) and several DDoS and DoS variants, like
DDoS attacks-LOIC-HTTP (6,362 instances) and DoS attacks
Slowloris (1,226 instances), among others. This dataset’s di-
versity of attack types allows for a comprehensive evaluation
of intrusion detection models across multiple attack scenarios.

In this study, the data preprocessing phase entailed the
filtration of each dataset to a sample of 100,000 entries,
thereby providing a representative subset for detecting DDoS
attacks while maintaining a balance between performance
and resource efficiency. The L4 SRC PORT label in the
NFBoT-IoT-V2 dataset underwent a correction to an unsigned
format, a modification implemented for consistency with the
NF-CSE-CIC-IDS2018-V2 dataset. Furthermore, attack labels

were converted to numeric values, a standard machine learning
practice, to facilitate efficient computation and model training.
Despite simplifying attack labels, key features that describe
attack behaviors, such as packet size, duration, and protocols,
were preserved, ensuring the model’s ability to learn nuanced
patterns effectively.

B. Task Selection

Task selection involves choosing specific tasks for the model
to learn simultaneously. The selected tasks should be related
in a way that helps predict the outcomes of other tasks. The
tasks of this study are based on the type of attack from the
NF-CSE-CIC-IDS2018-V2 dataset (Task 1) and the label from
the NF-BoT-IoT-V2 dataset (Task 2). The tasks use supervised
learning outputs provided for each dataset: Label and Attack.
The Label task indicates whether an action is an attack. In
contrast, the Attack task identifies the type of attack, such as
benign, DDoS attacks-LOIC-HTTP, DDoS attacks-HOIC, DoS
attacks-Slowloris, DoS attacks-Hulk, DoS attacks-GoldenEye,
DoS attacks-SlowHTTPTest, and DDoS attacks-LOIC-UDP.

C. Deep Learning Model

Deep Learning is a machine learning method that utilizes
multi-layered artificial neural networks to learn features and
representations of patterns from data. The network has three
layers: input, hidden, and output. The hidden layer contains
neurons that are connected to the neurons in the previous
and next layers [3]. For this study, three DL algorithms
are applied: multi-layer perceptron (MLP), long-short-term
memory (LSTM), and convolutional neural network (CNN)
to evaluate their performance on each task.

1) MLP is a machine learning method that uses a multilayer
artificial neural network to transfer information from
the input layer through one or more hidden layers to
the output layer. MLP employs supervised learning,
which involves training the model with known target
data and learning from the outcomes. The mathematical
representation of MLP is as follows [12].

c= f(d) andd:i(aibi) (1)
i=0

The process begins by assigning weights to each input,
where each input b; is multiplied by its weight a;. Then,
the result of these multiplications are summed to get d.
Finally, the activation function is applied to d to yield
the output c.

2) LSTM is a machine learning technique that employs a
Recurrent Neural Network(RNN) to solve the problem
of long-term data dependency. LSTM architecture com-
prises a series of cells, each with memory and three
gates: forget, input, and output. These gates control the
flow of information inflow into and outflow of the cells.
One task that can be used with LSTM is traffic anomaly
detection in computer networks [13]. This method guar-
antees effective information transmission and retention
inside the LSTM network.



3) CNN was initially developed to process images but
has proven effective for various data types, including
sequential text. A CNN comprises convolution, pooling,
and fully connected layers. The convolution layer ex-
tracts features from the input data, utilizing a specific
activation function. The pooling layer then reduces the
dimensionality of the data, employing techniques like
max pooling to speed up processing and mitigate overfit-
ting. Finally, the fully connected layer takes the flattened
output from the pooling layer to generate the final output
class [15]. The mathematical formula for a CNN can be
expressed as follows:

Wl 6 R}CZX]C[XTLZX7”71 (2)
b € R™ (3)
{ch,k} c Rnfc,k—l X MNfe, k (4)

The convolution layer (2, 3) is defined by the weight
W; and bias b; specific to each layer (), he filter size
is denoted by k;, while n; represent the number of filter
layers, and n;_; represent the number of channels of the
input layer [. The pooling layer has no specific formula,
but the type and size of pooling chosen determine its
structure. The Fully Connected layer (4) is defined by
the weights {Ws ,} and bias {bg r}. Here, ngp—1
represents the number of neurons in the previous fully
connected layer, and ng j represents the number of
neurons in the current fully connected layer [16].

D. Single-task Deep Learning Model

Single-task deep learning models are designed to tackle a
specific task by focusing on one target variable. This study ap-
plies these models to two datasets: NF-CSECIC-IDS2018-V2
and NF-BoT-IoT-V2. The NF-CSE-CICIDS2018-V2 dataset
aims to classify different types of attacks in network data.
Therefore, the target variable is ”Attack.” Conversely, the NF-
BoT-IoT-V2 data set is meant to detect normal and abnormal
conditions in a network. Therefore, the target variable is
”Label.”

Three DL algorithms—MLP, LSTM, and CNN—were used.
These algorithms were chosen because they can discover
intricate patterns in network data.

The training process involved the following steps:

o Splitting both dataset data into 70% training data and
30% testing data.

o Preprocessing the data through normalization, encoding,
and reshaping if required.

« Train models using the appropriate target for each dataset.

o Evaluating the models performance using the specified
evaluation metrics.

The performance results of the three algorithms on each
dataset are visualized in III and Table. IV

TABLE III
PREDICTION RESULT SINGLE TASK IN NF-CSE-CIC-IDS2018-V2
Accuracy | Precision | Recall | F1-Score | Time (sec)
MLP 0.9975 0.9955 0.9975 0.9965 19.75
LSTM 0.9977 0.9957 0.9977 0.9967 230.69
CNN 0.9991 0.9991 0.9991 0.9990 27.11

Table III presents the performance of three MLP, LSTM,
and CNN models on the NF-CSE-CIC-IDS2018-V2 dataset.
The MLP model demonstrates high performance, achieving
an accuracy of 0.9975 and a fast execution time of 19.75
seconds. The LSTM model slightly outperformed the MLP
with an accuracy of 0.9977, though it requires a significantly
longer execution time of 230.69 seconds. The CNN model has
the highest accuracy of 0.9991, while maintaining a reasonable
execution time of 27.11 seconds, making it the most efficient
in accuracy and speed.

TABLE IV
PREDICTION RESULT SINGLE TASK IN NF-BOT-10T-V2
Accuracy | Precision | Recall | F1-Score | Time (sec)
MLP 0.9998 0.9998 0.9998 0.9998 18.76
LSTM 1.0 1.0 1.0 1.0 228.98
CNN 0.9999 0.9999 0.9999 0.9999 25.24

Table IV presents the results for the NF-BoT-IoT-V2 dataset.
It shows that MLP achieves a nearly perfect accuracy of 0.9998
and has the fastest execution time of 18.76 seconds. While
LSTM reaches a perfect accuracy of 1.0 across all metrics, it
takes significantly longer to process at 228.98 seconds. On the
other hand, CNN offers a very high accuracy of 0.9999 with a
moderate execution time of 25.24 seconds, providing a good
balance between speed and accuracy.

E. Multitask Deep Learning Model

In this research, we apply MTL combined with DL algo-
rithms to detect and classify DDoS attacks. MTL allows the
model to learn to identify the presence of attacks and their
types simultaneously. This approach is expected to improve
the model’s accuracy by enhancing its ability to recognize
patterns in the dataset. The algorithm for MTL is provided in
[17].

M

min L(X™ y™ w™) + AReg(W) (5)
oSS L 4 A Reg W)

In this algorithm, X™ & RN=*P represents the input
matrix for the m-th task, with N,, samples and D features,
while y™ € R¥=*1 s the corresponding output vector. The
task-specific weights, denoted as w™ &€ RP*! are learned for
each task. The global weight matrix W = [wy, wa, ..., wp] is
formed by concatenating the individual task-specific weights.
The regularization term A\ balances the loss from the tasks
and prevents overfitting. This helps ensure the model can
generalize well across all tasks. We developed three models to
implement MTL for attack detection and classification, each
utilizing various DL architectures designed for MTL.



1) Model Construction: Three Multitask DL models were
constructed:

e MTL-MLP: A multi-layer perceptron with two dense
layers (32, 16 neurons) and ReLU activation.

e MTL-LSTM: Two LSTM layers (32, 16 units) with
dropout layers for better generalization.

e MTL-CNN: A convolutional layer with 32 filters, fol-
lowed by pooling layers to reduce dimensionality.

Initially, the two datasets are split into 70% for training
and 30% for testing. the target variables in the models are
one—hot encoded , while features are normalized with
StandardScaler. Then, input data is reshaped to fit the
specified model requirements, such as sequences for LSTM
models or 2D formats for CNNs. Finally, the Adam optimizer
are used to optimize the models which are trained over five
epochs.

2) Evaluation: The models were evaluated based on accu-
racy, precision, recall, Fl-score, and the execution time(sec).

IV. RESULT AND DISCUSSION

This section presents the final results of our research and
offers recommendations for future work.

A. Experiment Result

The experiment results in Fig. 2 show that the performance
of MLP, LSTM, and CNN models in NF-CSE-CIC-IDS2018-
V2 and NF-BoT-IoT-V2 datasets can be improved effectively
by MTL. In this study, MTL improved the accuracy of the
STL MLP model in Task 1 from 0.9975 to 0.9984, precision
from 0.9955 to 0.9984, recall from 0.9975 to 0.9984, and
Fl-score from 0.9965 to 0.9978, while slightly increasing
execution time from 19.75 seconds to 22.48 seconds. While,
for the LSTM model in Task 1 and Task 2, getting slightly
lower across all metric compared to STL and execution time
increased from 230.69 seconds to 311.39 seconds. The CNN
model’s scores improved across all metrics for the Task 1 and
perfect score for the Task 2, with the execution time growing
from 27.11 seconds to 32.77 seconds.

The increased execution time in MTL arises because the
model processes both datasets simultaneously, which requires
more computational resources than STL. Although processing
each dataset sequentially would take longer, combining them
in MTL results in a more efficient model. This approach
leverages shared features across datasets, leading to better
overall performance despite the additional time needed for
training.

As demonstrated, the confusion matrix in fig 3, the MTL-
MLP model demonstrates optimal performance in multiclass
classification and nearly perfect accuracy, indicating its ca-
pacity to discern complex patterns. Simultaneously, the MTL-
CNN model attains perfect results in binary classification ,
substantiating its superiority in recognizing specific patterns
in binary data. It is important to note that, despite the in-
herent data imbalance, no balancing techniques were applied
during this research. The decision to retain the original data
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Fig. 2. MTL and DL Algorithm Result

distribution was made because the models already demon-
strated exceptional performance, highlighting their robustness
in handling imbalanced data effectively without compromising
accuracy. This approach emphasizes the sufficiency of the
current dataset and the compatibility of the selected model
architectures with the task complexities.

B. Discussion

MTL requires more execution time than STL. However,
MTLs significant improvements in accuracy, precision, recall,



Fig. 3. CM MTL-MLP, CM MTL-LSTM, and CM MTL-CNN

and Fl-score demonstrate its effectiveness for DDoS attack
detection. The additional time MTL requires is due to its
complex optimization processes, which leverage inter-task
relationships to enhance performance. For instance, on the NF-
CSE-CIC-IDS2018-V2 dataset using multiclass classification,
MTL-Task 1 enhances precision from 0.9955 (STL MLP)
to 0.9992 (MTL-CNN), demonstrating its capacity to utilize
shared patterns effectively. Similarly, on the NF-BoT-lIoT-
V2 dataset using binary classification, MTL-Task 2 attains
perfect precision, recall, and F1-score with MTL-MLP, MTL-
LSTM and MTL-CNN models, demonstrating its capacity
to generalize effectively on less complex datasets. Despite
the increased execution times, MTL’s enhanced accuracy and
generalization make it a compelling choice for complex tasks
such as DDoS attack detection.

While real-time detection and traditional methods, such as
statistical or rule-based approaches, are crucial for broader
applicability, the primary focus of this study was to evaluate
the benefits of MTL in enhancing DDoS detection. The
increase in execution time for LSTM with MTL, though
noteworthy, is outside the scope of this research, which does
not extend to real-time detection constraints. Additionally, the
comparison to traditional methods was not included, as the
research was centered on DL-based models and their potential
for advancing intrusion detection performance. However, these
aspects provide valuable directions for future work, including
optimization for real-time performance and comparisons with
traditional detection methods.

CONCLUSION

The research highlights the significant potential of advanced
machine learning techniques in enhancing Network Intrusion
Detection Systems (NIDS). The assessment of various al-
gorithms such as MLP, LSTM, and CNN on datasets like
NF-CSE-CIC-IDS2018-V2 and NF-BoT-IoT-V2 indicates that
CNN achieves the highest performance. It shows nearly perfect
accuracy, precision, recall, and Fl-score while providing ef-
ficient prediction times. Additionally, incorporating NetFlow-
based features, as demonstrated in Sarhan et al.’s work, con-
sistently improves classification performance across different
datasets, emphasizing the importance of standardized feature
sets for more reliable and comparable evaluations.
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