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Abstract— Electromyography (EMG) signals, which measure 
muscle electrical activity, are used to assess muscle function, 
activity, and fatigue levels during motion. However, collecting 
EMG data typically requires invasive or non-invasive sensors in 
controlled environments. This paper proposes a model to predict 
muscle activity levels from videos of people performing actions in 
real-world settings, enabling workplace applications. EMG 
signals and corresponding videos were collected from seven sites 
on the right side of subjects’ bodies performing three actions with 
two weights. After preprocessing, muscle activity levels and joint 
coordinates were extracted to predict muscle activity levels. 

 

Keywords—Muscle acitivty prediction, Electromyography, 
Skeleton graph, Multimodal. 

I.  INTRODUCTION 

The transition to flexible, high-mix production systems has 
prompted the adoption of robot-assisted production to optimize 
workspace efficiency. In Korea, where the industrial structure 
is rapidly changing due to low birth rates and an aging 
workforce, there is an increasing need for technologies that 
enable humans and robots to coexist and collaborate in shared 
spaces. This is particularly critical for small and medium sized 
enterprises to enhance productivity and flexibility while 
compensating for labor shortages and declining workforce 
skills. Alongside advancements in production technologies, 
ensuring the safety of workers interacting with industrial robots 
is a key challenge. For instance, robots failing to detect 
workers entering their pathways may lead to physical collisions. 
Moreover, human workers, unlike robots that maintain 
consistent work intensity, are susceptible to accidents caused 
by reduced attention and work-related musculoskeletal 
disorders (WMSDs) resulting from excessive physical fatigue. 
Safety management technologies that mitigate these risks while 
maintaining productivity are therefore essential. 

Improper workplace ergonomics, causing excessive 
workload, is one of the primary causes of WMSDs. 

Traditionally, workplace evaluations rely on tools such as 
REBA (Rapid Entire Body Assessment) and RULA (Rapid 
Upper Limb Assessment) to identify risk factors and suggest 
improvements. However, these methods have limitations: they 
are conducted periodically by experts, making continuous 
monitoring challenging, and they evaluate only representative 
or high-risk postures, failing to capture the broader distribution 
of working postures. To address these limitations, 
physiological signals that directly reflect workers’ physical 
loads offer a promising solution. Electromyography (EMG) 
signals, which measure the electrical activity of muscles during 
contraction, provide detailed information about muscle activity. 
For example, an increase in muscle fiber activity leads to 
higher signal amplitude, while muscle fatigue is associated 
with slower recovery and a predominance of low-frequency 
components. These characteristics make EMG signals a 
valuable quantitative indicator for evaluating physical 
workload and posture during manual tasks. 

Despite their utility, collecting EMG signals typically 
requires surface or invasive sensors, which may not be feasible 
in dynamic industrial environments. This study investigates an 
alternative approach, using camera-based systems like 
workplace-installed CCTV to estimate EMG signals. By 
incorporating pose estimation techniques, the proposed method 
aims to enable continuous monitoring of workers’ physical 
loads in a practical and sensor-free manner. 

This paper is based on research conducted under the 
project ’Development of holonic manufacturing system for future industrial 
environment (EO240002)’ funded by the Clean Production System Core 
Technology Research Project of the Korea Institute of Industrial Technology 
(KITECH) in 2024. 

Figure 1. Schema of data collection. 
(left: view from the ceiling, right: view from the front) 



 

II. METHOD 

A. Data Collection 

The lack of publicly available datasets containing 
synchronized EMG signals and human motion data for manual 
material handling tasks necessitated the development of a 
controlled experiment to collect relevant data. This experiment 
aimed to gather data that could train and evaluate the proposed 
prediction model, focusing specifically on predicting the 
amplitude of EMG signals. The schema for data collection is 
shown in Fig. 1. 

Sixteen male participants in their 20s, with no known 
physical disabilities and complete limb functionality, were 
recruited for this study. Their demographic distributions were 
as follows: age ranged from 20 to 29 years, with a mean of 
23.75 years (SD: 1.29); height ranged from 166 to 183 cm 
(mean: 179.44 cm, SD: 4.43); and weight ranged from 52 to 
107 kg (mean: 73.08 kg, SD: 14.26). The experiments were 
conducted in a motion analysis laboratory, providing a 
controlled environment to minimize external variability while 
replicating scenarios of manual material handling tasks. 
Although this setup ensured consistency, it did not fully 
capture the complexities of real-world work environments. 

Five repetitive tasks were designed to simulate common 
material handling activities: (1) lifting a load from the ground, 
(2) lowering a load to the ground, (3) carrying a load across a 
fixed distance, (4) placing a load on a higher platform, and (5) 
removing a load from a higher platform. To simplify the 
experimental design, tasks 1 and 2 were combined into a 
continuous sequence, as were tasks 4 and 5. Each task was 
conducted under two weight conditions, 5 kg and 10 kg, 
resulting in six distinct experimental setups: 5 kg and 10 kg for 
combined tasks 1 & 2, 5 kg and 10 kg for task 3, and 5 kg and 
10 kg for combined tasks 4 & 5. Participants were instructed to 
perform each task in synchronization with periodic auditory 
signals to maintain consistency in execution. To ensure 
participant safety, a rest period was provided after each 
experimental setup, with the next task being conducted only 

after participants reported full recovery through an interview. 
Unlike predefined repetition counts or durations, the number of 
repetitions was determined by participants’ subjective 
assessments of exertion, which were quantified using the Borg 
CR-10 scale. Tasks were terminated when participants reported 
a score of 10, indicating a “maximal” effort level. This 
approach allowed the collection of data spanning a wide range 
of physical states, from low fatigue to high fatigue. EMG 
signals were recorded from seven muscle groups associated 
with material handling tasks: Erector Spinae (ES), Upper 
Trapezius (UT), Biceps Brachii (BB), Flexor Digitorum 
Superficialis (FDS), Extensor Digitorum (ED), Biceps Femoris 
(BF), and Vastus Lateralis (VL) [1] – [5]. Surface EMG 
sensors (Trigno Avanti sensors, Delsys) were attached to each 
muscle site following SENIAM guidelines [6] to ensure 
accurate and reliable data collection. Simultaneously, motion 
data was captured using a webcam operating at 20 frames per 
second (fps) to record participants’ movements during the tasks. 
The recorded motion data (images) were processed to extract 
2D keypoints using AlphaPose [7], a two-dimensional pose 
estimation algorithm. These 2D keypoints were subsequently 
augmented into 3D coordinates using MotionBERT [8] , a 
transformer-based model designed for human motion 
representation. The EMG acquisition system and the webcam 
were synchronized to enable frame-level alignment between 
the motion data and the muscle activity signals. Plus, prior to 
the main experiment, the maximum voluntary contraction 
(MVC) of each participant was measured to normalize the 
EMG signals. Isometric con tractions were performed for each 
of the seven selected muscle groups. The measured MVC 
values were subsequently used to extract and normalize the 
EMG signal amplitudes recorded during the tasks. The 
experimental protocol was approved by the institutional review 
board (IRB), and all participants provided informed consent 
before participating in the study. 

B. Pose2Muscle 

The proposed model, Pose2Muscle, predicts frame-wise 
muscle activity levels from sequences of 3D keypoints. It is 
based on the framework introduced in the [9], which 
demonstrated the feasibility of estimating muscle activity from 

Figure 2. Framework of muscle activity prediction model. 



 

skeletal motion. However, this study extends the approach to 
account for interactions with external objects, such as lifting or 
carrying weights, making it suitable for manual material 
handling tasks. 

An overview of the architecture is shown in Fig. 2. The 
input to the model is a sequence of 3D keypoints, x ∈ ℝT × 3J, 
where T is the number of frames in the sequence, and J is the 
number of keypoints in the 3D skeleton. First, the model 
applies 1D convolution operations to generate pose tokens, p ∈ 
ℝT × D, where each token represents a frame enriched with 
temporal information from adjacent frames. Here, D denotes 
the dimensionality of the model. These pose tokens are then 
passed through a Transformer encoder with self-attention 
mechanisms to model temporal relationships across frames. 
The output of the model consists of T predicted muscle activity 
values for each of the seven predefined muscle groups, 
corresponding to the input sequence. 

While [9], which focused on bodyweight-only movements, 
incorporated participant IDs as conditioning features to account 
for individual differences in muscle activity, relying solely on 
IDs may be insufficient when considering the diverse impacts 
of external objects across participants. For instance, lifting a 10 
kg weight requires greater muscle force compared to lifting a 5 
kg weight, leading to increased muscle fiber recruitment. This 
physiological response is reflected in higher EMG signal 
amplitudes, which are quantified as muscle activity levels. For 
this reason, the Pose2Muscle model integrates additional 
participant-specific physical attributes, including age, height, 
weight, muscle mass, fat mass, forearm length, and shin length. 
These physical attributes are processed through a linear layer to 
generate embeddings, which are subsequently concatenated 
with the outputs of the Transformer encoder before being 
passed to the final prediction layer. By combining skeletal 
motion data with physical attributes, the model achieves a more 
comprehensive representation of the factors influencing muscle 
activity. 

III. EXPERIMENTS 

Before you begin to format your paper, first write and save 
the content as a separate text file. Keep your text and graphic 
files separate until after the text has been formatted and styled. 
Do not use hard tabs, and limit use of hard returns to only one 
return at the end of a paragraph. Do not add any kind of 
pagination anywhere in the paper. Do not number text heads-
the template will do that for you. 

Finally, complete content and organizational editing before 
formatting. Please take note of the following items when 
proofreading spelling and grammar: 

A. Experimental Setup 

The Pose2Muscle model was trained and evaluated using 
the dataset collected in the experimental study. For each of the 
six continuous task sequences collected per participant, 20% of 
the data was randomly extracted and reserved for validation 
and testing, while the remaining 80% was used for training. 
This ensured that the training and evaluation datasets were 
strictly separated for every task across all participants. The 
model was trained for 300 epochs using the Adam optimizer, 

with a batch size of 128 and a learning rate of 0.0001. The 
mean squared error (MSE) was used as the loss function to 
optimize the regression task. All training and evaluation 
processes were performed on a single NVIDIA A6000 GPU. 

B. Evaluation Metrics 

To assess the model’s performance, two evaluation metrics 
were employed: 

 R2 Score: This metric quantifies how well the model 
explains the variance in the ground truth muscle 
activation values, providing a comprehensive measure 
of prediction quality for regression tasks. 

 Segment Match: Given that repeated movements often 
exhibit small differences in posture but noticeable 
variations in muscle activation, the predicted and 
actual muscle activation values were categorized into 
five predefined segments: below 5%, 5–15%, 15–35%, 
35–50%, and above 50%. The segment match metric 
calculates the proportion of predictions where the 
predicted and actual values fall within the same 
segment. 

C. Results 

The average R2 score on the validation dataset was 0.66535, 
demonstrating the model’s ability to effectively predict muscle 
activation levels. The R2 scores for each of the seven muscle 
groups are shown in Fig. 3. The R2 scores revealed notable 
differences in the prediction performance across muscle groups. 
High R2 scores were observed for ES and VL, which may be 
attributed to the relatively simple activation patterns of these 
muscles in response to large joint movements. For example, ES 
shows consistent activation when the spine flexes during 
forward bending, while VL activates when the knees flex 
during squatting movements. In contrast, lower R2 scores were 
recorded for UT and BF. These muscles exhibit more variable 
activation patterns across participants. For instance, during 
object lifting, activation of BF depends on whether the spine 
remains neutral, while activation of UT varies based on the 
individual’s posture and upper body mechanics. Additionally, 
muscles such as BB demonstrated moderate prediction 
performance, potentially due to the diverse range of arm 
movements, which increases the complexity of modeling their 
activation patterns. These results suggest that while the model 

Figure 3. R2 scores across muscle groups. 



effectively captures activation patterns for muscles with 
consistent activation mechanics, its performance is hindered for 
muscles with high inter-participant variability or diverse 
movement patterns. 

To further evaluate the model’s performance, three 
participants were randomly selected, and the segment match 
was visualized for the three primary experimental conditions 
(lifting, carrying, and lowering tasks). Table I provides the 
segment match scores for each task, and Fig. 4 – 6 visualizes 
the segments to which the predicted and actual muscle 
activation values belong. These visualizations demonstrate that 
the model achieves a high level of match across repeated 
movements. 

IV. CONCLUSION 

This study proposed Pose2Muscle, a framework for 
predicting muscle activation levels during manual material 
handling tasks from 3D pose sequences. By leveraging 
advanced pose estimation and temporal modeling techniques, 
the model effectively captures the complex relationships 
between skeletal motion and muscle activation. Unlike prior 
studies, which focused solely on bodyweight-only movements, 
this research addresses the additional complexities of 
interacting with ex ternal objects, such as lifting or carrying 
weights, making it more applicable to real-world industrial 
settings. Through experiments, the Pose2Muscle model 
achieved an average R2 score of 0.66535 across all muscle 
groups, with particularly strong performance for muscles such 
as the Erector Spinae and Vastus Lateralis.  

The findings of this study have practical implications for 
workplace safety and ergonomic assessments. By predicting 
muscle activation levels without requiring sensors, the 
proposed framework offers a scalable solution for monitoring 
workers’ physical states and identifying potential risks of 
musculoskeletal disorders. This represents a significant step 
toward integrating motion analysis and muscle activation 
prediction, providing a foundation for developing safer and 
more efficient collaborative environments in industrial settings.  

TABLE I.  SEGMENT MATCH ACROSS MUSCLE GROUPS AND TASKS 

Muscle Group 
Segment Match (%) 

Lifting 
(Task 1 & 2) 

Carrying 
(Task 3) 

Lowering 
(Task 4 & 5) 

Erector Spinae 90.65 69.38 88.5 

Upper Trapezius 97.32 83.23 85.75 

Biceps Brachii 88.69 79.17 85.88 

Flexor Digitorum 
Superficialis 

92.32 90.42 83.38 

Extensor 
Digitorum 

92.2 89.38 81.12 

Biceps Femoris 100.0 85.42 92.38 

Vastus Lateralis 90.89 85.42 74.5 

Average 93.15 83.20 84.5 

 

 

Meanwhile, the model faced challenges in predicting 
muscle activation for muscles with high inter-participant 
variability, such as the Upper Trapezius and Biceps Femoris. 
This highlights the importance of incorporating additional 
factors, such as movement dynamics or contextual features, to 
improve the model’s predictive accuracy for such muscles. 
Future research could explore further extensions of the model, 
such as integrating dynamic task-level features or expanding 
the dataset to include more diverse populations and working 
conditions. 
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Figure 4. Actual(blue) and predicted(orange) segment across muscle groups during lifting task. 

Figure 4. Actual(blue) and predicted(orange) segment across muscle groups during carrying task. 

Figure 6. Actual(blue) and predicted(orange) segment across muscle groups during lowering task. 


