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Abstract— Electromyography (EMG) signals, which measure
muscle electrical activity, are used to assess muscle function,
activity, and fatigue levels during motion. However, collecting
EMG data typically requires invasive or non-invasive sensors in
controlled environments. This paper proposes a model to predict
muscle activity levels from videos of people performing actions in
real-world settings, enabling workplace applications. EMG
signals and corresponding videos were collected from seven sites
on the right side of subjects’ bodies performing three actions with
two weights. After preprocessing, muscle activity levels and joint
coordinates were extracted to predict muscle activity levels.
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I INTRODUCTION

The transition to flexible, high-mix production systems has
prompted the adoption of robot-assisted production to optimize
workspace efficiency. In Korea, where the industrial structure
is rapidly changing due to low birth rates and an aging
workforce, there is an increasing need for technologies that
enable humans and robots to coexist and collaborate in shared
spaces. This is particularly critical for small and medium sized
enterprises to enhance productivity and flexibility while
compensating for labor shortages and declining workforce
skills. Alongside advancements in production technologies,
ensuring the safety of workers interacting with industrial robots
is a key challenge. For instance, robots failing to detect

workers entering their pathways may lead to physical collisions.

Moreover, human workers, unlike robots that maintain
consistent work intensity, are susceptible to accidents caused
by reduced attention and work-related musculoskeletal
disorders (WMSDs) resulting from excessive physical fatigue.
Safety management technologies that mitigate these risks while
maintaining productivity are therefore essential.

Improper
workload,

workplace ergonomics, causing excessive
is one of the primary causes of WMSDs.

This paper is based on research conducted under the
project "Development of holonic manufacturing system for future industrial
environment (E0240002)” funded by the Clean Production System Core
Technology Research Project of the Korea Institute of Industrial Technology
(KITECH) in 2024.

Traditionally, workplace evaluations rely on tools such as
REBA (Rapid Entire Body Assessment) and RULA (Rapid
Upper Limb Assessment) to identify risk factors and suggest
improvements. However, these methods have limitations: they
are conducted periodically by experts, making continuous
monitoring challenging, and they evaluate only representative
or high-risk postures, failing to capture the broader distribution
of working postures. To address these limitations,
physiological signals that directly reflect workers’ physical
loads offer a promising solution. Electromyography (EMG)
signals, which measure the electrical activity of muscles during
contraction, provide detailed information about muscle activity.
For example, an increase in muscle fiber activity leads to
higher signal amplitude, while muscle fatigue is associated
with slower recovery and a predominance of low-frequency
components. These characteristics make EMG signals a
valuable quantitative indicator for evaluating physical
workload and posture during manual tasks.

Despite their utility, collecting EMG signals typically
requires surface or invasive sensors, which may not be feasible
in dynamic industrial environments. This study investigates an
alternative approach, using camera-based systems like
workplace-installed CCTV to estimate EMG signals. By
incorporating pose estimation techniques, the proposed method
aims to enable continuous monitoring of workers’ physical
loads in a practical and sensor-free manner.
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Figure 1. Schema of data collection.
(left: view from the ceiling, right: view from the front)
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Figure 2. Framework of muscle activity prediction model.

II.  METHOD

A. Data Collection

The lack of publicly available datasets containing
synchronized EMG signals and human motion data for manual
material handling tasks necessitated the development of a
controlled experiment to collect relevant data. This experiment
aimed to gather data that could train and evaluate the proposed
prediction model, focusing specifically on predicting the
amplitude of EMG signals. The schema for data collection is
shown in Fig. 1.

Sixteen male participants in their 20s, with no known
physical disabilities and complete limb functionality, were
recruited for this study. Their demographic distributions were
as follows: age ranged from 20 to 29 years, with a mean of
23.75 years (SD: 1.29); height ranged from 166 to 183 cm
(mean: 179.44 cm, SD: 4.43); and weight ranged from 52 to
107 kg (mean: 73.08 kg, SD: 14.26). The experiments were
conducted in a motion analysis laboratory, providing a
controlled environment to minimize external variability while
replicating scenarios of manual material handling tasks.
Although this setup ensured consistency, it did not fully
capture the complexities of real-world work environments.

Five repetitive tasks were designed to simulate common
material handling activities: (1) lifting a load from the ground,
(2) lowering a load to the ground, (3) carrying a load across a
fixed distance, (4) placing a load on a higher platform, and (5)
removing a load from a higher platform. To simplify the
experimental design, tasks 1 and 2 were combined into a
continuous sequence, as were tasks 4 and 5. Each task was
conducted under two weight conditions, 5 kg and 10 kg,
resulting in six distinct experimental setups: 5 kg and 10 kg for
combined tasks 1 & 2, 5 kg and 10 kg for task 3, and 5 kg and
10 kg for combined tasks 4 & 5. Participants were instructed to
perform each task in synchronization with periodic auditory
signals to maintain consistency in execution. To ensure
participant safety, a rest period was provided after each
experimental setup, with the next task being conducted only

after participants reported full recovery through an interview.
Unlike predefined repetition counts or durations, the number of
repetitions was determined by participants’ subjective
assessments of exertion, which were quantified using the Borg
CR-10 scale. Tasks were terminated when participants reported
a score of 10, indicating a “maximal” effort level. This
approach allowed the collection of data spanning a wide range
of physical states, from low fatigue to high fatigue. EMG
signals were recorded from seven muscle groups associated
with material handling tasks: Erector Spinae (ES), Upper
Trapezius (UT), Biceps Brachii (BB), Flexor Digitorum
Superficialis (FDS), Extensor Digitorum (ED), Biceps Femoris
(BF), and Vastus Lateralis (VL) [1] — [5]. Surface EMG
sensors (Trigno Avanti sensors, Delsys) were attached to each
muscle site following SENIAM guidelines [6] to ensure
accurate and reliable data collection. Simultaneously, motion
data was captured using a webcam operating at 20 frames per
second (fps) to record participants’ movements during the tasks.
The recorded motion data (images) were processed to extract
2D keypoints using AlphaPose [7], a two-dimensional pose
estimation algorithm. These 2D keypoints were subsequently
augmented into 3D coordinates using MotionBERT [8] , a
transformer-based model designed for human motion
representation. The EMG acquisition system and the webcam
were synchronized to enable frame-level alignment between
the motion data and the muscle activity signals. Plus, prior to
the main experiment, the maximum voluntary contraction
(MVC) of each participant was measured to normalize the
EMG signals. Isometric con tractions were performed for each
of the seven selected muscle groups. The measured MVC
values were subsequently used to extract and normalize the
EMG signal amplitudes recorded during the tasks. The
experimental protocol was approved by the institutional review
board (IRB), and all participants provided informed consent
before participating in the study.

B. Pose2Muscle

The proposed model, Pose2Muscle, predicts frame-wise
muscle activity levels from sequences of 3D keypoints. It is
based on the framework introduced in the [9], which
demonstrated the feasibility of estimating muscle activity from



skeletal motion. However, this study extends the approach to
account for interactions with external objects, such as lifting or
carrying weights, making it suitable for manual material
handling tasks.

An overview of the architecture is shown in Fig. 2. The
input to the model is a sequence of 3D keypoints, x € RT* %/,
where T is the number of frames in the sequence, and J is the
number of keypoints in the 3D skeleton. First, the model
applies 1D convolution operations to generate pose tokens, p €
RT * D where each token represents a frame enriched with
temporal information from adjacent frames. Here, D denotes
the dimensionality of the model. These pose tokens are then
passed through a Transformer encoder with self-attention
mechanisms to model temporal relationships across frames.
The output of the model consists of T predicted muscle activity
values for each of the seven predefined muscle groups,
corresponding to the input sequence.

While [9], which focused on bodyweight-only movements,
incorporated participant IDs as conditioning features to account
for individual differences in muscle activity, relying solely on
IDs may be insufficient when considering the diverse impacts
of external objects across participants. For instance, lifting a 10
kg weight requires greater muscle force compared to lifting a 5
kg weight, leading to increased muscle fiber recruitment. This
physiological response is reflected in higher EMG signal
amplitudes, which are quantified as muscle activity levels. For
this reason, the Pose2Muscle model integrates additional
participant-specific physical attributes, including age, height,
weight, muscle mass, fat mass, forearm length, and shin length.
These physical attributes are processed through a linear layer to
generate embeddings, which are subsequently concatenated
with the outputs of the Transformer encoder before being
passed to the final prediction layer. By combining skeletal
motion data with physical attributes, the model achieves a more
comprehensive representation of the factors influencing muscle
activity.

III. EXPERIMENTS

Before you begin to format your paper, first write and save
the content as a separate text file. Keep your text and graphic
files separate until after the text has been formatted and styled.
Do not use hard tabs, and limit use of hard returns to only one
return at the end of a paragraph. Do not add any kind of
pagination anywhere in the paper. Do not number text heads-
the template will do that for you.

Finally, complete content and organizational editing before
formatting. Please take note of the following items when
proofreading spelling and grammar:

A. Experimental Setup

The Pose2Muscle model was trained and evaluated using
the dataset collected in the experimental study. For each of the
six continuous task sequences collected per participant, 20% of
the data was randomly extracted and reserved for validation
and testing, while the remaining 80% was used for training.
This ensured that the training and evaluation datasets were
strictly separated for every task across all participants. The
model was trained for 300 epochs using the Adam optimizer,

with a batch size of 128 and a learning rate of 0.0001. The
mean squared error (MSE) was used as the loss function to
optimize the regression task. All training and evaluation
processes were performed on a single NVIDIA A6000 GPU.

B. Evaluation Metrics

To assess the model’s performance, two evaluation metrics
were employed:

e R? Score: This metric quantifies how well the model
explains the variance in the ground truth muscle
activation values, providing a comprehensive measure
of prediction quality for regression tasks.

e Segment Match: Given that repeated movements often
exhibit small differences in posture but noticeable
variations in muscle activation, the predicted and
actual muscle activation values were categorized into
five predefined segments: below 5%, 5-15%, 15-35%,
35-50%, and above 50%. The segment match metric
calculates the proportion of predictions where the
predicted and actual values fall within the same
segment.

C. Results

The average R? score on the validation dataset was 0.66535,
demonstrating the model’s ability to effectively predict muscle
activation levels. The R? scores for each of the seven muscle
groups are shown in Fig. 3. The R? scores revealed notable
differences in the prediction performance across muscle groups.
High R? scores were observed for ES and VL, which may be
attributed to the relatively simple activation patterns of these
muscles in response to large joint movements. For example, ES
shows consistent activation when the spine flexes during
forward bending, while VL activates when the knees flex
during squatting movements. In contrast, lower R? scores were
recorded for UT and BF. These muscles exhibit more variable
activation patterns across participants. For instance, during
object lifting, activation of BF depends on whether the spine
remains neutral, while activation of UT varies based on the
individual’s posture and upper body mechanics. Additionally,
muscles such as BB demonstrated moderate prediction
performance, potentially due to the diverse range of arm
movements, which increases the complexity of modeling their
activation patterns. These results suggest that while the model
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Figure 3. R? scores across muscle groups.



effectively captures activation patterns for muscles with
consistent activation mechanics, its performance is hindered for
muscles with high inter-participant variability or diverse
movement patterns.

To further evaluate the model’s performance, three
participants were randomly selected, and the segment match
was visualized for the three primary experimental conditions
(lifting, carrying, and lowering tasks). Table I provides the
segment match scores for each task, and Fig. 4 — 6 visualizes
the segments to which the predicted and actual muscle
activation values belong. These visualizations demonstrate that
the model achieves a high level of match across repeated
movements.

IV. CONCLUSION

This study proposed Pose2Muscle, a framework for
predicting muscle activation levels during manual material
handling tasks from 3D pose sequences. By leveraging
advanced pose estimation and temporal modeling techniques,
the model effectively captures the complex relationships
between skeletal motion and muscle activation. Unlike prior
studies, which focused solely on bodyweight-only movements,
this research addresses the additional complexities of
interacting with ex ternal objects, such as lifting or carrying
weights, making it more applicable to real-world industrial
settings. Through experiments, the Pose2Muscle model
achieved an average R? score of 0.66535 across all muscle
groups, with particularly strong performance for muscles such
as the Erector Spinae and Vastus Lateralis.

The findings of this study have practical implications for
workplace safety and ergonomic assessments. By predicting
muscle activation levels without requiring sensors, the
proposed framework offers a scalable solution for monitoring
workers’ physical states and identifying potential risks of
musculoskeletal disorders. This represents a significant step
toward integrating motion analysis and muscle activation
prediction, providing a foundation for developing safer and
more efficient collaborative environments in industrial settings.

TABLE L SEGMENT MATCH ACROSS MUSCLE GROUPS AND TASKS
Segment Match (%)
Muscle Group Lifting Carrying Lowering
(Task 1 & 2) (Task 3) (Task 4 & 5)
Erector Spinae 90.65 69.38 88.5
Upper Trapezius 97.32 83.23 85.75
Biceps Brachii 88.69 79.17 85.88
Flexor Digitorum | = g 3, 90.42 83.38
Superficialis
Extensor 922 £9.38 81.12
Digitorum

Biceps Femoris 100.0 85.42 92.38
Vastus Lateralis 90.89 85.42 74.5
Average 93.15 83.20 84.5

Meanwhile, the model faced challenges in predicting
muscle activation for muscles with high inter-participant
variability, such as the Upper Trapezius and Biceps Femoris.
This highlights the importance of incorporating additional
factors, such as movement dynamics or contextual features, to
improve the model’s predictive accuracy for such muscles.
Future research could explore further extensions of the model,
such as integrating dynamic task-level features or expanding
the dataset to include more diverse populations and working
conditions.
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Figure 4. Actual(blue) and predicted(orange) segment across muscle groups during lifting task.
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Figure 4. Actual(blue) and predicted(orange) segment across muscle groups during carrying task.
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Figure 6. Actual(blue) and predicted(orange) segment across muscle groups during lowering task.



