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Abstract—In this paper, we propose a novel method that
integrates Cross Attention into the existing Hybrid Multi-Axis
Aggregation Network for Image Super-Resolution(HMANet) to
improve local super-resolution accuracy. While previous HMANet
methods primarily focused on enhancing the resolution of the
entire image, our approach emphasizes local image regions for
more detailed restoration. By leveraging Cross Attention for
context interaction, we achieve localized super-resolution with a
focus on specific parts of the image. Our experiments demonstrate
that the proposed method outperforms existing approaches in
terms of accuracy, and shows promising results when evaluated
with different loss functions. Our source code is available at
https://github.com/msdsm/hmaca-for-local-image-restoration.

I. INTRODUCTION

Image super-resolution is a crucial technique for restor-
ing high-resolution images from low-resolution inputs, with
widespread applications in fields such as surveillance, medical
imaging, and computer vision. In the early stages, convolu-
tional neural network (CNN)-based models like SRCNN [7]
laid the foundation for super-resolution tasks by demonstrat-
ing the effectiveness of deep learning in enhancing image
quality. Subsequently, generative adversarial network (GAN)-
based models, such as SRGAN [8], introduced perceptual loss
functions and adversarial training, resulting in more visually
appealing and realistic images. Recently, Vision Transformer
[9] based models have gained prominence due to their superior
performance in image super-resolution tasks. Notable exam-
ples include Swin Transformer for Image Restoration (SwinIR)
[1], Hybrid Attention Transformer(HAT) [2], Deep Residual
Connected Transformer(DRCT) [3], and Hybrid Multi-Axis
Aggregation Network for Image Super-Resolution(HMANet)
[4]. These models primarily focus on enhancing the resolution
of the entire image, aiming to improve overall image quality.

However, the tasks addressed by these models, such as
those in HMANet, are originally designed for global resolution
enhancement. Thus, they do not capable for fine-grained
restoration of specific local regions in an image. In practice,
scenarios, such as in surveillance footage or medical imaging,
in which detailed restoration of local regions of an image, are
becoming more common. Therefore, addressing this challenge
is increasingly important.
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In this paper, our contributions can be summarized as

following:

1) We propose a task, localized image super-resolution,
which aims to restore detailed parts of the image, and
create a dataset for this purpose.

2) We introduce Cross Attention into HMANet to improve
the model’s ability to restore localized image regions in
greater detail.

3) We design and explore various loss functions to test
and improve the performance of the model in restoring
localized areas of an image.

II. RELATED WORKS
A. HMANet
HMANet is a network composed of three main modules:
Shallow Feature Extraction, Deep Feature Extraction, and
Image Reconstruction, as shown in Fig. 1. Given a low-
resolution input image I,z € R7T*W*Cin the high-resolution
output image Iz is obtained as follows:

FO = Hconv (ILR) )
Inr = Hrec (Hpr (Fo) + Fo) .
Here, Heony (+), Hpr (+), and Hrpce (+) denote the Shallow

Feature Extraction, Deep Feature Extraction, and Image Re-
construction, respectively.
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B. Shallow Feature Extraction

The Shallow Feature Extraction module handles the initial
phase of feature extraction in image processing and is con-
structed with a single convolutional layer. This module extracts
fundamental low-level features, such as edges and textures,
from the input image. As an essential preprocessing step, it
ensures the efficient operation of the subsequent deep feature
extraction, despite its relatively low computational cost.

C. Deep Feature Extraction

The Deep Feature Extraction stage is critical for extracting
high-level features, enhancing the network’s representational
capacity. It is structured using multiple Residual Hybrid Trans-
former Blocks (RHTBs). Each RHTB integrates two distinct
attention mechanisms: the Fused Attention Block (FAB) and
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Fig. 1. Overview of HMANet, reproduced from the original paper [1].
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Fig. 2. The architecture of FAB, reproduced from the original paper [1].

the Grid Attention Block (GAB), balancing the capacity of
feature representation and efficiency in information flow.

1) Fused Attention Block (FAB): The Fused Attention
Block (FAB) aims to capture both local and global features
effectively by integrating Channel Attention with a vanilla at-
tention mechanism, as illustrated in Fig. 2. Channel Attention
emphasizes inter-channel correlations, focusing on significant
channels to enhance learning capacity. Additionally, the Swin
Transformer Layer (STL) processes local patch information
efficiently, improving both computational efficiency and accu-
racy. This leads to a significant enhancement in the network’s
performance by extracting intricate details from the image.

2) Grid Attention: Given an input X, @), G, K, and B are
computed as:

Q=XWwWe,
G=XW¢,
K=Xxwk @

V=XwV.
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Fig. 3. Illustration of Grid Attention.

Quoted from HMANet [1].

Grid Attention can then be expressed as:
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The illustration of Grid Attention is shown in Fig. 3.

3) Grid Attention Block (GAB): The input to the GAB
Fy, € REXWXC g gplit into Fg € REXWXe  Fy e
RAXWXS and Fy, € REXWXSE  The output of GAB Fly
is described as follows:

Xw, =W — MSA (Fw,),
Xw, = SW — MSA (Fw,),
XG = GI‘id — MSA (Fg)
Xwmar = LN (Cat (Xw,, Xw,, Xa)) + Fin,
Fout = LN (MLP (Xyar)) + Xvarn + Fin-
Grid Attention Block (GAB) computes grid attention, shift
window attention, and window attention along the channel
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Fig. 4. Example of Horse-Pixelization. From left: degraded image, mask
image, ground truth.

Fig. 5. Example of Horse-GaussianBlur. From left: degraded image, mask
image, ground truth.

axis, subsequently concatenating them. This multi-scale fea-
ture fusion allows the network to capture both fine local details
and broader contextual information. The channel division ratio
of 2:2:1 ensures a balanced focus across different regions,
enhancing the model’s feature extraction capability while
reducing redundancy.

D. Image Reconstruction

Image Reconstruction module generates a high-resolution
output image from the extracted high-dimensional features.
This phase employs sub-pixel convolution, a computationally
efficient technique that reconstructs fine-grained pixel-level
details, outperforming traditional upsampling methods. With
its efficiency, sub-pixel convolution plays a pivotal role in
generating visually superior high-resolution images.

III. PROPOSED METHOD

A. Dataset Creation and Degradation Techniques for Local
Image Restoration

To improve the accuracy of local image restoration tasks, it
is essential to have datasets that accurately replicate various
types of image degradation. In this study, we investigated three
degradation methods and constructed datasets based on these
methods.

1) Pixelization Process: Pixelization is a technique that
reproduces a state where image details are lost by coarsening
specific regions. In this study, the target regions were divided
into fixed-size blocks, and the pixel values within each block
were averaged using a mean pooling technique. This process
retains the contours of the image while losing fine details, thus
generating degraded images with missing details.

2) Gaussian Blur Process: Blurring reduces visual sharp-
ness and is a common method for image degradation. In this
study, we adopted a Gaussian as blur kernel. By applying a
Gaussian kernel, smooth blurring was applied either globally
or locally, generating realistic blurred images.

Fig. 6. Example of Horse-GaussianNoise. From left: degraded image, mask
image, ground truth.

3) Gaussian Noise Addition Process: Noise addition in-
volves the introduction of random noise to degrade image qual-
ity. We injected Gaussian noise in this study. By adjusting the
noise variance, we simulated sensor errors and transmission
noise introduced in the image capturing process.

Using these three degradation techniques, we processed both
the horse dataset used in CycleGAN [5] and the ImageNet
dataset, creating a total of six new datasets:

1) Horse-Pixelization

2) Horse-GaussianBlur

3) Horse-GaussianNoise

4) ImageNet-Pixelization
5) ImageNet-GaussianBlur
6) ImageNet-GaussianNoise

Figures 4, 5, and 6 illustrate examples of degraded images,
mask images, and ground truth images for Horse-Pixelization,
Horse-GaussianBlur, and Horse-GaussianNoise, respectively.

B. HMANet with Cross Attention

To address the task of generating high-quality images from
degraded images and mask images, we propose HMANet
with Cross Attention (HMACA). This architecture integrates
Cross Attention conditioned on mask images into HMANet,
as illustrated in Figure 7.

Let the output of the i-th Residual Hybrid Transformer
Block (RHTB) be denoted as X; (¢ =1,...,L), and let M
represents the feature map obtained by applying a convolu-
tional layer to the mask image. The input F; of the (i+1)-th
RHTB is defined as follows:

Qi = X;WQ9,
K =MWE,
V=MW" ©)

Fi+1 = Attention (Qu K, V) 3

where W<, WX and WV are the learned weight matrices
for the query, key, and value projections, respectively. This
Cross Attention mechanism allows the network to effectively
utilize spatial and contextual information from the mask im-
age, enhancing its ability to restore the degraded image.

Let the above calculation be denoted as C A(X;, M) to rep-
resent the Cross Attention mechanism. Given a low-resolution
input image Irr and a corresponding mask image Is, the
overall structure of HMACA can be formulated as follows:
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Fig. 7. Architecture of HMANet with Cross Attention (HMACA)

TABLE 1
COMPARISON OF HMANET AND HMACA ON HORSE-PIXELIZATION

[ HMAI | HMA2 | HMACAI | HMACA2

PSNR [ 39.30 [ 38.99 [ 39.32 [ 39.23
FO = Hcon'u (ILR) y
M = Hconv <IM) s
Fisn =CA(F, M) (i=0,...,L—1), 6)

FDF = Hconv (FL) )
Inr = Hyee (Fo + Fpr),

where H,n, denotes a convolutional operation and H,..
represents the reconstruction module. By leveraging the Cross
Attention mechanism C'A(-), the network efficiently integrates
features from both the input image and the mask, enabling a
more precise restoration of the high-resolution image Iy R.
This formulation highlights the sequential refinement of fea-
ture maps through each Residual Hybrid Transformer Block
(RHTB) and demonstrates the importance of integrating spatial
context from the mask image throughout the process.

IV. EXPERIMENTS
A. HMANet vs HMACA: Ours
The quantitative results of HMANet and HMACA on the
Horse-Pixelization dataset are shown in Table I, where the
image size is set to 128 x 128. The model parameters for

HMANet, denoted as upscale, are set to 1 and 2, referred to
as HMA1 and HMAZ2, respectively. In HMA?2, a convolutional

layer is applied at the output to restore the image resolution
from 2x back to the original size. Similarly, for HMACA, the
upscale is also set to 1 and 2, referred to as HMACAI1 and
HMACA?2. HMACA?2 follows the same procedure as HMA?2,
applying a convolutional layer at the output to match the input
image size. The evaluation metric adopted is Peak Signal-to-
Noise Ratio (PSNR) [6]. To evaluate the quality of localized
image super-resolution, the values of the non-mask regions in
the output are aligned with the corresponding values from the
input image before measuring.

B. Proposed Loss Function and Its Results

Next, we modified the loss function from L1 loss to a
custom loss. Let M represent the pixel region corresponding to
the mask, and NV represent the non-mask region of the image.
The model’s output and the ground truth image are denoted as
IR and Iy, respectively. The loss function £ is then defined
as follows:

£=al (IR 130) + 0 =o)L (152, 107) . )

Using this loss function, we conducted experiments with
HMACALI on the aforementioned 6 datasets. The resolution
of the Horse dataset is 128 x 128, and the resolution of the
ImageNet dataset is 64 x 64. The experimental results are
shown in Tables II and III, where the effect of changing the
value of o on performance is observed. Table I presents the
results for the Horse dataset, while Table II shows the results
for the ImageNet dataset.

The qualitative results of the best performing models
on the Horse-pixelization, Horse-GaussianBlur, and Horse-



TABLE II
EXPERIMENTAL RESULTS OF VARYING « IN THE LOSS FUNCTION OF HMACA1 ON THE HORSE DATASET

a=00 a=01 a=02 a=03 a=04 a=05 a=06 a=07 a=08 a=09 a=1.0
Horse-pixelization 39.33 40.19 39.99 40.11 39.81 39.98 39.91 39.81 39.64 39.33 38.26
Horse-GaussianBlur 46.91 51.14 51.21 51.35 51.06 50.62 51.13 50.76 50.59 50.43 48.00
Horse-GaussianNoise 51.78 51.16 51.01 51.14 51.02 50.91 50.57 50.38 50.86 50.50 4991
TABLE III
EXPERIMENTAL RESULTS OF VARYING « IN THE LOSS FUNCTION OF HMACA1 ON THE IMAGENET
a=00 a=01 a=02 a=03 a=04 a=05 a=06 a=07 a=08 a=09 a=1.0
ImageNet-pixelization 39.32 42.31 42.33 42.35 42.43 43.03 42.44 42.46 42.11 42.34 41.51
ImageNet-GaussianBlur 42.56 47.83 48.88 48.26 48.31 48.44 48.32 48.58 48.31 48.36 47.43
ImageNet-GaussianNoise 48.12 48.43 48.79 48.59 48.45 49.10 48.54 49.04 48.56 48.75 48.06

Fig. 9. Output example for Horse-GaussianBlur

GaussianNoise datasets are shown in Figures 8, 9, and 10,
respectively. The results are presented in the following order
from left to right: input image, mask image, output image, and
ground truth image.

V. CONCLUSION

In this paper, we proposed the HMANet with Cross At-
tention (HMACA) for image local super-resolution tasks. By
integrating Cross Attention into the HMANet architecture, we
were able to condition the model by mask images, which
enhanced the performance of the super-resolution process. We
conducted experiments on multiple datasets, including Horse-
pixelization, Horse-GaussianBlur, and Horse-GaussianNoise,
and compared the performance of HMANet and HMACA

models. The results demonstrated that HMACA consistently
outperformed HMANet, particularly in terms of PSNR.

Furthermore, we introduced a novel loss function that
incorporates a weight factor, a,, which adjusts the influence of
the L1 loss on different pixel regions. The experiments showed
that tuning this parameter leads to significant improvements in
the performance across various datasets.

Overall, our proposed HMACA model exhibited superior
performance in restoring high-quality images from degraded
inputs, and the adaptive loss function provided further en-
hancements in the restoration accuracy.
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Fig. 10. Output example for Horse-GaussianNoise
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