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Abstract— To ensure the safety of train operations, regular 

inspections and early detection of damage are essential. 

Currently, inspections are conducted visually by humans during 

nighttime hours, which incurs significant costs and time. As a 

solution, the establishment of automated inspection technology 

using drones is being explored. In this study, as part of this 

initiative, the focus was on detecting railway overhead 

equipment using edge devices and improving detection speed. 

Building upon prior research involving YOLO and ONNX, a 

dataset was created for training the AI, which was then used to 

detect railway overhead equipment on a Raspberry Pi. The 

trained models achieved mAP and F1-scores of 0.959 and 0.96 

for Yolov7, and 0.956 and 0.94 for Yolov7-tiny, respectively. 

Detection times on the Raspberry Pi were 16.43 seconds for 

Yolov7 and 2.74 seconds for Yolov7-tiny. 
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I. INTRODUCTION  

Currently, in Japan, inspections of railway overhead line 
equipment are conducted at night to avoid affecting train 
operations. Railway overhead line equipment primarily 
consists of three main components: hangers, insulators, and 
connectors, all of which require regular inspection. In some 
sections, the equipment has been in use for over 50 years since 
its installation, leading to significant deterioration. Therefore, 
periodic inspections are essential for ensuring safe train 
operations. These inspections are typically carried out at night 
through visual checks by human inspectors. However, due to 
the limited time available during nighttime operations, there is 
a risk of errors. While some sections are inspected using 
cameras mounted on vehicles, fault detection in these cases 
still relies on human visual analysis of the recorded footage. 
Fully automated fault detection systems have yet to be 
developed. Inspection of railway overhead line equipment is 
crucial for ensuring safe train operations. However, given 
Japan’s declining birthrate, aging population, and shrinking 
workforce, securing the necessary personnel for these 
inspections is expected to become increasingly challenging in 
the future [1]. 

To address these challenges, this study focuses on 
developing a system for automatic fault detection of railway 
overhead line equipment using drones [2]. Specifically, the 
study emphasizes object detection of overhead line equipment 
as part of this broader initiative. If automated drone-based 
inspections are realized, it is anticipated that the cost of human 
resources for daily inspections can be reduced, and errors 
caused by human visual checks can also be mitigated. 

Drone inspections can be conducted by capturing footage 
with drones and applying object detection AI to identify 
equipment. Furthermore, equipping drones with onboard 
object detection AI enables them to perform the entire 
process—from capturing footage to detection—independently. 
This minimizes the need for communication infrastructure, 
allowing inspections even during disasters or situations with 
limited communication capabilities. For real-time drone-
based inspections, fast object detection is essential. Thus, 
accelerating inference speed is critical for enabling immediate 
object recognition from video footage captured by drones. 

One of the current social problems is that many cities in 
developing countries, despite rapid population growth, are 
unable to build railroads and rely on automobiles for their 
transportation infrastructure, resulting in serious traffic 
congestion. In many cases, the development of transportation 
infrastructure has been delayed because of the inability to 
build railroads due to cost issues and a lack of skilled human 
resources [3]. Using inexpensive drones to inspect train line 
equipment could solve the cost and human resource problems 
associated with inspections, recover the cost of operating a 
railroad, and help reduce inequality in transportation 
infrastructure. The advantages of these edge device 
inspections are that they are inexpensive and reduce the 
number of personnel required. 

The detection of railway overhead equipment was realized 
using the object detection method You Only Look Once 
(YOLO), which, as demonstrated in prior research, offers 
higher accuracy and faster inference compared to other 
methods such as R-CNN and SSD. YOLO is particularly 
suited for real-time detection [4][5][6]. For real-time 
inspections using drones, it is necessary to deploy object 
detection AI on drones, which requires integrating the AI into 
microcomputers. This study aims to measure the time required 
for equipment detection on microcomputers and improve its 
speed. 

In conclusion, this study aims to develop an automated 
inspection solution to address challenges in inspecting railway 
overhead line equipment within the railway industry. By 
integrating drone autopilot technology with deep learning-
based object detection, this goal can be achieved. Section 2 
reviews prior research, Section 3 describes the research and 
evaluation methods, Section 4 presents results and discussion, 
and Section 5 concludes the study. 



II. PREVIOUS RESEARCH 

Object detection technology has been advancing rapidly, 
with various learning methods available. One representative 
object detection method is You Only Look Once (YOLO). 
The architecture of YOLO is shown in Figure 1[7]. 

Unlike previous mainstream learning methods that 
employed region proposal techniques—first generating 
potential bounding boxes in an image, then running classifiers 
on these proposed boxes, and subsequently performing 
complex post-processing steps such as refining bounding 
boxes, eliminating duplicate detections, and re-scoring boxes 
based on other objects in the scene—YOLO treats object 
detection as a single regression problem. It directly learns to 
map image pixels to bounding box coordinates and class 
probabilities in one step. This approach offers advantages such 
as faster and more accurate detection compared to 
conventional methods, with the ability to detect objects in a 
single glance. 

The architecture of Tiny-YOLO, a simplified version of 
YOLO, is shown in Figure 2[8]. Tiny-YOLO, compared to 
YOLO, features a simpler structure, which results in lower 
detection accuracy but faster inference speed. Its high 
inference speed makes it well-suited for real-time detection. 
Additionally, being a lightweight model, it requires fewer 
resources, allowing it to operate stably even in resource-
constrained environments such as Raspberry Pi. 

In prior research, Yolov3 was used to detect railway 
overhead equipment. A training dataset consisting of 2,400 
images of railway overhead equipment was created. Detection 
was performed on a PC, achieving the detection accuracy 
shown in Figure 3. When the detection was conducted on the 
PC, the detection time was 0.077 seconds, whereas on a 
Raspberry Pi, it took approximately 15 seconds. 

Fig.1 Structure of Yolov7 

 

Fig.2 Structure of Yolov7-tiny 

Fig3. Accuracy of train line detection 
 

III. METHOD AND EVALUATION 

A. Method 

In this study, AI training was conducted using YOLO and 
Tiny-YOLO version 7 training methods. The resulting models 
were deployed on a Raspberry Pi for object detection, and 
their performance was evaluated. The operational 
environment used for training on a PC included Windows 11 
and Python 3.11, while Raspberry Pi 4B ran Python 3.9. 

The workflow of this research is shown in Figure 4. First, 
a dataset was created using 2,400 images of railway overhead 
equipment. Three types of equipment—connectors, hangers, 
and insulators—were annotated using the software VOTT. 
The components and the annotation process are illustrated in 
Figure 5. The annotations generated by VOTT were in Pascal 
VOC format (XML files). Since YOLO requires TXT files in 
YOLO format for training, a conversion was performed. 
Using the created dataset of 2,400 images, training was 
conducted for Yolov7 and Yolov7-Tiny on a PC. The training 
parameters were set as follows: the number of epochs was 300, 
the batch size was 32, the image size was 640, and the model 
configuration files used were yolov7.yaml for Yolov7 and 
yolov7-tiny.yaml for Yolov7-Tiny. Epoch number is the 
number of iterations of a dataset to adjust parameters in 



machine learning, and batch size is the number of groups into 
which the dataset is divided when training. The model, trained 
in this way, was then used for evaluation. For the evaluation, 
a separate annotated test dataset, different from the one used 
for training, was prepared. The evaluation was carried out by 
running a dedicated test script. For object detection of railway 
overhead equipment, the best-performing model during 
training, best.pt, which achieved the highest validation 
performance, was utilized 

. Next, object detection for railway overhead equipment 
was performed on a Raspberry Pi, an edge device, using the 
model trained on a PC. While attempting to run the pretrained 
model on the Raspberry Pi with the PyTorch framework, 
errors occurred. To address this, the pretrained model was 
converted into the ONNX framework format. ONNX, which 
stands for Open Neural Network Exchange, is a format 
designed to represent artificial intelligence models such as 
deep learning and machine learning models. ONNX enables 
models from various frameworks to be used together and is 
optimized for hardware, making it suitable for operation on 
edge devices. 

After converting the model to ONNX format, the 
operational environment was set up on the Raspberry Pi. 
Object detection was conducted on the Raspberry Pi using the 
converted model, and measurements were taken for detection 
time, power consumption, CPU usage, and RAM usage during 
the process.  

             
Fig4. Research flow 

Fig.5 Parts and Annotation 

B. Evaluations 

When evaluating a trained object detection model, the 
metric mainly used is mAP and F1-score. To calculate that, 
four indicators—TP, FP, TN, and FN—are important. True 
Positive (TP) refers to cases where the object detection model 
predicts an object and the prediction is correct. False Positive 
(FP) refers to cases where the model predicts an object, but the 
prediction is incorrect. True Negative (TN) refers to cases 
where the model predicts no object and the prediction is 
correct. False Negative (FN) refers to cases where the model 
predicts no object, but the prediction is incorrect. Since there 
are a large number of negative background regions, TN is not 
very meaningful and is rarely used as a metric. Using the 
values of TP, FP, and FN, Precision and Recall can be 
calculated. The formula for Precision and Recall is as follows, 
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Precision represents the proportion of correct predictions 
among all positive predictions made by the model, and it 
increases as FP decreases. Recall represents the proportion of 
actual positive samples that the model correctly detects, and it 
increases as FN decreases. 

Because of this, Precision and Recall have a trade-off 
relationship, meaning that increasing one often results in a 
decrease in the other. The F1 score is a metric used to evaluate 
the performance of a classification model, balancing Precision 
and Recall. When these metrics have a trade-off relationship, 
the F1 score represents the harmonic mean of Precision and 
Recall, providing a single value that reflects the overall 
performance of the model. The formula for calculating the F1-
score is as follows, 
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The mAP, which stands for "mean Average Precision," 
represents the effective average of Precision when plotted 
with Precision on the vertical axis and Recall on the horizontal 
axis. The formula for calculating mAP is shown below. 
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In this case, the mAP and f1-score calculation will be 
performed with a confidence score of 0.5. By setting the 
confidence score to 0.5, it means that any detection with a 
confidence score of 0.5 or higher will be considered a valid 
detection. The confidence score is a numerical value that 
indicates the degree of certainty the model has about the 
accuracy of a given prediction in object detection and 
classification tasks. It is typically expressed in the range of 0 
to 1, where a score closer to 1 means the model is more 
confident that the prediction is correct. 

The model evaluation is performed on a PC, using a 
method called k-fold cross-validation. This approach involves 
using every dataset in the dataset as a test set at least once. A 
visual representation of k-fold cross-validation is shown in 
Figure 6. In this experiment, the dataset is divided into five 
parts, and the evaluation is conducted five times. After the 
evaluation, the average value of each model's performance is 
calculated, and the mAP is derived. 

 



Fig.6 k-fold cross-validation 

 
When measuring CPU and RAM usage on the PC, object 

detection is performed on 1,000 images consecutively, and the 
maximum values for both CPU and RAM usage are recorded 
during this process. For measurements on the Raspberry Pi, 
object detection is performed on one image for the Yolov7 
model and ten images for the Yolov7-Tiny model. The 
maximum values for CPU usage, RAM usage, and power 
consumption are then recorded. 

IV. RESULT AND CONSIDERATION 

In this study, a dataset consisting of 2400 images of 
railway overhead equipment was created. AI training was 
conducted using Yolov7 and Yolov7-Tiny, followed by object 
detection and model evaluation. The object detection results 
with the trained models are shown in Figure 7. Next, cross-
validation was performed to evaluate the models. Both 
Yolov7 and Yolov7-Tiny were tested by dividing the data into 
five parts, conducting training and testing five times each. 
Some of the test results are shown in Figure 8. The average of 
the five test results was calculated, and the resulting mAP is 
shown in Figure 9, with the F1-score shown in Figure 10. 

The mAP for Yolov7 was 0.988 for hanger, 0.966 for 
connector, 0.924 for insulator, and 0.959 overall. For Yolov7-
Tiny, the mAP was 0.982 for hanger, 0.976 for connector, 
0.910 for insulator, and 0.956 overall. The F1-score, 
calculated for the entire dataset, was 0.96 for Yolov7 and 0.94 
for Yolov7-Tiny. Overall, the results show very high scores. 
Among the components, the insulator had the lowest value, 
which is likely due to its smaller size compared to the hanger 
and connector, making it more challenging to detect than the 
other parts. Although Yolov7-Tiny showed better 
performance for connectors, Yolov7 outperformed Yolov7-
Tiny overall. 

The trained models were converted to the ONNX format 
and object detection was performed on the Raspberry Pi. The 
CPU and RAM usage, object detection speed, and additional 
power consumption on the Raspberry Pi were measured. The 
results are shown in table 1. On the PC, there was no 
significant difference between Yolov7 and Yolov7-Tiny. 
However, on the Raspberry Pi, the object detection time using 
the Yolov7-Tiny model was reduced to approximately one-
seventh of that with Yolov7. Additionally, RAM usage 
decreased to about one-third. 

 When detecting railway overhead equipment in real-time 
using a drone, assuming the drone camera's field of view is 
84°, a flight speed of 10 m/s, and a distance of 5 m from the 
railway overhead, the time an object remains fully within the 
frame is approximately 0.9 seconds. Therefore, it is desirable 
for the detection time to be less than 0.9 seconds. In the current 
results, it takes 2.7 seconds to detect one image, meaning that 
when performing detection to cover the entire railway 
overhead line, the maximum speed will be about 3.3 m/s. The 
speed of typical drones varies depending on the model and 
product, but it ranges from about 8 m/s to 30 m/s. With a 
movement speed of 3.3 m/s, the drone's performance is not 

fully utilized for real-time inspection of railway overhead 
equipment using drones. Considering the drone's flight time 
and the reduction in inspection time, it is believed that the 
inference speed needs to be further increased. 

Additionally, both the training data and test data used for 
AI training in this study were captured with a stationary 
camera. Since no tests were conducted using a drone, there is 
a potential risk that object detection results might degrade 
when using a drone-mounted camera. This could be due to 
image blur caused by the drone's movement or lower image 
quality from the drone's camera. 

 

Fig.7 Overhead line detection 

Fig.8 Model evaluation results 

  
Fig.9 mAP 



 

Fig.10 F1-score 

TABLE 1 Results for each model 

 

V. CONCLUSION 

Inspection of railway equipment is primarily conducted 
at night and relies on human visual checks. By leveraging 
AI and drones, it is expected that labor costs and physical 
workload can be significantly reduced. As foundational 
research for future AI implementation, this study aimed to 
improve inference speed on edge devices while developing 
an AI model for detecting railway overhead lines. The 
research involved labeling captured images of railway 
overhead lines, creating a dataset, and training an object 
detection AI model using the YOLO method. Object 
detection was performed on a Raspberry Pi, followed by 
measurements of CPU and RAM usage, power 
consumption, and detection time. The trained models 
achieved mAP and F1-scores of 0.959 and 0.96 for Yolov7, 
and 0.956 and 0.94 for Yolov7-tiny, respectively. On a PC, 
no significant differences were observed between Yolov7 
and Yolov7-tiny, but on Raspberry Pi, Yolov7-tiny 
achieved approximately 1/7 the detection time and about 1/3 
the RAM usage compared to Yolov7. 

Future research should first verify how detection 
accuracy changes when using a drone. If significant effects 
are observed, it may be necessary to optimize the model for 
drone-based detection of railway equipment by including 
drone-captured images in the training dataset. Additionally, 
to improve inference speed on edge devices, options include 
using high-performance edge devices like FPGAs or 
employing external inference accelerators such as the Coral 
USB Accelerator or Intel Neural Compute Stick on a 
Raspberry Pi[9][10]. Alternatively, adopting a more 
lightweight model than Tiny-Yolo could potentially achieve 
the inference speed required for real-time detection. 
Additionally, for the inspection of railway overhead 
equipment, it is necessary to train AI to detect faults. A 
significant challenge moving forward is to collect a large 

amount of data on faulty components, such as detached 
hangers, corroded connectors, and cracked insulators, and 
use it for training the AI. 
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