Evaluation of Real-Time Train Overhead Line
Component Detection on Edge Device

Yuto Yokomine
Graduate School of Science and Engineering,
Department of Electrical, Electronics, and
Communication Engineering,
Tokyo City University
Tokyo, Japan
22381278@tcu.ac.jp

Abstract— To ensure the safety of train operations, regular
inspections and early detection of damage are essential.
Currently, inspections are conducted visually by humans during
nighttime hours, which incurs significant costs and time. As a
solution, the establishment of automated inspection technology
using drones is being explored. In this study, as part of this
initiative, the focus was on detecting railway overhead
equipment using edge devices and improving detection speed.
Building upon prior research involving YOLO and ONNX, a
dataset was created for training the AI, which was then used to
detect railway overhead equipment on a Raspberry Pi. The
trained models achieved mAP and F1-scores of 0.959 and 0.96
for Yolov7, and 0.956 and 0.94 for Yolov7-tiny, respectively.
Detection times on the Raspberry Pi were 16.43 seconds for
Yolov7 and 2.74 seconds for Yolov7-tiny.

Keywords—drone, object detection, Yolov7, Yolov7-tiny

I. INTRODUCTION

Currently, in Japan, inspections of railway overhead line
equipment are conducted at night to avoid affecting train
operations. Railway overhead line equipment primarily
consists of three main components: hangers, insulators, and
connectors, all of which require regular inspection. In some
sections, the equipment has been in use for over 50 years since
its installation, leading to significant deterioration. Therefore,
periodic inspections are essential for ensuring safe train
operations. These inspections are typically carried out at night
through visual checks by human inspectors. However, due to
the limited time available during nighttime operations, there is
a risk of errors. While some sections are inspected using
cameras mounted on vehicles, fault detection in these cases
still relies on human visual analysis of the recorded footage.
Fully automated fault detection systems have yet to be
developed. Inspection of railway overhead line equipment is
crucial for ensuring safe train operations. However, given
Japan’s declining birthrate, aging population, and shrinking
workforce, securing the necessary personnel for these
inspections is expected to become increasingly challenging in
the future [1].

To address these challenges, this study focuses on
developing a system for automatic fault detection of railway
overhead line equipment using drones [2]. Specifically, the
study emphasizes object detection of overhead line equipment
as part of this broader initiative. If automated drone-based
inspections are realized, it is anticipated that the cost of human
resources for daily inspections can be reduced, and errors
caused by human visual checks can also be mitigated.

Nico Surantha
Faculty of Science and Engineering, Department of
Electrical, Electronics, and Communication
Engineering
Tokyo City University
Tokyo, Japan
nico@tcu.ac.jp

Drone inspections can be conducted by capturing footage
with drones and applying object detection Al to identify
equipment. Furthermore, equipping drones with onboard
object detection Al enables them to perform the entire
process—from capturing footage to detection—independently.
This minimizes the need for communication infrastructure,
allowing inspections even during disasters or situations with
limited communication capabilities. For real-time drone-
based inspections, fast object detection is essential. Thus,
accelerating inference speed is critical for enabling immediate
object recognition from video footage captured by drones.

One of the current social problems is that many cities in
developing countries, despite rapid population growth, are
unable to build railroads and rely on automobiles for their
transportation infrastructure, resulting in serious traffic
congestion. In many cases, the development of transportation
infrastructure has been delayed because of the inability to
build railroads due to cost issues and a lack of skilled human
resources [3]. Using inexpensive drones to inspect train line
equipment could solve the cost and human resource problems
associated with inspections, recover the cost of operating a
railroad, and help reduce inequality in transportation
infrastructure. The advantages of these edge device
inspections are that they are inexpensive and reduce the
number of personnel required.

The detection of railway overhead equipment was realized
using the object detection method You Only Look Once
(YOLO), which, as demonstrated in prior research, offers
higher accuracy and faster inference compared to other
methods such as R-CNN and SSD. YOLO is particularly
suited for real-time detection [4][5][6]. For real-time
inspections using drones, it is necessary to deploy object
detection Al on drones, which requires integrating the Al into
microcomputers. This study aims to measure the time required
for equipment detection on microcomputers and improve its
speed.

In conclusion, this study aims to develop an automated
inspection solution to address challenges in inspecting railway
overhead line equipment within the railway industry. By
integrating drone autopilot technology with deep learning-
based object detection, this goal can be achieved. Section 2
reviews prior research, Section 3 describes the research and
evaluation methods, Section 4 presents results and discussion,
and Section 5 concludes the study.

II. PREVIOUS RESEARCH

Object detection technology has been advancing rapidly,
with various learning methods available. One representative
object detection method is You Only Look Once (YOLO).
The architecture of YOLO is shown in Figure 1[7].

Unlike previous mainstream learning methods that
employed region proposal techniques—first generating
potential bounding boxes in an image, then running classifiers
on these proposed boxes, and subsequently performing
complex post-processing steps such as refining bounding
boxes, eliminating duplicate detections, and re-scoring boxes
based on other objects in the scene—YOLO treats object
detection as a single regression problem. It directly learns to
map image pixels to bounding box coordinates and class
probabilities in one step. This approach offers advantages such
as faster and more accurate detection compared to
conventional methods, with the ability to detect objects in a
single glance.

The architecture of Tiny-YOLO, a simplified version of
YOLO, is shown in Figure 2[8]. Tiny-YOLO, compared to
YOLO, features a simpler structure, which results in lower
detection accuracy but faster inference speed. Its high
inference speed makes it well-suited for real-time detection.
Additionally, being a lightweight model, it requires fewer
resources, allowing it to operate stably even in resource-
constrained environments such as Raspberry Pi.

In prior research, Yolov3 was used to detect railway
overhead equipment. A training dataset consisting of 2,400
images of railway overhead equipment was created. Detection
was performed on a PC, achieving the detection accuracy
shown in Figure 3. When the detection was conducted on the
PC, the detection time was 0.077 seconds, whereas on a
Raspberry Pi, it took approximately 15 seconds.

backbone
—— CBS | CBS CBs | CBS ELAN
I— MP ELAN MP ELAN MP ELAN

Lo g Ot]

- i

neck prediction
Fig.1 Structure of Yolov7

backbone

[S

o

ma Detectl E

Concat

UPsample

co. GO oo |

prediction

neck
Fig.2 Structure of Yolov7-tiny

' I
C I I |
85030 =100 w200 M0¢) W A0

Fig3. Accuracy of train line detection

e

III. METHOD AND EVALUATION

A. Method

In this study, Al training was conducted using YOLO and
Tiny-YOLO version 7 training methods. The resulting models
were deployed on a Raspberry Pi for object detection, and
their performance was evaluated. The operational
environment used for training on a PC included Windows 11
and Python 3.11, while Raspberry Pi 4B ran Python 3.9.

The workflow of this research is shown in Figure 4. First,
a dataset was created using 2,400 images of railway overhead
equipment. Three types of equipment—connectors, hangers,
and insulators—were annotated using the software VOTT.
The components and the annotation process are illustrated in
Figure 5. The annotations generated by VOTT were in Pascal
VOC format (XML files). Since YOLO requires TXT files in
YOLO format for training, a conversion was performed.
Using the created dataset of 2,400 images, training was
conducted for Yolov7 and Yolov7-Tiny on a PC. The training
parameters were set as follows: the number of epochs was 300,
the batch size was 32, the image size was 640, and the model
configuration files used were yolov7.yaml for Yolov7 and
yolov7-tiny.yaml for Yolov7-Tiny. Epoch number is the
number of iterations of a dataset to adjust parameters in

machine learning, and batch size is the number of groups into
which the dataset is divided when training. The model, trained
in this way, was then used for evaluation. For the evaluation,
a separate annotated test dataset, different from the one used
for training, was prepared. The evaluation was carried out by
running a dedicated test script. For object detection of railway
overhead equipment, the best-performing model during
training, best.pt, which achieved the highest wvalidation
performance, was utilized

. Next, object detection for railway overhead equipment
was performed on a Raspberry Pi, an edge device, using the
model trained on a PC. While attempting to run the pretrained
model on the Raspberry Pi with the PyTorch framework,
errors occurred. To address this, the pretrained model was
converted into the ONNX framework format. ONNX, which
stands for Open Neural Network Exchange, is a format
designed to represent artificial intelligence models such as
deep learning and machine learning models. ONNX enables
models from various frameworks to be used together and is
optimized for hardware, making it suitable for operation on
edge devices.

After converting the model to ONNX format, the
operational environment was set up on the Raspberry Pi.
Object detection was conducted on the Raspberry Pi using the
converted model, and measurements were taken for detection
time, power consumption, CPU usage, and RAM usage during
the process.

Annotation

znd making Train Yolov7
ataset » and Yolov7-

tiny

[

Object detection
on RaspberryPi

Convert madels
to ONNX

Fig4. Research flow

insulator connector
hanger annotation

Fig.5 Parts and Annotation

B. Evaluations

When evaluating a trained object detection model, the
metric mainly used is mAP and Fl-score. To calculate that,
four indicators—TP, FP, TN, and FN—are important. True
Positive (TP) refers to cases where the object detection model
predicts an object and the prediction is correct. False Positive
(FP) refers to cases where the model predicts an object, but the
prediction is incorrect. True Negative (TN) refers to cases
where the model predicts no object and the prediction is
correct. False Negative (FN) refers to cases where the model
predicts no object, but the prediction is incorrect. Since there
are a large number of negative background regions, TN is not
very meaningful and is rarely used as a metric. Using the
values of TP, FP, and FN, Precision and Recall can be
calculated. The formula for Precision and Recall is as follows,

Precision = — (1)
TP+FP
Recall = (2)
TP+FN

Precision represents the proportion of correct predictions
among all positive predictions made by the model, and it
increases as FP decreases. Recall represents the proportion of
actual positive samples that the model correctly detects, and it
increases as FN decreases.

Because of this, Precision and Recall have a trade-off
relationship, meaning that increasing one often results in a
decrease in the other. The F1 score is a metric used to evaluate
the performance of a classification model, balancing Precision
and Recall. When these metrics have a trade-off relationship,
the F1 score represents the harmonic mean of Precision and
Recall, providing a single value that reflects the overall
performance of the model. The formula for calculating the F1-
score is as follows,

2X(PrecisionxXRecall)

F1 — score = 3)

The mAP, which stands for "mean Average Precision,"
represents the effective average of Precision when plotted
with Precision on the vertical axis and Recall on the horizontal
axis. The formula for calculating mAP is shown below.

AP = ¥N_ (Recall, — Recall,_,) - Precision,, (4)

Precision+Recall

mAP = - %I, AP (5)

In this case, the mAP and fl-score calculation will be
performed with a confidence score of 0.5. By setting the
confidence score to 0.5, it means that any detection with a
confidence score of 0.5 or higher will be considered a valid
detection. The confidence score is a numerical value that
indicates the degree of certainty the model has about the
accuracy of a given prediction in object detection and
classification tasks. It is typically expressed in the range of 0
to 1, where a score closer to 1 means the model is more
confident that the prediction is correct.

The model evaluation is performed on a PC, using a
method called k-fold cross-validation. This approach involves
using every dataset in the dataset as a test set at least once. A
visual representation of k-fold cross-validation is shown in
Figure 6. In this experiment, the dataset is divided into five
parts, and the evaluation is conducted five times. After the
evaluation, the average value of each model's performance is
calculated, and the mAP is derived.

Full
Datal
set

B Test data P Train data
Fig.6 k-fold cross-validation

When measuring CPU and RAM usage on the PC, object
detection is performed on 1,000 images consecutively, and the
maximum values for both CPU and RAM usage are recorded
during this process. For measurements on the Raspberry Pi,
object detection is performed on one image for the Yolov7
model and ten images for the Yolov7-Tiny model. The
maximum values for CPU usage, RAM usage, and power
consumption are then recorded.

IV. RESULT AND CONSIDERATION

In this study, a dataset consisting of 2400 images of
railway overhead equipment was created. Al training was
conducted using Yolov7 and Yolov7-Tiny, followed by object
detection and model evaluation. The object detection results
with the trained models are shown in Figure 7. Next, cross-
validation was performed to evaluate the models. Both
Yolov7 and Yolov7-Tiny were tested by dividing the data into
five parts, conducting training and testing five times each.
Some of the test results are shown in Figure 8. The average of
the five test results was calculated, and the resulting mAP is
shown in Figure 9, with the F1-score shown in Figure 10.

The mAP for Yolov7 was 0.988 for hanger, 0.966 for
connector, 0.924 for insulator, and 0.959 overall. For Yolov7-
Tiny, the mAP was 0.982 for hanger, 0.976 for connector,
0.910 for insulator, and 0.956 overall. The Fl-score,
calculated for the entire dataset, was 0.96 for Yolov7 and 0.94
for Yolov7-Tiny. Overall, the results show very high scores.
Among the components, the insulator had the lowest value,
which is likely due to its smaller size compared to the hanger
and connector, making it more challenging to detect than the
other parts. Although Yolov7-Tiny showed better
performance for connectors, Yolov7 outperformed Yolov7-
Tiny overall.

The trained models were converted to the ONNX format
and object detection was performed on the Raspberry Pi. The
CPU and RAM usage, object detection speed, and additional
power consumption on the Raspberry Pi were measured. The
results are shown in table 1. On the PC, there was no
significant difference between Yolov7 and Yolov7-Tiny.
However, on the Raspberry Pi, the object detection time using
the Yolov7-Tiny model was reduced to approximately one-
seventh of that with Yolov7. Additionally, RAM usage
decreased to about one-third.

When detecting railway overhead equipment in real-time
using a drone, assuming the drone camera's field of view is
84°, a flight speed of 10 m/s, and a distance of 5 m from the
railway overhead, the time an object remains fully within the
frame is approximately 0.9 seconds. Therefore, it is desirable
for the detection time to be less than 0.9 seconds. In the current
results, it takes 2.7 seconds to detect one image, meaning that
when performing detection to cover the entire railway
overhead line, the maximum speed will be about 3.3 m/s. The
speed of typical drones varies depending on the model and
product, but it ranges from about 8 m/s to 30 m/s. With a
movement speed of 3.3 m/s, the drone's performance is not

fully utilized for real-time inspection of railway overhead
equipment using drones. Considering the drone's flight time
and the reduction in inspection time, it is believed that the
inference speed needs to be further increased.

Additionally, both the training data and test data used for
Al training in this study were captured with a stationary
camera. Since no tests were conducted using a drone, there is
a potential risk that object detection results might degrade
when using a drone-mounted camera. This could be due to
image blur caused by the drone's movement or lower image
quality from the drone's camera.

Fig.7 Overhead line detection

ﬁ”‘—\
0.8
—— hanger 0.989 L
~—— connector 0.995

—— insulator 0.933
m— 3| classes 0.972 MAP@0.5

—— hanger 0.982

—— connector 0.996

—— insulator 0.918

= all classes 0.965 MAP@0.5

0.6

0.4

0z

Yolov7 Yolov7-tiny

0.0 0.2 0.4 0.6 08 1010 02 0.4 06 08 1
Recall Recall

Fig.8 Model evaluation results

Yolow7 mAP

1

0

DE

0T

DE

% b5
E

[EEY

[E

ks

ol

a

hanger £on nectar sl ator all
mmAR 1988 D.9EE 084 0353

Yolov7-tiny mAP

0
DE
o7
oE
[EE3
03
ok
ol

a

hanger con nactor insulator all
W AR G882 LA7E a8l 1356

Fig.9 mAP

mAF
&

F1-score
1
0.8
2 06
o004
0.2
0 Yolov7 YolovT-tiny
m Fl-score 0.96 0.94
Fig.10 F1-score
TABLE 1 Results for each model
" yolov7 yolov7-tiny
yolovT PColovT-tiny PC Raspberry Pi|Raspberry Pi
Detection
time(s) 0.079 0.065 16.43 274
CcPU .
utilization(%) 59.1% 59.3 41 45
RAM
consumption(%) 27.1 27.3 38.4 13.8
POWER
consumption(W) 4.27 4.21

V. CONCLUSION

Inspection of railway equipment is primarily conducted
at night and relies on human visual checks. By leveraging
Al and drones, it is expected that labor costs and physical
workload can be significantly reduced. As foundational
research for future Al implementation, this study aimed to
improve inference speed on edge devices while developing
an Al model for detecting railway overhead lines. The
research involved labeling captured images of railway
overhead lines, creating a dataset, and training an object
detection Al model using the YOLO method. Object
detection was performed on a Raspberry Pi, followed by
measurements of CPU and RAM wusage, power
consumption, and detection time. The trained models
achieved mAP and F1-scores of 0.959 and 0.96 for Yolov7,
and 0.956 and 0.94 for Yolov7-tiny, respectively. On a PC,
no significant differences were observed between Yolov7
and Yolov7-tiny, but on Raspberry Pi, Yolov7-tiny
achieved approximately 1/7 the detection time and about 1/3
the RAM usage compared to Yolov7.

Future research should first verify how detection
accuracy changes when using a drone. If significant effects
are observed, it may be necessary to optimize the model for
drone-based detection of railway equipment by including
drone-captured images in the training dataset. Additionally,
to improve inference speed on edge devices, options include
using high-performance edge devices like FPGAs or
employing external inference accelerators such as the Coral
USB Accelerator or Intel Neural Compute Stick on a
Raspberry Pi[9][10]. Alternatively, adopting a more
lightweight model than Tiny-Yolo could potentially achieve
the inference speed required for real-time detection.
Additionally, for the inspection of railway overhead
equipment, it is necessary to train Al to detect faults. A
significant challenge moving forward is to collect a large

amount of data on faulty components, such as detached
hangers, corroded connectors, and cracked insulators, and
use it for training the Al

ACKNOWLEDGMENT

The research was conducted as part of the Tokyo City
University Prioritized Studies.

REFERENCES

[1] National Institute of Population and Social Security Research.
“Population Projections for Japan (2023 revision): 2021 to 2070”.
April 26, 2023

[2] Wang J, Fu P, Gao RX, “Machine vision intelligence for product
defect inspection based on deep learning and hough transform,” J
Manuf Syst, vol. 51, pp. 52-60, 2019.

[3] Kuroda Sadaaki, Akatsuka Yuzo “Study on Japanese Government
Assistance for Railway Development in Developing Countries..”
Transactions of the Japan Society of Civil Engineers vol 667, pp.15-
30, 2001.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick , Ali Farhadi,
“You Only Look Once: Unified, Real-Time Object Detection”.
May 9,2016.

[51 Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, UC
Berkeley, “Rich feature hierarchies for accurate object detection and
semantic segmentation”. Oct 22, 2014.

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott Reed, Cheng-Yang Fu, Alexander C. Berg, “SSD: Single Shot
MultiBox Detector” Dec 29, 2016.

[71 Bao Rong Chang, Hsiu-Fen Tsai, Chia-Wei Hsieh, “Accelerating
the Response of Self-Driving Control by Using Rapid Object
Detection and Steering Angle Prediction”. May 23, 2023.

[8] Ryosei Furuichi, Kazuyoshi Takagi, “Using VitisAl FPGA
Implementation of YOLOV7-tiny” Proceedings of the DA
Symposium 2022,151-156

[91] Marek Kraft, Mateusz Piechocki, Bartosz Ptak, Krzysztof Walas,
“Autonomous, Onboard Vision-Based Trash and Litter Detection in
Low Altitude Aerial Images Collected by an Unmanned Aerial
Vehicle” March 2021.

[10] A E Tolmacheva, D A Ogurtsov, M. G. Dorrer, “Justification for
choosing a single-board hardware computing platform for a neural
network performing image processing” January 2020.

