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Abstract—Semantic communication (SemCom) has emerged as
a pivotal advancement in communication systems by focusing
on the transmission of task-relevant meaning rather than raw
data. This paradigm shift enables efficient communication for
intelligent systems but also introduces new security and privacy
risks. This paper explores these risks, reviews state-of-the-art
countermeasures, and identifies key challenges and future direc-
tions in ensuring secure and private semantic communication.
By addressing these issues, SemCom can fulfill its potential in
domains such as healthcare, IoT, and autonomous systems.

Index Terms—Semantic communication, security, privacy, ad-
versarial attacks, semantic leakage.

I. INTRODUCTION

Semantic communication (SemCom) has transformed tradi-
tional communication paradigms by emphasizing task-oriented
and meaning-based data exchange over conventional bit-level
transmission. This paradigm uses artificial intelligence (AI)
and deep learning (DL) to encode, transmit, and decode
information tailored to a specific task, reducing redundancy
and increasing efficiency [1]. For example, in a healthcare
scenario, rather than sending raw imaging data, SemCom
can send the semantic message “abnormal growth detected,”
significantly reducing bandwidth requirements while retaining
actionable insights.

SemCom’s deployment is widespread, spanning IoT, au-
tonomous driving, and edge computing. In self-driving cars,
semantic systems can share important information like “ob-
stacle detected” rather than high-resolution video streams,
resulting in faster and more efficient communication. Simi-
larly, in industrial 10T, semantic communication enables smart
decision-making by sending context-aware summaries of sen-
sor data rather than raw measurements [2].

However, these advancements present unique security and
privacy challenges. Unlike traditional communication systems,
which focus on protecting raw data, SemCom systems face
threats to their semantic representations and Al models. Ad-
versaries can manipulate transmitted semantics to confuse
decision-making processes, such as changing the classification
of traffic signs in self-driving cars or introducing malicious
noise into medical diagnostics. Privacy concerns are equally
important, as semantic data abstractions may inadvertently
reveal sensitive user information, even when encrypted or
anonymized. Addressing these issues is critical to the secure
and ethical deployment of SemCom systems [3].

This paper investigates these challenges in detail, analyzing
the unique vulnerabilities of semantic systems and review-
ing state-of-the-art solutions. It also identifies key research
directions, such as the development of privacy-preserving
techniques, adversarial robustness, and trust mechanisms, to
foster secure and privacy-aware semantic communication.

II. SECURITY THREATS IN SEMANTIC COMMUNICATION

Semantic communication introduces a shift in communi-
cation paradigms but also opens new attack surfaces that
are unique to its operation. Below, we provide a detailed
discussion of the major threats.

A. Semantic Leakage

One of the most dangerous risks to SemCom systems is
semantic leakage. SemCom transmits higher-level abstractions
or interpretations of data, which by their very nature contain
contextual information, in contrast to traditional communica-
tion, where encryption of raw data is frequently adequate to
protect information. Sensitive information about the task, the
sender, or even the underlying data itself may inadvertently be
revealed in this context [4].

For example, even when anonymization techniques are used,
sending semantic messages like “Stage 3 cancer detected”
in healthcare systems that use SemCom may unintentionally
expose private patient information. Particularly in systems with
frequent interactions, attackers could intercept these semantic
representations and deduce patient conditions or patterns in
historical data. In edge computing settings, where numerous
devices with different degrees of trust interact, these risks are
increased.

Advanced methods like differential privacy, which intro-
duces noise into semantic outputs without compromising their
usefulness for tasks downstream, are necessary to mitigate
semantic leakage. Finding the ideal balance between semantic
accuracy and privacy protection, however, continues to be a
crucial research challenge.

B. Adversarial Attacks

Adversarial attacks pose a significant threat to Al-driven
semantic systems. These attacks exploit vulnerabilities in
the deep learning models used for encoding and decoding
semantics [5].



o Evasion Attacks: Small, imperceptible perturbations
added to inputs can lead to incorrect semantic representa-
tions. For example, an adversary could subtly manipulate
a vehicle’s sensor data, causing an autonomous car to
misinterpret a ’stop sign” as a “yield sign”.

« Poisoning Attacks: By injecting malicious data during the
training phase, attackers can compromise the integrity of
the semantic model. Poisoned models may misclassify
critical inputs, potentially leading to catastrophic failures
in applications like industrial IoT or healthcare.

o Inference Attacks: Adversaries can also infer private
details from the intermediate features of semantic models,
particularly in shared learning environments like feder-
ated learning.

The necessity of adversarial robustness in semantic systems
is highlighted by these attacks. Semantic validation mecha-
nisms, which guarantee that outputs are consistent with known
constraints, and adversarial training, which exposes models to
adversarial examples during training, are two techniques that
have shown promise but are still resource-intensive.

C. Trust and Model Integrity

The reliability of SemCom systems depends on the integrity
of shared semantic models [6]. Semantic models and shared
ontologies are critical in multi-agent environments like smart
cities and industrial IoT networks for ensuring device interop-
erability. However, these shared resources are also attractive
targets for attackers looking to manipulate or compromise
system-wide communication.

For example, if an attacker tampers with a collaborative
manufacturing system’s shared semantic model, it may result
in widespread errors, such as misinterpretation of production
data or incorrect task execution. Blockchain technology has
been proposed as a solution for improving trust in such envi-
ronments [7]. Blockchain can prevent unauthorized changes by
keeping an immutable record of model updates and verifying
semantic data’s provenance.

D. Contextual Inference Risks

Semantic systems rely on contextual data to improve task
performance, but this reliance raises the possibility of infer-
ence attacks [8]. Adversaries can infer user behaviors, pref-
erences, or environmental contexts by analyzing transmitted
semantics patterns. For example, in smart home systems,
repeated semantic messages about “low temperature detected”
may reveal the household’s occupancy patterns, posing phys-
ical security risks.

III. PRIVACY PRESERVATION TECHNIQUES

As semantic communication becomes more prevalent in
sensitive domains such as healthcare, autonomous systems,
and IoT, privacy concerns grow. This section discusses various
techniques for protecting privacy in SemCom, ranging from
traditional encryption methods to emerging solutions such as
federated learning and homomorphic encryption. Each of these
techniques contributes significantly to lowering the risk of

information leakage and improving SemCom system privacy
guarantees.

A. Differential Privacy

Differential privacy (DP) has emerged as an effective frame-
work for protecting privacy, particularly in the context of
federated learning. In SemCom, where models are trained to
derive meanings from contextual data, DP ensures that the
output contains no specific information about individual data
points. DP works by introducing noise into the data or model
updates in such a way that the probability of any given data
point being included in the dataset remains roughly constant,
regardless of whether it is included or not.

For example, in a healthcare application, DP can be used
to anonymize semantic representations of medical data before
it is transmitted over a network. By introducing noise into
the semantic message, DP ensures that an adversary who in-
tercepts the message cannot deduce private information about
the patient. However, the effectiveness of DP is dependent
on the careful tuning of noise parameters in order to balance
privacy with the accuracy and utility of transmitted semantics.
Recent advances have attempted to increase the utility of DP in
wiretap channel communication by incorporating it into more
sophisticated learning models [9].

B. Homomorphic Encryption

Homomorphic encryption (HE) enables computations on
encrypted data without the need to decrypt it first [3]. This
property is especially useful for privacy-preserving semantic
communication in cloud or edge environments, where data is
processed remotely but must be kept confidential. SemCom
allows encrypted semantic messages to be sent to a server,
where tasks like semantic decoding or inference can be per-
formed without exposing sensitive data.

Homomorphic encryption is particularly useful when sen-
sitive data is being transmitted between multiple devices in a
distributed system. For example, in smart cities or industrial
IoT networks, nodes may send encrypted semantic data (e.g.,
“high temperature detected in sensor A”) to a central process-
ing unit. The central unit can then perform functions such as
anomaly detection without disclosing any specific sensor data.
Despite its obvious benefits, homomorphic encryption is com-
putationally expensive, and its adoption remains limited due to
the high overhead required for operations. Research is being
conducted to optimize HE schemes for efficiency, particularly
in real-time applications where latency and computation power
are critical constraints [10].

C. Adversarial Robustness Strategies

Adversarial robustness is essential for ensuring the security
and dependability of semantic communication systems against
adversarial attacks. Adversarial attacks on Al-driven models
for semantic inference can significantly reduce the quality
of semantic communication by introducing malicious pertur-
bations into the input data. To mitigate such threats, robust



semantic models can be trained with adversarial examples,
exposing them to a wide range of possible attack scenarios.
Adpversarial training involves adding small perturbations to
the training data to simulate real-world attacks, thereby teach-
ing the model to withstand such changes without significantly
degrading performance. Furthermore, semantic consistency
checks can be used to compare decoded semantics to expected
outcomes. For example, in autonomous driving, a consistency
check may ensure that an interpreted “stop sign” always
corresponds to a semantic action such as “apply brakes,’
ensuring safety even if adversarial modifications occur.
Techniques like adversarial training have shown promise
in improving model robustness, but they come at a cost
in terms of computation time and model complexity. As a
result, researchers are increasingly focusing on developing
lightweight adversarial defense mechanisms that do not de-
grade the efficiency of task-oriented communication [11].

D. Federated Semantic Learning

Federated learning is a decentralized approach to training
machine learning models that enables devices to collaborate
on model building while keeping raw data on the local de-
vice. This approach has proven particularly useful in privacy-
sensitive environments, as it eliminates the need for data to
leave the local device, lowering the risk of data exposure
during transmission. Federated learning in SemCom enables
models to learn semantic representations without sharing sen-
sitive raw data across devices [12].

Federated learning is especially useful in situations where
large-scale collaboration is required while data privacy must be
maintained. For example, in healthcare systems, hospitals can
collaborate to create a semantic model for medical diagnostics
without sharing patient data directly. Instead, each hospital
trains a local model and only sends model updates (gradients)
to a central server for aggregation. Secure aggregation im-
proves federated learning’s privacy by ensuring that the central
server cannot access individual updates, preventing sensitive
information from being leaked. Despite its promising benefits,
there are still challenges in addressing potential vulnerabilities,
such as model inversion attacks, which allow adversaries to in-
fer private details from model updates, and the computational
burden of model training on resource-constrained devices.

IV. FUTURE RESEARCH DIRECTIONS

As the use of semantic communication grows, it is criti-
cal to address emerging security and privacy concerns. The
following research directions offer a road map for improving
the robustness and privacy of SemCom systems in the coming
years.

A. Cross-Layer Security

Semantic communication systems operate across multiple
layers, including the physical, network, and application layers.
A critical area of research is integrating security measures
across these layers to address vulnerabilities that may arise
at the intersections. For example, a physical layer security

mechanism could help prevent eavesdropping or jamming,
whereas network layer encryption could protect data in transit.
At the semantic layer, adversarial robustness and privacy
preservation can help reduce the risks associated with model
manipulation and semantic leakage. A comprehensive cross-
layer security framework would offer complete protection
by coordinating security measures across all layers of the
communication stack.=

B. Lightweight Security for loT

The rapid growth of IoT and edge computing devices poses
a significant challenge to privacy-preserving SemCom, as these
devices frequently have limited computational resources and
energy constraints. Developing lightweight cryptographic and
privacy-preserving mechanisms that strike a balance between
efficiency and privacy protection is an important area of
current research. For instance, lightweight homomorphic en-
cryption schemes and efficient privacy-preserving aggregation
techniques are required to ensure privacy while not overbur-
dening resource-constrained devices.

Another promising direction is the development of privacy-
preserving protocols that require minimal computational over-
head while maintaining semantic message confidentiality.
Techniques such as secure multi-party computation (SMPC)
and privacy-preserving federated learning can be adapted
to work in resource-constrained environments, allowing for
privacy guarantees in large-scale distributed networks.

C. Explainable Semantic Models

As semantic communication models become more complex,
explainability (XAI) in Al-driven systems will be critical
for establishing trust and ensuring that system decisions are
understandable and justifiable. Stakeholders in security-critical
applications such as autonomous vehicles or medical diag-
nostics must understand how decisions are made using trans-
mitted semantics. Explainable semantic models can improve
transparency by allowing users to validate decisions and detect
potential issues or errors during the inference process.

Future research in this area could concentrate on developing
explainable Al methods for semantic communication, such as
providing interpretable visualizations of the reasoning under-
lying semantic decoding or classification. Furthermore, com-
bining explainability with security mechanisms can help in the
detection of vulnerabilities, such as adversarial manipulations,
as well as improving overall system robustness.

D. Ethical and Regulatory Frameworks

As SemCom evolves, ethical considerations and regulatory
frameworks will have a significant impact on its deployment,
especially in sensitive fields such as healthcare, autonomous
driving, and smart cities. Research in this area should con-
centrate on creating guidelines for data privacy, user consent,
and accountability in SemCom systems. Governments and
organizations must work together to establish standards that
protect privacy and security while encouraging innovation.

For example, the European Union’s General Data Protection
Regulation (GDPR) could be used as a model for addressing



privacy concerns in semantic communication systems by en-
suring that data is collected, stored, and shared in a transparent
and ethical manner. There is also a need for research to
establish global standards for the ethical use of SemCom,
particularly in high-stakes applications that require balancing
privacy and system performance.

V. CONCLUSION

Semantic communication has the potential to transform
communication systems by moving from raw data exchange
to meaning-driven communication. However, this transfor-
mation raises new security and privacy concerns, such as
semantic leakage, adversarial attacks, and model trust is-
sues. Addressing these concerns necessitates a multifaceted
approach that combines traditional encryption techniques with
novel solutions like federated learning, adversarial robustness,
and explainable AI. By improving these privacy-preserving
techniques and developing cross-layer security mechanisms,
researchers can enable secure and privacy-aware deployment
of SemCom in mission-critical applications, paving the way
for safer, more efficient communication networks.
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